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Three infinite-dimensional quantum groups

Yangian Y~(g). Deformation of g[s].

Quantum Loop algebra Uq(Lg). Deformation of g[z , z−1].

Elliptic Quantum Group Eτ,~(g). Deformation of ϑ : C→ g.
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Goal

Solve three problems about Y~(g),Uq(Lg) and Eτ,~(g).

All the results are valid for a symmetrisable Kac–Moody algebra g.

For notational simplicity, restrict attention to g = sl2 = 〈e, f , h〉.
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The Yangian Y~(g)

Y~(g) assoc. alg./C, depending on ~ ∈ C, Y~(g)|~=0 = U(g[s]).

Generators {ξr , x+
r , x

−
r }r≥0, with classical limit (~→ 0)

ξr → h ⊗ s r x+
r → e ⊗ s r x−r → f ⊗ s r

Relations for any r , s ∈ N

[ξr , ξs ] = 0

[ξ0, x
±
r ] = ±2x±r

[x+
r , x

−
s ] = ξr+s

[ξr+1, x
±
s ]− [ξr , x

±
s+1] = ±~(ξrx

±
s + x±s ξr )

[x±r+1, x
±
s ]− [x±r , x

±
s+1] = ±~(x±r x±s + x±s x±r )
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Irreducible finite–dimensional representations of Y~(g)
(~ 6= 0)

Thm (Drinfeld, Tarasov, Chari–Pressley) The simple objects
in Repfd(Y~(g)) are in bijection with unordered tuples of (not
necessarily distinct) points in C.

Irrepfd(Y~(g))←→
⋃
n≥0

Cn/Sn

Example If a1, . . . , am ∈ C, the evaluation representation

V = C2(a1)⊗ · · · ⊗ C2(am)

is irreducible iff ai − aj 6= ~ for any i 6= j . If so, it corresponds
to the m–tuple {a1, . . . , am}.
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Y~(g) revisited: fields

Generating functions

ξ(u) = 1 + ~
∑
r≥0

ξru
−r−1 x±(u) = ~

∑
r≥0

x±r u−r−1

Relations

[ξ(u), ξ(v)] = 0

[x+(u), x−(v)] =
~

u − v
(ξ(v)− ξ(u))

ξ(u)x±(v)ξ(u)−1 =
u − v ± ~
u − v ∓ ~

x±(v)∓ 2~
u − v ∓ ~

x±(u ∓ ~)

x±(u)x±(v) =
u − v ± ~
u − v ∓ ~

x±(v)x±(u)∓ ~
u − v ∓ ~

(x±(u)2 + x±(v)2)

Prop (GTL) On V ∈ Repfd(Y~(g)), the fields ξ(u), x±(u) are the Taylor
expansions at u =∞ of End(V )–valued rational functions.
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The quantum loop algebra Uq(Lg)

Uq(Lg) associative algebra over C depending on q ∈ C\
√

1

Generators X±` , ` ∈ Z and Ψ±±k , k ∈ N, with classical limit (q → 1)

X+
` → e⊗z` X−` → f⊗z` Ψ±0 ∼ q±h Ψ±±k ∼ ±(q − q−1)q±h·h⊗z±k

Relations Ψ+
0 Ψ−0 = 1 and

[Ψ±k ,Ψ
±
k′ ] = 0 = [Ψ±k ,Ψ

∓
k′ ]

Ψ+
0 X
±
` (Ψ+

0 )−1 = q±2X±`

[X+
` ,X

−
`′ ] =

Ψ+
`+`′ −Ψ−`+`′

q − q−1

Ψε
k+1X

±
` − q±2X±` Ψε

k+1 = q±2Ψε
kX
±
`+1 − X±`+1Ψε

k

X±`+1X
±
`′ − q±2X±`′ X

±
`+1 = q±2X±` X±`′+1 − X±`′+1X

±
`
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Irreducible finite–dimensional representations of Uq(Lg)

Theorem (Chari–Pressley) The simple objects in Repfd(Uq(Lg))
are in bijection with unordered tuples of (not necessarily distinct)
points in C×.

Irrepfd(Uq(Lg))←→
⋃
n≥0

(C×)n/Sn

Example If α1, . . . , αm ∈ C×, the evaluation representation

V = C2(α1)⊗ · · · ⊗ C2(αm)

is irreducible iff αi/αj 6= q2, for any i 6= j . If so, it corresponds
to the m–tuple {α1, . . . , αm}.
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Uq(Lg): fields

Ψ(z)∞ =
∑
r≥0

Ψ+
r z
−r X±(z)∞ =

∑
r≥0

X±r z−r

Ψ(z)0 =
∑
r≥0

Ψ−−rz
r X±(z)0 = −

∑
r>0

X±−rz
r

Prop. (Beck–Kac,Hernandez) On V ∈ Repfd(Uq(Lg)), Ψ(z)∞/0 and
X±(z)∞/0 are the exp. at z =∞/0 of rat’l functions Ψ(z), X±(z).

Relations [Ψ(z),Ψ(w)] = 0

Ad(Ψ(z))X±(w) =
q±2z − w

z − q±2w
X±(w)∓ (q2 − q−2)q±2w

z − q±2w
X±(q∓2z)

X±(z)X±(w) =
q±2z − w

z − q±2w
X±(w)X±(z)∓ 1− q±2

z − q±2w
(wX±(z)2 + zX±(w)2)

[X+(z),X−(w)] =
1

q − q−1

(
zΨ(w)− wΨ(z)

z − w
−Ψ(0)

)
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Problem # 1: relation between Y~(g) and Uq(Lg)?

“Y~(g) and Uq(Lg) have the same f.d. representation theory”
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Irrepfd(Uq(Lg)) oo // ⋃
n≥0(C×)n/Sn
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“Y~(g) and Uq(Lg) have the same f.d. representation theory”

Irrepfd(Y~(g)) oo //

Exp
����

⋃
n≥0 Cn/Sn

exp(2πι−)
����

Irrepfd(Uq(Lg)) oo // ⋃
n≥0(C×)n/Sn

Theorem (Nakajima, Varagnolo) If g is simply–laced, Exp preserves
dimensions.

Caveat Exp is a set–theoretic map, not a functor.

Problem Construct a functor F : Repfd(Y~(g))→ Repfd(Uq(Lg)) which
induces Exp, and an equivalence of appropriate subcategories.
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Solution. ~ ∈ C \Q, q = eπι~ ∈ C× \
√

1

Theorem (Gautam–TL 2013)
Repfd(Y~(g)) is an exponential cover of Repfd(Uq(Lg)).
More precisely, there is a functor

Γ : Repfd(Y~(g)) −→ Repfd(Uq(Lg))

such that

1 Γ(V ) = V as vector spaces (⇒ Γ is exact and faithful).

2 Γ is essentially surjective.

3 Γ maps simples to simples and induces the map Exp on parameters.

4 Γ restricts to an equivalence on a subcategory C ⊂ Repfd(Y~(g))
determined by a branch of log.

Main ingredient Γ is governed by an abelian difference equation.
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A small computation

V ∈ Rep(sl2) vector repr., V (a) eval. repr. of Y~(sl2), a ∈ C
ω ∈ V (a) highest weight vector

ξ(u)ω =
u + ~− a

u − a
ω

V ∈ Rep(Uqsl2) vector repr., V(α) eval. repr. of Uq(Lsl2), α ∈ C×
Ω ∈ V(α) highest weight vector

Ψ±(z) Ω = q−1 q
2z − α
z − α

Ω

u + ~− a

u − a
?; q−1 q

2z − α
z − α

Termwise exponentiation: z = e2πιu, α = e2πιa, q = eπι~

Better answeraveraging

q−1 q
2z − α
z − α

= · · · u+1 + ~− a

u+1− a
· u + ~− a

u − a
· u−1 + ~− a

u−1− a
· · ·
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How to average: Additive Difference Equations (ADEs)

A : C→ GL(V ) rational function

A = 1 + A0u
−1 + · · ·

(Symbolic) half–averages

ϕ−(u) = A(u − 1)A(u − 2) · · · ϕ+(u) = A(u)−1A(u + 1)−1 · · ·

satisfy the additive difference equation

ϕ±(u + 1) = A(u)ϕ±(u)

Theorem (Birkhoff, 1911) If the eigenvalues of A0 do not differ by
integers, there are canonical meromorphic fundamental solutions
φ± : C→ GL(V ),which are uniquely determined by

1 φ± is holomorphic and invertible for ±Re u >> 0

2 φ± ∼ (1 + O(u−1))(±u)A0 for ±Re u >> 0
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Connection (monodromy) matrix: S(u) = φ+(u)−1 · φ−(u)

Theorem (Birkhoff, 1911)

1 S(u) is a 1–periodic function of u, and thus a function of z = e2πιu

2 S(z) : P1 → GL(V ) is a rational function of z such that

S(∞) = eπιA0 = S(0)−1

Remark. S(u) is a regularisation of

· · ·A(u + 2)A(u + 1)A(u)A(u − 1)A(u − 2) · · ·
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Additive difference equations: example

Scalar additive difference equation

f (u + 1) =
u − a

u − b
f (u)

The fundamental solutions are given by Euler’s Gamma function Γ

φ+ =
Γ(u − a)

Γ(u − b)
φ− =

Γ(1− u + b)

Γ(1− u + a)

The connection matrix is

S(u) =
Γ(u − b)

Γ(u − a)

Γ(1− u + b)

Γ(1− u + a)
=

e2πιu − e2πιa

e2πιu − e2πιb
· eπι(b−a)

(Γ(u)Γ(1− u) = π/ sin(πu)). Termwise exponentiation.
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The functor Γ: V ∈ Repfd(Y~(g))
?
 Uq(Lg) 	 V

Main idea
Recall that ξ(u) ∈ GL(V )(u), ξ(∞) = 1

Consider the additive difference equation

f (u + 1) = ξ(u)f (u)

The functor Γ is governed by this ADE

Action of the commutative generators Ψ±
k

Ψ(z) −→ S(z) = · · · ξ(u + 1)ξ(u)ξ(u − 1) · · ·
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The functor Γ: V ∈ Repfd(Y~(g))
?
 Uq(Lg) 	 V

Action of the generators X±
k

g+(u) = · · · ξ(u + 2)ξ(u + 1) (reg.)

g−(u) = ξ(u − 1)ξ(u − 2) · · · (reg.)

X±(z)→ Γ(~)

∮
C±

z

z − e2πιu
g±(u)x±(u)du

C± encloses the poles of x±(u) and none of their Z×–translates.

z lies outside exp(2πιC±).

Theorem (GTL) The above formulae define an action of Uq(Lg) on V and
therefore an exact, faithful functor Γ : Repfd(Y~(g))→ Repfd(Uq(Lg)).

Remark The inverse functor is governed by the Riemann–Hilbert problem
S(z) ; A(u) (always solvable since [S(z),S(w)] = 0).
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Tensor structures

Theorem (D. Hernandez, GTL) Repfd(Uq(Lg)) is a meromorphic
braided tensor category.

V1,V2 ∈ Repfd(Uq(Lg)) ; V1 ⊗ζ V2 ∈ Repfd,C(ζ)(Uq(Lg))

(V1 ⊗ζ1 V2)⊗ζ2 V3 = V1 ⊗ζ1ζ2 (V2 ⊗ζ2 V3)

⊗ζ is the (deformed) Drinfeld coproduct.

R0
V1,V2

(ζ) : V1 ⊗ζ V2
∼→ V2 ⊗ζ−1 V1

R0 the commutative part of the universal R–matrix of Uq(Lg).

Theorem (GTL, arXiv:14035251)

1 (Repfd(Y~(g)),⊗s ,R
0(s)) is a meromorphic braided tensor category.

2 Γ : (Repfd(Y~(g)),⊗s ,R
0(s)) −→ (Repfd(Uq(Lg)),⊗ζ ,R0(ζ))

has a (meromorphic) braided tensor structure.

Remark (2) is a meromorphic, q–deformed version of the
Kazhdan–Lusztig equivalence Oκ(ĝ)

∼→ Repfd(Uqg).
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Elliptic quantum groups

Quantum groups are related to the Yang–Baxter equations on V⊗3

R12(u)R13(u + v)R23(v) = R23(v)R13(u + v)R12(u)

where R : C→ End(V ⊗ V ) is meromorphic, R12 = R ⊗ 1, . . .
Yangians Y~(g) (resp. quantum loop algebras Uq(Lg)) give rise
to rational (resp. trigonometric) solutions of the YBE.
Elliptic soln. of the YBE only exist in type A (Belavin–Drinfeld) /

Felder (’94)
Consider the dynamical Yang–Baxter equations

R12(u, λ− h(3))R13(u + v , λ)R23(v , λ− h(1))

= R23(v , λ)R13(u + v , λ− h(2))R12(u, λ)

where λ ∈ h, R ∈ Endh(V ⊗ V ), and h(i) is the ith weight on V⊗3.

Solutions to the DYBE exist for all g (Felder, Etingof) ,
Elliptic quantum groups are the quantum groups associated to
elliptic solutions of the DYBE (works well only in type A /).
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Problem # 2: present elliptic quantum groups

Let Im τ > 0 and p = e2πιτ . Assume that Z~ ∩ (Z + τZ) = {0}.

Idea Given V ∈ Repfd(Uq(Lg)), use the multiplicative p–difference
equations defined by the commuting fields of Uq(Lg)

G (pz) = Ψ(z)G (z)

to construct an action of Eτ,~(g) on V.
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to construct an action of Eτ,~(g) on V.

V ∈ Repfd(Uq(Lg))
p-difference
equations

Eτ,~(g)V//
||
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p–difference equations on V ∈ Repfd(Uq(Lg))

Ψ(z) ∈ GL(V)(z): [Ψ(z),Ψ(w)] = 0 and Ψ(∞) = Ψ(0)−1 =: K

φ(pz) = Ψ(z)φ(z) NOT regular at 0/∞ (K 6=1)
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The functor Θ: V ∈ Repfd(Uq(Lg)) Eτ,~(g) 	 V

Action of the commuting generators Φ(u) (z = e2πιu)

Φ(u) −→ M(z) = φ−1
0 (z) · K−1 · φ∞(z)

Action of the raising/lowering generators X±(u, λ) (λ ∈ h)

X±(u, λ) −→
∮
C

θ(u − v + λ)

θ(u − v)θ(λ)
G±(e2πιv )X±(e2πιv ) dv

G+(z) = φ0(pz)−1 G−(z) = φ∞(z)

θ(u + 1) = −θ(u), θ(u + τ) = −e−πιτe−2πιuθ(u), θ′(0) = 1.
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Commutation relations

Theorem (GTL) The following commutation relations in End(V)

[Φ(u),Φ(v)] = 0

Ad(Φ(u))X±(v , λ) =
θ(u − v ± ~)

θ(u − v ∓ ~)
X±(v , λ± 2~)

∓θ(2~)θ(u − v − λ∓ ~)

θ(u − v ∓ ~)θ(λ)
X±(u ∓ ~, λ± 2~)

X±(u, λ± ~)X±(v , λ∓ ~) =
θ(u − v ± ~)

θ(u − v ∓ ~)
X±(v , λ± ~)X±(u, λ∓ ~)

±θ(u − v − λ)θ(~)

θ(u − v ∓ ~)θ(λ)
X±(u, λ± ~)X±(u, λ∓ ~)

∓θ(u − v + λ)θ(~)

θ(u − v ∓ ~)θ(λ)
X±(v , λ± ~)X±(v , λ∓ ~)
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Commutation Relations continued

On a weight space V[µ] we have the following, if λ1 + λ2 = ~µ

θ(~)[X+(u, λ1),X−(v , λ2)] =
θ(u − v + λ1)

θ(u − v)θ(λ1)
Φ(v) +

θ(u − v − λ2)

θ(u − v)θ(λ2)
Φ(u)

Remarks.
1 We have the following quasi–periodicity

Φ(u + 1) = Φ(u) and Φ(u + τ) = e−2πι~hΦ(u)

X±(u + 1, λ) = X±(u, λ+ 1) = X±(u, λ)

X±(u + τ, λ) = e−2πιλX±(u, λ)

2 These relations and the quasi–periodicity properties were already
worked out by Enriquez–Felder (1998), in connection with a
Drinfeld–type presentation of Felder’s elliptic quantum group
Eτ,~(sl2).
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A representation category for elliptic quantum groups

Definition The category Repfd(Eτ,~(g)) is given by

Objects (GTL) A finite–dimensional vector space V, together with a
semisimple operator h and meromorphic End(V)–valued functions
Φ(u), ,X±(u, λ) such that

[h,Φ(u)] = 0 and [h,X±(u, λ)] = ±2X±(u, λ)

satisfying the periodicity properties and the relations given above.

Morphisms (Felder) A morphism between V and W is a meromorphic
function ϕ(λ) ∈ HomC(V,W) such that

ϕ(λ)h = hϕ(λ)

ϕ(λ)Φ(u) = Φ(u)ϕ(λ+ 2~)

ϕ(−λ− ~)X+(u, λ) = X+(u, λ)ϕ(−λ+ ~)

ϕ(λ− ~h − ~)X−(u, λ) = X−(u, λ)ϕ(λ− ~h + ~)
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Problem #3: classify irreducible representations of Eτ,~(g)

Theorem (GTL) The simple objects in Repfd(Eτ,~(g)) are in bijection
with tuples of unordered points on the elliptic curve E = C/(Z + τZ).

Irr(L)←→
⋃
N≥0

(E )N/SN

Key issue Eτ,~(g) does not have a triangular decomposition.

Key ingredient Functor Θ : Repfd(Uq(Lg))→ Repfd(Eτ,~(g)).

Remark Θ cannot restrict to an equivalence because Repfd(Eτ,~(g)) is
defined over a larger field. However, for any branch Π of C× → C×/pZ,
one can define subcategories

CΠ ⊂ Repfd(Uq(Lg)) and LΠ ⊂ Repfd(Eτ,~(g))

with LΠ defined over C and isomorphism dense, and Θ : CΠ → LΠ is an
equivalence.
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