The structure of subdegree finite primitive permutation groups

Simon M. Smith

University of Lincoln

Permutation groups

Banff, November 2016

Infinite permutation groups

Throughout: $G \leq \text{Sym}(\Omega)$ is transitive and Ω is countably infinite

Infinite permutation groups

Throughout: $G \leq Sym(\Omega)$ is transitive and Ω is countably infinite

When studying infinite permutation groups, one typically wishes to impose some kind of finiteness condition on G

E.g:

- *G* has only finitely many orbits on Ω^n , for all $n \in \mathbb{N}$ (Oligomorphic)
- G_α has only finite orbits, for all α ∈ Ω (Subdegree finite)

Subdegree finite permutation groups

All automorphism groups of connected, locally finite graphs are subdegree finite

Subdegree finite permutation groups

All automorphism groups of connected, locally finite graphs are subdegree finite

When studying locally compact groups, one essentially needs to understand:

- (clc) Connected locally compact groups; and
- (tdlc) Totally disconnected locally compact groups

Subdegree finite permutation groups

All automorphism groups of connected, locally finite graphs are subdegree finite

When studying locally compact groups, one essentially needs to understand:

- (clc) Connected locally compact groups; and
- (tdlc) Totally disconnected locally compact groups

All tdlc groups have a natural permutation representation that is transitive and subdegree finite.

Permutation topology

Write
$$\Omega = \{\gamma_1, \gamma_2, \ldots\}.$$

There is a natural complete metric d on Sym (Ω) whereby if permutations g, h agree on $\gamma_1, \ldots, \gamma_n$ but disagree on γ_{n+1} , then set

$$d'(g,h):=2^{-n},$$

and define

$$d(g,h) := \max\{d'(g,h), d'(g^{-1}, h^{-1}).\}$$

A group $G \leq \text{Sym}(\Omega)$ is closed if it contains all its limit permutations.

E.g. The group $FS(\Omega)$ of permutations with finite support has closure:

$$\overline{FS(\Omega)} = \operatorname{Sym}(\Omega).$$

What is known about infinite primitive permutation groups *G*?

• Cheryl Praeger & Dugald Macpherson in 1993

Classified *G* when *G* has a closed minimal closed normal subgroup that itself has a closed minimal normal subgroup

- Dugald Macpherson & Anand Pillay in 1993
 Classified *G* when *G* has finite Morley rank
- Tsachik Gelander & Yair Glasner in 2008
 Classified G when G is countable non-torsion & linear
- S. in 2014

Classified G when G has finite point stabilisers

The box product: intuition

Suppose $H \leq \text{Sym}(\Delta)$ is transitive and $m \in \mathbb{N}$

Let Λ be a graph whose vertex set is Δ , such that $H \leq Aut(\Lambda)$

Let $\Gamma(m, \Lambda)$ be the (infinite) graph such that every vertex *x* lies in *m* copies of Λ , and these copies only intersect at *x*

The box product: intuition

Suppose $H \leq \text{Sym}(\Delta)$ is transitive and $m \in \mathbb{N}$

Let Λ be a graph whose vertex set is Δ , such that $H \leq \operatorname{Aut}(\Lambda)$

Let $\Gamma(m, \Lambda)$ be the (infinite) graph such that every vertex *x* lies in *m* copies of Λ , and these copies only intersect at *x*

The box product: intuition

The box product $H \boxtimes S_m$ is the largest transitive subgroup of Aut ($\Gamma(m, \Lambda)$) that induces H on each of the lobes

The box product: formal definition

Fix $M \leq \text{Sym}(X)$ and $N \leq \text{Sym}(Y)$ (not necessarily finite).

Form a biregular tree *T* where:

- vertices in one part V_X of the bipartition have valency |X|
- vertices in the other part V_Y have valency |Y|

A group $G \leq \text{Aut } T$ is locally-(M, N) if G preserves $V_X \& V_Y$ and the group induced on the neighbours of v by G_v is:

- M if $v \in V_X$
- *N* if *v* ∈ *V*_Y

Theorem (S. '15) If M and N are transitive, there exists a universal locally-(M, N) group, U(M, N) which is itself locally-(M, N).

Definition (S. '15) The box product $M \boxtimes N$ is $U(M, N)|_{V_v}$.

Theorem (poss. attributable to W. Manning, early 20th C)

 $M \operatorname{Wr} N$ acting on X^{Y} with its product action is primitive \iff

- *M* is primitive and not regular and
- N is transitive and finite

Theorem (poss. attributable to W. Manning, early 20th C)

 $M \operatorname{Wr} N$ acting on X^{Y} with its product action is primitive \iff

- M is primitive and not regular and
- N is transitive and finite

Theorem (S., '15)

 $M \boxtimes N$ acting on V_Y is primitive \iff

- M is primitive and not regular and
- N is transitive

Geometry

One can see the "shape" of a permutation group $G \leq \text{Sym}(\Omega)$ by looking at an orbital graph Γ .

 $\operatorname{Sym}(3) \boxtimes \operatorname{Sym}(2)$

Sym (3) Wr Sym (2)

- [OAS] here G is one-ended & almost topologically simple
- **[PA]** here *G* is a transitive subgroup of $H \operatorname{Wr} S_m$ acting with its product action for some finite $m \ge 2$, where *H* is the group induced on a fibre by its stabiliser in *G*, and *H* is primitive and not regular, subdegree-finite and infinite of type OAS or BP;
- [BP] here G is a transitive subgroup of H ⊠ S_n for some finite n ≥ 2, where H is the group induced on a lobe by its stabiliser in G, and H is primitive and not regular, subdegree-finite and either finite of degree at least three or infinite of type OAS or PA.

- [OAS] here G is one-ended & almost topologically simple
- **[PA]** here *G* is a transitive subgroup of H Wr S_m acting with its product action for some finite $m \ge 2$, where *H* is the group induced on a fibre by its stabiliser in *G*, and *H* is primitive and not regular, subdegree-finite and infinite of type OAS or BP;
- [BP] here *G* is a transitive subgroup of $H \boxtimes S_n$ for some finite $n \ge 2$, where *H* is the group induced on a lobe by its stabiliser in *G*, and *H* is primitive and not regular, subdegree-finite and either finite of degree at least three or infinite of type OAS or PA.

- [OAS] here G is one-ended & almost topologically simple
- **[PA]** here *G* is a transitive subgroup of H Wr S_m acting with its product action for some finite $m \ge 2$, where *H* is the group induced on a fibre by its stabiliser in *G*, and *H* is primitive and not regular, subdegree-finite and infinite of type OAS or BP;
- [BP] here *G* is a transitive subgroup of $H \boxtimes S_n$ for some finite $n \ge 2$, where *H* is the group induced on a lobe by its stabiliser in *G*, and *H* is primitive and not regular, subdegree-finite and either finite of degree at least three or infinite of type OAS or PA.

- [OAS] here G is one-ended & almost topologically simple
- **[PA]** here *G* is a transitive subgroup of H Wr S_m acting with its product action for some finite $m \ge 2$, where *H* is the group induced on a fibre by its stabiliser in *G*, and *H* is primitive and not regular, subdegree-finite and infinite of type OAS or BP;
- [BP] here *G* is a transitive subgroup of $H \boxtimes S_n$ for some finite $n \ge 2$, where *H* is the group induced on a lobe by its stabiliser in *G*, and *H* is primitive and not regular, subdegree-finite and either finite of degree at least three or infinite of type OAS or PA.

- [OAS] here G is one-ended & almost topologically simple
- **[PA]** here *G* is a transitive subgroup of H Wr S_m acting with its product action for some finite $m \ge 2$, where *H* is the group induced on a fibre by its stabiliser in *G*, and *H* is primitive and not regular, subdegree-finite and infinite of type OAS or BP;
- **[BP]** here *G* is a transitive subgroup of $H \boxtimes S_n$ for some finite $n \ge 2$, where *H* is the group induced on a lobe by its stabiliser in *G*, and *H* is primitive and not regular, subdegree-finite and either finite of degree at least three or infinite of type OAS or PA.

Preprint coming soon

(For the box product see: arXiv:1407.5697)

Thank you

