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Introduction

• Fractures and discontinuities in natural rocks can 

evolve due to the action of gravity, superposed 

localized pressure, and shear tractions 

• Actual great interest: damage induced by hydraulic 

stimulation in oil/gas reservoirs in view of increasing 

the reservoir production
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Complexity of fracking induced faults

• Present day hydraulic fracture modeling and simulation is, for the most 

part, based on old technology and unrealistic simplifications and 

idealizations.

• Fractures are commonly

modeled as mathematically 

sharp and the fluid is 

accounted for with complex 

hydrodynamic models.

• Reality is otherwise: acoustic

measurements show that HF

is a complex phenomenon 

involving the formation of 

intricate fracture patterns.

[Chuprakov et al., 2013; Wu et al., 2012]
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Which model for HF?

• Rocks in compression often fail 

through the formation of fine 

hierarchies of nested 

shear/frictional cracks.

• In HF operations fine 

fragmentation patterns 

contribute significantly to the 

permeability of rocks.

• Predictive HF simulations need 

material models that account 

for mechanical degradation 

AND permeability changes in 

the stimulated rocks.

• Resort to a multiscale Brittle 

Damage Model 

[Pandolfi et al, JMPS, 2006]

Anna Pandolfi 4Banff - May 12, 2016



Brittle damage model (linearized version)

• Particular class of microstructures, consisting of nested families of equi-

spaced cohesive faults. The faults bound elastic (or any other)  matrix 

material. 

• Each family is characterized by an orientation (defined  by the normal N to 

the faults) and a spacing L.

• L is a microstructural feature of the material that derives from optimality 

conditions on the system energy.

• The average macroscopic strain tensor admits the additive decomposition:

[De Bellis et al, submitted, 2016]
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• For a single fault family, the symmetric tensor     , due to the cohesive fault 

opening, can be evaluated as follows.

Take a segment      that spans two material points and define the number of 

faults:

• Superpose the opening displacement      to all the     faults and obtain the 

displacement:

• Derive the deformation component due to fault activity:

Kinematics of faults



Elasticity of the matrix ( E, n )

• Here we assume linear elastic isotropic behavior for the underlying matrix

• Cauchy stress tensor and elastic tangents follow as:

• Any other material model, accounting for plasticity, or viscosity, or other 

material behavior typical of soils, can be considered for the matrix. In 

such case, instead of the elastic potential, an incremental work of 

deformation will be taken into account.
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Trivia on cohesive approach to fracture

• Cohesive theories describe fracture evolution as 

the progressive separation of two surfaces. The 

displacement jump d is resisted by tractions t

along the cohesive zone R. 

• Cohesive laws express the dependence of the 

tractions from the opening displacements. 

• Simple uniaxial cohesive laws are 

defined by two parameters, e.g., the 

cohesive strength tc of the material 

and the critical energy release 

rate Gc.

• Extension to mixed mode fracture, 

irreversibility, and 3D.

• [Camacho and Ortiz, 1996; 

Ortiz and Pandolfi, 1999].

Gc
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Cohesive faults ( Tc, Gc, b )

• Effective opening displacement D [Ortiz & Pandolfi, 1999]:

• The constant b governs the shear behavior

• Cohesive energy and effective traction

• Cohesive tractions

• Irreversibility: unloading to origin, use the 

maximum D as internal variable q 

with kinetic relations
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Frictional contact  ( m )

• Friction is an essential dissipation mechanism in brittle materials. It is 

assumed that, upon the attainment of a critical opening displacement, 

faults loose cohesion and friction remains the only dissipation 

mechanism.

• Dual kinetic potential per unit area [Pandolfi et al., IJNME, 2002]

– If faults undergo opening and are not in contact, then     =  0

– If faults are closed and the contact tractions are compressive, then

is convex and minimized at            .

• Coulomb friction:

where m = tanf is the friction coefficient.
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Variational form within time discretization

• Assume the existence of a single family of faults with known L and N (case of 
the presence of an existing fault)

• Variational characterization by time discretization. The state of the material at 
time tn is known, and the total e at time tn+1 is assigned. 

• The incremental strain energy density follows from a constraint optimization 
problem of an incremental work of deformation for the current step [Ortiz & 
Stainier,1999; Pandolfi et al. 2006] :

subject to the constraints:

• Non standard formulation of friction: symmetry of the tangent moduli.

• If faults are impeded to reclose, the contact constraint is modified to include 
the minimal opening (case of presence of proppant in the fluid).
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Fault orientation – Mohr Coulomb ( m = b )

• If faults are not there, the normal is not 

defined. It can be computed by way of 

optimization, including N in the set of 

optimization variables under the constraint: 

• Obtain an eigenvalue problem, 

corresponding to two different conditions 

typical of brittle materials:

• Failure in opening (Rankine criterion)

• Failure in sliding (Mohr-Coulomb criterion)

• Faults are inserted if their presence reduces 

the energy of the system with reference to 

the unfractured situation.

Anna Pandolfi 12Banff - May 12, 2016



Optimal separation  ( L1)

• The fault separation L can be intended as a model variable, and be 

computed by way of energy optimization during the calculation.

• Include an additional (approximated) misfit energy, necessary to 

accommodate the inner fault family inside the pertinent volume, 

geometrically defined by the size of the confining container Ln: 

• Model the boundary layer as an array of dislocations of alternating sign. 

The Burgers vector of the misfit dislocation is of the order of |D|, thus:

• C is a constant proportional to the shear modulus G, Ln is the size of the 

confining container, and L0 (related to 2Gc/Tc) plays the role of “core cut 

off”.
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• Minimizing wrt to Ln+1 , for the linear decreasing cohesive law obtain 

the explicit expression of the scale at the inner level:
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T c
/

0

0.01

0.02

L
1 /

c

0

100

200

0

0.5

1

Smith-Ferrante

D
m

T c
/

0

0.01

0.02

L
1 /

c

0

100

200

0

0.5

1

Exponential

D
m

T c
/

0

0.01

0.02

L
1 /

c

0

100

200

0

0.5

1

Piecewise Linear

D
m

Anna Pandolfi 14Banff - May 12, 2016



Effect of the scale parameter L0
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Recursive Faulting

• Once the first fault family has 

developed, the matrix between 

faults may experience a 

tensile/shear state resulting in 

further faulting on a sublevel.

• The matrix deformation 

gradient em at the first level 

can be in turn decomposed 

into an “elastic” part and a 

cohesive part.

• This can be repeated several 

times, by using a recursive 

procedure, easily supported by 

C and C++ languages. 

Rank-1

Rank-2

Rank-3
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Porosity and permeability of the faults

• Porosity due to a single family and to Q fault families

• Permeability on a plane of normal N, derived consistently with         

Navier-Stokes equation

– for Q  families :

• Accounting for initial porosity and permeability of the matrix, it results:

where :

Kozeny-Carman type permeabilityVolumetric deformation
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Reduced number of material properties

– Two elastic parameters (E, n)

– Three cohesive parameters (Tc, Gc and b = m = tan f)

– One scale parameter (L0)

– For coupled problems: initial porosity and matrix permeability 

coefficient

• In all the following numerical tests, the material parameters have been 

taken from the experimental papers

Material E (MPa) n
Tc

(MPa)

Gc

(N/m)
m = b

Lac du Bonnet granite 68,000 0.21 50 10 1.05 0.2

Beishan granite 52,000 0.21 60 10 0.7 0.8

Inada sandstone 68,000 0.2 20 5 1.6 50

Darley dale sandstone 10,000 0.3 15 5 1.07 1

Flechinger sandstone 11,000 0.25 35 0.1 0.7 12.5
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Point triaxial test – Permeability validation

Lac du Bonnet granite 

(Souley et al, 2001) 
Beishan granite 

(Ma et al, 2012)
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Point triaxial test – Permeability validation

Inada sandstone 

(Kiyama et al, 1996)
Darley dale sandstone 

(Mordecay, 1970)
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Point triaxial test – Permeability validation

Flechinger

sandstone,

with increasing 

confinement

(Heiland, 2003)
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• Case problem of a 2 m diameter vertical borehole excavation in dry 

material, in a 10 x 10 m field, at a depth of 10 m. 

Compare to a FE study using a cohesive approach with explicit interfaces 

in a triangular 2D mesh [Lisjack et al, JRMMS 2014].

Borehole excavation (dry model)
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3D mesh

8010 nodes

36086 elements



Moderate difference in horizontal stresses

Maximum stress distribution 

at the first step of excavation 

Max-min stress difference at 

the first step of excavation 
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17 MPa

51 MPa

Initial anisotropic stress state in the horizontal plane for the 

intact mass (K0 = 3) 

Expected typical shear borehole breakouts start to develop 

along the direction of minimum stress and spread along the 

hoop direction.



Shear crack distribution

D = 1 m

• Arrows oriented as N 

and colored as D
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Shear crack distribution

D = 1.5 m

• Arrows oriented as N 

and colored as D
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Shear crack distribution

D = 2 m

• Arrows oriented as N 

and colored as D
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Final shear crack distribution in 3D

D = 2 m

• Arrows oriented as N 

and colored as D
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Larger difference in horizontal stresses

Max stress 

distribution 

at the first 

step of 

excavation 

Max-min stress 

difference at the 

first step of 

excavation 
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68 MPa

17 MPa

Larger 

anisotropic 

stress in the 

horizontal plane 

for the intact 

mass (K0 = 4) 



More anisotropy in the stress – Shear fractures
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Expected a typical 

“eye-shaped” fracture 

distribution around 

the hole, with 

superposition of 

extended shear 

fractures and a few 

tensile fractures.

D = 1 m

• Arrows oriented as N 

and colored as D



More anisotropy in the stress – Tension fractures
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D = 1 m

• Arrows oriented as N 

and colored as D

Presence of tensile 

fractures in the plane 

of minimum stress
68 MPa

17 MPa



Porous media equations

• Linear momentum balance

• Continuity equation (fully saturated porous media, incompressible fluid 

and incompressible soil particles), n porosity,       volumetric strain

• Terzaghi’s effective stress principle, p pore pressure

• Constitutive relations

• Constitutive relation for fluid flow in porous media (Darcy law), h hydraulic 

head, k permeability tensor
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Coupled field problem solution strategy

• Two field equation: linear momentum balance and continuity equation

• Weak form (unknowns u and p, introduce the test functions v and h) 

• After spatial discretization obtain the matrix form (similar to the 

consolidation equations)

• which is solved with a staggered approach (explicit in u, implicit in p).
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• Experimental data on a compressed block of 

cement pressurized with a fluid in a small 

cavity at the low center of the specimen

[Athavale & Miskimins 2008]

sv = 24.2 MPa

sH = 17.3 MPa

sh = 10.4 Mpa

Max fluid pressure = 20 MPa

Triaxial loading of a cubic sample of cement 
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Evolution of the damage (numerical test)
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Stress, Strain, Permeability and Delta
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Conclusions

• Model of distributed brittle damage, based on additive decomposition of 

the deformation tensor. 

• Features:

– Recursive faulting

– Several intrinsic length scales, obtained by energy minimization

– Accounting for frictional contact

• The microstructures allow for analytical definition of porosity and 

permeability.

• The effect of proppant is trivial: modify the closure of contact constraint

• Inclusion of pre-existing fractures is trivial: assign the orientation N and a 

large L to the elements intersected by the crack.

• The theory provides a sound mathematical basis for HF approach. 
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Porosity and permeability of the faults

• Porosity due to a single family and to Q fault families

• Solution of Navier-Stokes equation, velocity of a laminar flow in direction 

s within a planar channel of width DN

• Discharge rate and permeability of a fault in direction s 

• In tensor form, if d denotes the unit vector in in direction s 
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Mimic the variation of stress and 
permeability in the field due to a 
fracking job: 

Stage 1: Isotropic compression 

Stage 2: Isotropic extension

Stage 3: Anisotropic compression

Simulation of a multistage multiaxial test
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