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Idea behind the talk

Crash course on Laplace and time domain tools for TDBIE
Galerkin semidiscretization-in-space perfectly integrated in
the theoretical framework
Equations of the first kind
Summary of tools

A considerable amount of estimates can be obtained as
particular cases of a somewhat exotic transmission problem for
the wave equation

Achtung. I’m assuming a mathematically motivated audience. This will look
like a piece of pure math, but it’s just analysis, not algebra or topology. No
need to panic.
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Reframing the framework

Everything will be done for the acoustic case
The elastic case is identical
Maxwell is not ‘that’ different after all (I used to think it was)
Actual transmission problems can be dealt with using a
two-field formulation
Coupling with FEM-like discretization is also doable (it’s
done)
Wave-structure interaction is doable (also done)
To be done:

regularity theory and approximation theorems
equations of the second kind (?)
free coupling of FEM and BEM
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The self-centered mathematician apology playbook

I’m not citing (almost) anyone. However, this work condenses
CQ- and Galerkin-TDBIE flavored results from the literature:

Bamberger-HaDuong and related work (Becache,
Bachelot, Terrasse, etc)
German speaking CQ revival (Sauter, Hackbusch, Banjai,
Schanz, López Fdez, Melenk)
Delaware bunch (Monk, Weile, myself and my students)

A modest goal. Can we find a way to make many techniques
real simple so that we can move to more complicated
(theoretical) issues without being repetitive? At the end this
looks like an exercise. (Of course, once you know the result...)
But that’s kind of our goal.
A conversation (in the 90s). My adviser (M.C.): make the proof so simple so
that it cannot be published. Me (mentally): I kind of want a job.
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Geometry and notation

Traces: γ±u
Normal traces: γ±ν v
Normal derivatives:
∂±ν := γ±ν ∇
Jumps: JγuK := γ−u − γ+u
etc

Geometrically (analytically) speaking, we only need a fully
functioning trace operator (and a normal vector field on the
boundary)
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Ansatz and observation spaces

Trial-test spaces

Xh ⊂ H−1/2(Γ) = H1/2(Γ)∗ Yh ⊂ H1/2(Γ) = H−1/2(Γ)∗

Polar sets = Galerkin observation
For instance

β ∈ X ◦h means 〈β, µh〉Γ = 0 ∀µh ∈ Xh.

But... admit the chance that Xh = H−1/2(Γ), or Xh = {0}, or
Xh = H̃−1/2(Γscr).
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A set of compatible transmission conditions

You are allowed four data

JγuK− α1 ∈ Yh γ+u − α2 ∈ X ◦h

J∂νuK− β1 ∈ Xh ∂−ν u − β2 ∈ Y ◦h

(∇u,∇v)Rd\Γ + (∆u, v)Rd\Γ = 〈∂−ν u, γ−v〉Γ − 〈∂+
ν u, γ+v〉Γ

= 〈∂−ν u, JγvK〉Γ + 〈J∂νuK, γ+v〉Γ

Remark. You can obviously use γ− and ∂+
ν instead.
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Some insight: conservation of energy

If for all t (the Laplacian is applied in Rd \ Γ)

ü(t) = ∆u(t),
JγuK(t) ∈ Yh γ+u(t) ∈ X ◦h

J∂νuK(t) ∈ Xh ∂−ν u(t) ∈ Y ◦h

then

d
dt

(
1
2‖∇u(t)‖2Rd\Γ + 1

2‖u̇(t)‖2Rd\Γ

)
= (∇u(t),∇u̇(t))Rd\Γ + (ü(t), u̇(t))Rd\Γ

= (∇u(t),∇u̇(t))Rd\Γ + (∆u(t), u̇(t))Rd\Γ

= 〈∂−ν u(t), Jγu̇(t)K〉Γ + 〈J∂νu(t)K, γ+u̇(t)〉Γ
= 0

A student after class (in 2012). Was that ... like ... a proof?
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A well-posed elliptic problem

PDE form

U = ∆U
JγUK− α1 ∈ Yh γ+U − α2 ∈ X ◦h

J∂νUK− β1 ∈ Xh ∂−ν U − β2 ∈ Y ◦h

Its variational formulation

U ∈ H1(Rd \ Γ)

JγUK− α1 ∈ Yh γ+U − α2 ∈ X ◦h
(∇U,∇V )Rd\Γ + (U,V )Rd = 〈β2, JγV K〉Γ + 〈β1, γ

+V 〉Γ

∀V ∈ H1(Rd \ Γ), JγV K ∈ Yh γ+V ∈ X ◦h

Remark. This problem is perfectly coercive, right? There’s more. You can
bound its solution independently of h.
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A wave equation in the Laplace domain

PDE form

s2U = ∆U
JγUK− α1 ∈ Yh γ+U − α2 ∈ X ◦h

J∂νUK− β1 ∈ Xh ∂−ν U − β2 ∈ Y ◦h

VF

U ∈ H1(Rd \ Γ)

JγUK− α1 ∈ Yh γ+U − α2 ∈ X ◦h
(∇U,∇V )Rd\Γ + s2(U,V )Rd = 〈β2, JγV K〉Γ + 〈β1, γ

+V 〉Γ

∀V ∈ H1(Rd \ Γ), JγV K ∈ Yh γ+V ∈ X ◦h

Remark. Boundary data are now applied as instantaneous impulses at time
t = 0.
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A wave equation ... the key idea

U ∈ H1(Rd \ Γ)

JγUK− α1 ∈ Yh γ+U − α2 ∈ X ◦h
(∇U,∇V )Rd\Γ + s2(U,V )Rd = 〈β2, JγV K〉Γ + 〈β1, γ

+V 〉Γ ∀V ...

The essential TC are taken care by the optimal (non-physical)
lifting of Bamberger & HaDuong

Ud ∈ H1(Rd \ Γ)

JγUdK = α1 γ+Ud = α2

(∇Ud ,∇V )Rd\Γ + |s|2(Ud ,V )Rd = 0 ∀V ∈ H1
0 (Rd \ Γ)

Remark. You then study the problem satisfied by U0 = U − Ud (which can be
used as test function!)
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Laplace’s puzzle: the corner pieces

If
a(U,V ; s) := (∇U,∇V )Rd\Γ + s2(U,V )Rd

and
|||U|||2|s| := a(U,U; |s|) = ‖∇U‖2Rd\Γ + ‖s U‖2Rd

is the energy norm, then

|a(U,V ; s)| ≤ |||U||||s||||V ||||s| (boundedness)

Re a(U, s U; s)| = (Re s)|||U|||2|s| (coercivity)

min{1,Re s}‖U‖1,Rd\Γ ≤ |||U||||s| ≤
|s|

min{1,Re s}
‖U‖1,Rd\Γ

Remark. The coercivity identity is the one telling you to differentiate one of
the arguments in the weak TD formulation
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Laplace’s puzzle: the impossible blue sky part

If
−∆U + |s|2U = 0 in Rd \ Γ, γ±U = α±,

then
|||U||||s| ≤ CΓ max{1, |s|}1/2‖α±‖1/2,Γ.

Therefore, if
−∆U + s2U = 0 in Rd \ Γ,

then

‖∂±ν U‖−1/2,Γ ≤ CΓ

(
|s|

min{1,Re s}

)1/2

|||U||||s|

Remark. Maxwell differs here
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The finished image can now be guessed

You can get Laplace domain bounds for the associated
transfer function. With these, use any Inversion of the L.T.
theorem to get time domain results.
You can focus on coercivity results and apply Plancherel.
This gives a theoretical basis for some weighted Galerkin
methods

Remark. We leave Laplace finishing the puzzle and move a more dynamical
view
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A dynamical system

Second order form. For all t

ü(t) = ∆u(t)
JγuK(t)− α1(t) ∈ Yh γ+u(t)− α2(t) ∈ X ◦h

J∂νuK(t)− β1(t) ∈ Xh ∂−ν u(t)− β2(t) ∈ Y ◦h

First order form. For all t

u̇(t) = ∇ · v(t) v̇(t) = ∇u(t)
JγuK(t)− α1(t) ∈ Yh γ+u(t)− α2(t) ∈ X ◦h

JγνvK(t)− ∂−1β1(t) ∈ Xh γ−ν v(t)− ∂−1β2(t) ∈ Y ◦h

Main advantage. All TC are now essential. The lifting will take care of all of
them at the same time. Note how natural data have been integrated in time
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The main decomposition

Write
(u(t),v(t)) = (ud (t),vd (t)) + (u0(t),v0(t)),

where (elliptic lifting of TCs)

ud (t) = ∇ · vd (t) vd (t) = ∇ud (t)
JγudK(t)− α1(t) ∈ Yh γ+ud (t)− α2(t) ∈ X ◦h

JγνvdK(t)− ∂−1β1(t) ∈ Xh γ−ν vd (t)− ∂−1β2(t) ∈ Y ◦h

and (non-homogeneous ODE in Hilbert space)

u̇0(t) = ∇ · v0(t)− u̇d (t) + ud (t) v̇0(t) = ∇u0(t)− v̇d (t) + vd (t)
Jγu0K(t) ∈ Yh γ+u0(t) ∈ X ◦h

Jγνv0K(t) ∈ Xh γ−ν v0(t) ∈ Y ◦h

And... honestly, that’s all it takes to study this problem. (Well, up to a point.)
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A problem to rule them all
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How’s this related to integral equations?

Let me copy-paste this problem again: for all t ≥ 0

ü(t) = ∆u(t)
JγuK(t)− α1(t) ∈ Yh γ+u(t)− α2(t) ∈ X ◦h

J∂νuK(t)− β1(t) ∈ Xh ∂−ν u(t)− β2(t) ∈ Y ◦h

We now pick Xh, Yh, and different choices of data. Quantities of
interest:

‖u(t)‖1,Rd , ‖γ±u(t)‖1/2,Γ, ‖∂±ν u(t)‖−1/2,Γ = ‖γ±ν v̇(t)‖−1/2,Γ

Luckily... when you obtain bounds for u(t) and v(t), you also produce
bounds for their first derivatives
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Examples galore
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Densities given, no observation

Xh = {0}, Yh = {0} (polar sets do not give any information!)

ü(t) = ∆u(t)
JγuK(t) = ϕ(t)

J∂νuK(t) = λ(t)

so
u = S ∗ λ−D ∗ ϕ

and we also gets bounds for all the operators of the acoustic
Calderón projector.
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Find the density by looking at the trace

Xh = H−1/2(Γ) (entire space to look into and X ◦h = {0}),
Yh = {0} (the polar set is H−1/2(Γ))

ü(t) = ∆u(t)
JγuK(t) = 0
γ+u(t) = α(t)

λ(t) := J∂νuK(t) ∈ H−1/2(Γ) (unknown)

so we are solving

V ∗ λ = α, u = S ∗ λ

(Indirect method for Dirichlet problem. Single layer potential
representation.)
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Same spaces, different data

Xh = H−1/2(Γ) (entire space to look into and X ◦h = {0}),
Yh = {0} (the polar set is H−1/2(Γ))

ü(t) = ∆u(t)
JγuK(t) = ϕ(t)
γ+u(t) = 0

λ(t) := J∂νuK(t) ∈ H−1/2(Γ) (unknown)

so we are solving

V ∗ λ = 1
2ϕ+K ∗ ϕ, u = S ∗ λ−D ∗ ϕ

(Direct formulation for interior Dirichlet problem. Note that
γ−u = ϕ. Small variant for exterior problem.)
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Find the density by looking at the trace (discretely)

Xh (finite dimensional), Yh = {0}

ü(t) = ∆u(t)
JγuK(t) = 0
γ+u(t)− α(t) ∈ X ◦h

λh(t) := J∂νuK(t) ∈ Xh (unknown)

so we are solving

λh ∈ Xh 〈V ∗ λh − α, µ〉Γ = 0 ∀µ ∈ Xh

and then plugging
u = S ∗ λh

(The discretization of the direct formulation is similar.)

The Delaware tools TDBIE 25 / 28



Same spaces, different data

Xh (finite dimensional), Yh = {0}

ü(t) = ∆u(t)
JγuK(t) = 0
γ+u(t) ∈ X ◦h

−λh(t) := J∂νuK(t)− λ(t) ∈ Xh (unknown)

so we are solving

λh ∈ Xh 〈V ∗ λh − V ∗ λ, µ〉Γ = 0 ∀µ ∈ Xh

and then plugging
u = S ∗ (λ− λh)
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I could go on and on and on

Deactivating Xh (Xh = {0}) we obtain double-layer
potential related integral equations (Neumann problem)
and their Galerkin semidiscretizations
Activating Xh and Yh at different parts of the boundary we
obtain the symmetric Galerkin method for mixed boundary
value problems (scatterers with different material
properties)
Activating Xh in one part of Γ and deactivating Yh, we get
Dirichlet screens and their discretizations. (And Neumann
screens? Guess!)
Integral equations of the second kind also follow from this
theory. However (!!), there doesn’t to be any conclusion
about their semidiscretization in the pool.
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Shameless product placement

This book will look really nice on your bookshelf

 1
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50Francisco-Javier Sayas

Retarded Potentials and Time Domain Boundary Integral Equations
A Road Map

This book offers a thorough and self-contained exposition of the mathematics of 
time-domain boundary integral equations associated to the wave equation, including 
applications to scattering of acoustic and elastic waves. The book offers two different 
approaches for the analysis of these integral equations, including a systematic treatment 
of their numerical discretization using Galerkin (Boundary Element) methods in the 
space variables and Convolution Quadrature in the time variable. The first approach 
follows classical work started in the late eighties, based on Laplace transforms estimates. 
This approach has been refined and made more accessible by tailoring the necessary 
mathematical tools, avoiding an excess of generality. A second approach contains 
a novel point of view that the author and some of his collaborators have been developing 
in recent years, using the semigroup theory of evolution equations to obtain improved 
results. The extension to electromagnetic waves is explained in one of the appendices.
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