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Characterising I

stationary univariate POT approach

Extreme precipitation 101

Figure 6.3: Estimated 5-year return levels from INGV-CMCC 20th century simulation (top) and

observations (bottom). Values in mm.

Sea (not shown). Regarding the 5-year return levels, a heterogeneous behavior characterizes
the study area; an increase is evident in Portugal, from Andalusia towards the Pyrenees, in
southern Italy and over the Aegean. Conversely, the mean percentage of winter precipita-
tion due to above threshold events and their mean number per winter highlight (except for
isolated areas) a homogenous pattern. It is characterized by a moderate increase (less than
10%) of the precipitation amount related to extreme events and by a weak decrease (less than
5 days) of these events in the 20-year period. These results confirm for the period 2031-2050
the increasing trend identified by Alpert et al. (2002) in the contribution of heavy-torrential
rainfall to seasonal totals from 1951-1995 (Italy and Spain).

Estimated 5-y ret levels of daily precipitation in winter. Data from the last 5 
decades. Source: Toreti, 2010
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Characterising II

time-dependent location, univariate GEV approach

14

terms of tail behavior description, return levels and associated uncertainties), studies (e.g.
Maraun et al., 2010; Yiou et al., 2008) were undertaken and successfully applied methods
from the Extreme Value Theory (EVT; de Haan and Ferreira, 2006; Coles, 2001). These
methods are generally based on two classes of distributions, the Generalized Extreme Value
(GEV) and the Generalized Pareto (GP) distributions. The former is inferred applying a
block-maxima strategy (e.g. the annual maxima), while the latter uses exceedances over a
threshold. With respect to the index approach, complementary features of extremes can be
revealed by using EVT tools. These methods have a high potential both for the statistical
characterization of extremes and the analysis of their dynamics. Two examples of the EVT
tools are given below.
A set of daily homogenized temperature series (Kuglitsch et al., 2009) collected in the eastern
Mediterranean is used for the analysis of extreme summer (JJA; 1960-2006) temperatures.
A GEV model, characterized by a time dependent location parameter, is applied to seasonal
maxima. Since the location is a function of time, the return levels are also time dependent. In
order to highlight the changes of extremes, 5-year return levels are estimated at the beginning
and at the end of the series (Figure 1.8). A significant increase is evident over the entire area;
it highlights that temperature distribution has changed towards higher values.
Toreti et al. (2010e) applied a GP-based model and characterized precipitation extremes of

Figure 1.8: 5-year return levels of summer temperatures (�C; 1960-2006) estimated at the beginning

(left) and the end of the period (right).

more than 200 Mediterranean daily winter (October to March) series over the period 1950-
2006. Figure 1.9 presents the 25-year return levels estimated for each series. These values
range from less than 57 mm to more than 273 mm (for most of the series the associated
uncertainty is less than 30 mm) with remarkable spatial di↵erences. The Gulf of Genoa, the
Gulf of Lion, Crete and Rhodes, for example, are potentially exposed to severe events with a
very high amount of daily precipitation. For the majority of the series, extreme precipitations
provide a relevant contribution to seasonal totals (approximately from 55 to 65%).
Both the index and the EVT approach were applied to climate model projections (e.g. Sill-

Estimated 5-y ret levels of daily maximum temperature in summer. Data from the 
last 5 decades. Source: Toreti, 2010
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Characterising III

4. Discussion and Conclusions

A fast, simple, and flexible method based on probability weighted moments and kernel regression has
been proposed to model covariate-dependent extremes. It is computationally inexpensive and can be
applied to very large data sets. It does not assume any a priori behavior of the scale parameter, but it
assumes a constant shape parameter. We tested our approach on simulations and heavy precipitation in
Switzerland. The Swiss case study highlights the applicability of the method and its potentiality. Our results
are coherent with recent studies. Finally, the method is freely available as an R package that can be
requested by email.
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Figure 4. Inferred 50 year return levels in mm for heavy precipitation in Switzerland, see Figure 3.
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Characterising III
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Characterising III
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Let µ̂0(X) and ↵̂rs be the estimators of µ0(X) and ↵rs

by selecting r = 1 and s = 2

b⇠ =
9� 4↵̂

3� 2↵̂
and �̂(X) = µ̂0(X)(1� ⇠̂)
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where K is a Kernel
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To estimate ↵rs

Z 0
i = Y (Xi)/µ̂0(Xi)

use your favourite method (e.g. U-statistic approach) to estimate

E[Z 0G0r
1,⇠(Z

0
)] for r = 1, 2

smoother, the unobserved Zi’s can
be replaced by their estimated
renormalized version
Z0i5YðX iÞ=l̂0ðX iÞ. At this stage, one
can simply use his/her favorite
inference PWM method to estimate
E½Z0G0 r1;nðZ0Þ$ for r51; 2. In this
exercise, they are inferred by
using the U-statistic approach of
Furrer and Naveau [2007] and
applying a triweight kernel [e.g.,
H€ardle, 1991]. Thus, the developed
inference scheme is very similar to
the classical PWM method. The
two new ingredients are the use of
Kernel regression for estimating l̂0

ðXÞ and the new system of equa-
tions to be solved. The proposed
approach (hereafter, Kernel-PWM)
can be summarized by the follow-
ing steps:

1. Compute l̂0ðxÞ, via equation (8);

2. calculate the vector
fz0ig5fyðx iÞ=l̂0ðx iÞg;

3. compute the two PWMs r51; 2 from the sample fz0ig and then set â as the ratio of those PWMs;

4. derive r̂ðxÞ and n̂ from equation (7).

To get confidence intervals, new samples can be generated under the estimated values and the proposed
fast four-step algorithm repeated to explore the sampling variability. From a theoretical point of view, the
statistical properties of l̂0ðXÞ can be directly obtained from the classical Kernel regression literature [Wand
and Jones, 1995]. As for any kernel-based approach, the choice of the bandwidth remains a delicate task.
Still, classical approaches for bandwidth selection can be used in our procedure, but caution is necessary
when the shape parameter is large.

3. Analysis of Nonstationary Excesses

To illustrate the proposed procedure, we simulate one nonstationary sequence ðYðx1Þ; . . . ; YðxmÞÞ of length
m 5 1000 distributed according to GPðrðxÞ; nÞ, where n50:2 and rðxÞ is the combination of a periodic and
an exponential signal, see the solid black line (x axis) in Figure 1. The inferred r̂ðxÞ reproduces reasonably
well the true behavior of rðxÞ and the gray 90% confidence interval contains the true value. Some boundary
effects (especially with higher values of the scale parameter) affect the estimation. The true shape parame-
ter is clearly within the inferred boxplot. To validate this first example, we repeat this experiment 1000
times. Figure 2 displays the shape parameter and the 90% confidence interval for each simulation. The verti-
cal red lines on the x axis correspond to the coverage probability occurrences and, as expected for a 90%
confidence level for a thousand replicas, around 100 (precisely 136) false positive have been detected. To
apply our method to a real data set, we focus on extreme precipitation in Switzerland recorded at 220 sta-
tions from 2001 to 2010 in autumn. Heavy precipitation is defined as being above the 90% quantile at each
location. We assume that these excesses follow a GP distribution with a constant shape parameter. This lat-
ter hypothesis has been checked by fitting individually each station and testing if these values were signifi-
cantly different from a countrywide parameter. The spatially varying scale parameter estimates are
displayed in Figure 3. The top, middle, and bottom rows correspond to the 5%, 50%, and 95% values,
respectively. To assess the influence of the bandwidth, the columns represent three different bandwidths,
0.3, 0.5, and 0.7, respectively. Basically, the results are robust with respect to these three bandwidth choices.
We recognize the classical spatial pattern of heavy rainfall in Switzerland with larger values in Ticino,

Figure 1. For a GPDðrðxÞ; nÞ, the solid black line represents the true scale parameter
rðxÞ in function of x (x axis). The shape parameter is constant and equals to 0.2 (right
axis). From one realization, the boxplot and the gray 90% confidence intervals repre-
sent the estimated shape and scale (left axis) obtained by resampling, respectively.

Water Resources Research 10.1002/2014WR015431

NAVEAU ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4014

Source: Naveau et al., 2014. WRR 50
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an attempt to model and understand the temporal 
evolution of precipitation extremes
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Characterising IV
Max-stable models

176 A. C. DAVISON, S. A. PADOAN AND M. RIBATET

FIG. 4. One realization from each of the models. From left to right, the top row shows results from the latent variable, Student t cop-
ula, Hüsler–Reiss copula and extremal-t copula models; the bottom row shows results from the Smith, Schlather, geometric Gaussian and
Brown–Resnick models. The extreme top and bottom panels show histograms of 1000 realizations of the summary statistic T , and the vertical
lines correspond to the realizations shown.

dicts very weak extremal dependence inconsistent with
the observed extremes.

Turning to extremal copulas, Table 4 shows that
the extremal t models all fit the data appreciably
better than do the Hüsler–Reiss models, with well-
determined but small estimates of the degrees of free-
dom. As in more standard geostatistical applications, it
is difficult to estimate the scale and shape parameters
of the correlation functions, and this is compounded by
the presence of the degrees of freedom for the extremal
t models; the standard errors for λ and κ can be large
and somewhat variable. At first sight the differences
in the estimates of λ in the upper and lower parts of
the table are surprising, but they are clarified by not-
ing that the limit (18) obtained by letting ν → ∞ in
(17) implies that for large ν, (∥h∥/λ)κ ≈ 2ν(∥h∥/λ′)κ

′
,

where the parameters λ′,κ ′ are those of the extremal t

model and those without the primes are those of the
Hüsler–Reiss model. We therefore expect that κ ′ ≈ κ

and λ′ ≈ λ(2ν)1/κ , and this is indeed the case, apart
from estimation error. Perhaps not surprisingly for
rainfall data, which tend to have high local variation
corresponding to rough spatial processes, the estimates
of the shape parameters κ are less than unity.

To aid the comparison of these models, we introduce
an extremal practical range. In conventional geostatis-
tics with stationary isotropic correlation, the practical
range is the distance h for which the correlation func-
tion ρ(h) = 0.05. In the extremal context we instead
use the distances h− and h+ satisfying θ(h−) = 1.3
and θ(h+) = 1.7. Table 4 suggests that these distances
are more stable than the parameters of the correlation
functions themselves, though those for the exponential
and Cauchy functions, which provide the worst fits, in-
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Turning to extremal copulas, Table 4 shows that
the extremal t models all fit the data appreciably
better than do the Hüsler–Reiss models, with well-
determined but small estimates of the degrees of free-
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and λ′ ≈ λ(2ν)1/κ , and this is indeed the case, apart
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rainfall data, which tend to have high local variation
corresponding to rough spatial processes, the estimates
of the shape parameters κ are less than unity.

To aid the comparison of these models, we introduce
an extremal practical range. In conventional geostatis-
tics with stationary isotropic correlation, the practical
range is the distance h for which the correlation func-
tion ρ(h) = 0.05. In the extremal context we instead
use the distances h− and h+ satisfying θ(h−) = 1.3
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and Cauchy functions, which provide the worst fits, in-

One realisation from the Schlather and Brown Resnick models applied to daily summer 
precipitation from 1962 to 2008. Source: Davison et al., 2012. Statistical Science 27
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Characterising V

Y (s) ⇠ GEV (µ(s),�(s), ⇠(s))

Y (s) = µ(s) +
�(s)

⇠(s)
[X(s)⇠(s) � 1]

X(s) = U(s)✓(s) with U(s) ⇠ GEV (1,↵,↵)

✓(s) =

"
LX

l=1

Alwl(s)
1/↵

#↵

with Al ⇠ PS(↵)

Y (si)|A1, . . . , A2, . . . , AL ⇠indep GEV [µ?(si),�
?(si), ⇠

?(si)]

Hierarchical spatial model for precipitation extremes  
Source: Reich and Shalby 2012. Ann. Appl. Stat. 6

14 B. J. REICH AND B. A. SHABY

Fig. 5. Posterior mean and standard deviation of the GEV location, log scale, and shape
parameters for the historical simulation. All units are mm/h.

Fig. 6. Plot of the posterior mean GEV scale versus posterior mean GEV shape at each
site.
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Characterising VI

Index-based approach

Coastal regions of Antarctica are also projected to experience
a significant decrease in FD under all three RCPs.
[30] Tropical nights, based on the fixed 20!C threshold,

increase most in tropical regions (>100 days), such as those
south of the Amazon, equatorial and southern Africa, and
northern Australia (Figure 6). Changes in TR are also
relevant for the extra-tropical Northern Hemisphere where
nighttime temperatures are currently well below 20!C.
Significant increases in TR are seen in the extra-tropical
Northern Hemisphere, which are most pronounced in
south-eastern North America, the Mediterranean, and central
Asia. TR increases by as many as 80 days in these regions
under RCP8.5, which would mean that almost the entire
summer season will have nighttime temperatures above
20!C. Considering the strong increase in TXx in the MED
and CAS regions as discussed earlier, these regions would
face severe heat stress in summer if future climate change
follows the path of RCP8.5.

4.1.2. Duration Indices
[31] Consistent with temperature changes described above,

cold spell duration (CSDI) is projected to decrease and warm
spell duration (WSDI) is projected to increase in all RCPs
(Figure 7). The CMIP5 multimodel median changes in these
indices are significant everywhere over land. The strongest
increases in WSDI occur in tropical regions and are related
to the magnitude of the change in mean temperature relative
to the low short-term tropical temperature variability. WSDI
and CSDI are sensitive to the underlying climatological
temperature variability of the respective region [Radinović
and Ćurić, 2012], which is small in the tropics and larger in
the extra-tropics. Details in the regional changes of CSDI
and WSDI under the RCPs can be found in the auxiliary
material (Figure S1).
[32] The temporal evolution of WSDI and CSDI averaged

over all land regions is also shown in the auxiliary material
Figure S1. By the end of the 21st century, the median

Figure 6. Same as Figure 4, but for frost days (FD, left) and tropical nights (TR, right). Stippling
indicates grid points with changes that are not significant at the 5% significance level.

SILLMANN ET AL.: CMIP5 PROJECTIONS OF EXTREMES INDICES

9

simulated in CMIP5 for RCP4.5 and RCP8.5. TNn and TXx
increase, respectively, by 4.6!C and 3.5!C in A1B, and by
5.6!C and 4.5!C in A2.
[27] A consistent pattern is seen in the evolution of the

threshold indices based on TN, frost days (FD), and tropical
nights (TR) globally averaged over land (Figures 3c and 3d).
In the middle of the 21st century, FD decreases by about
8 days in B1, which lies in the interquartile model range of
RCP2.6. FD decreases by 11 and 10 days in A1B and A2,
respectively, which is within the interquartile model spread
for RCP4.5. By the end of the 21st century, the median
decreases of FD are 7 days in RCP2.6 and 13 days in
RCP4.5, with B1 (10 days) being centered between them.
A stronger decrease in FD of 16 and 20 days is seen in
A1B and A2, respectively, which is still smaller than the
median decrease of 23 days projected in RCP8.5.
[28] Tropical nights increase by about 18 days in RCP2.6

and 20 days in B1 in the middle of the 21st century. The
A1B and A2 median increase of 27 days in TR is within
the range of the projected RCP4.5 changes. At the end of
the 21st century, the median TR increases most in RCP8.5
(53 days) closely followed byA2 (51 days) and A1B (40 days).

A modest median increase of 28 days is projected in RCP4.5
and B1. The smallest median increase in TR (16 days) is pro-
jected in the RCP2.6 scenario. The patterns in the temporal
evolution of threshold indices based on daily maximum
temperature such as ice days (TX< 0!C) or summer days
(TX> 25!C) (not shown) are similar to those in FD and
TR, respectively, but are less pronounced.
4.1.1.2. Spatial and Seasonal Patterns
[29] The projected median changes of TNn and TXx simu-

lated in the CMIP5 ensemble are shown in Figure 4 and are sig-
nificant across land areas for all three RCPs by the end of the
21st century. The spatial patterns of change in TNn and TXx
are different. In particular, TNn increases more strongly in
higher latitudes of the Northern Hemisphere. For RCP2.6,
TXx changes only moderately over land while stronger
increases are apparent in TNn, particularly in northern latitudes.
[30] The greatest changes in TNn, exceeding 12!C, are

simulated in RCP8.5 in such regions as North America,
Northern Europe, and North Asia. Presumably, larger
changes in TNn in higher latitudes are related to the retreating
snow cover under global warming whereas in the tropics and
the Southern Hemisphere the TNn increases generally remain
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Figure 3. Global averages of temperature indices over land as simulated by the CMIP5 ensemble (see
Table 1) for the RCP2.6 (blue), RCP4.5 (green), and RCP8.5 (red) displayed as anomalies from the refer-
ence period 1981–2000. Solid lines indicate the ensemble median and the shading indicates the
interquartile ensemble spread (25th and 75th quantiles). Time series are smoothed with a 20 year running
mean filter. The box-and-whisker plots show the interquartile ensemble spread (box) and outliers
(whiskers) for 11 CMIP3 model simulations of the SRES scenarios A2 (orange), A1B (cyan), and B1
(purple) (see Table 2) globally averaged over the respective future time periods (2046–2065 and 2081–2100)
as anomalies from the CMIP3 reference period 1981–2000.

SILLMANN ET AL.: CMIP5 PROJECTIONS OF EXTREMES INDICES

2478

2081-2100 Changes w.r.t. 1981-2000. Source: Sillmann et al. 2013, JGR 118
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Characterising

• Erroneous data 

• Inhomogeneities 

• Missing data 

• inhomogeneous spatial coverage 

• Complexity of the events is often not captured 

• Computational and statistical issues when dealing with large 

data sets 

• Constraints and assumptions for large regions 
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Predicting I

Synoptic patterns associated with extreme preciA. Toreti et al.: Extreme precipitation 1043

Fig. 3. Identified patterns of Z500 anomalies associated with extreme precipitation. The left panel refers to the western Mediterranean, while
the right panel refers to the eastern Mediterranean.

respectively (Fig. 2 and Table 1). In order to investigate pos-
sible departures from stationarity of the Poisson component
in the dePOT model, the series of exceedances are used to
calculate the number of occurrences for each extended win-
ter. Then, a Poisson regression (Cameron and Trivedi, 2001)
is applied and only for six series (Amiantos, Cyprus; Mar-
seille, France; Rhodes and Argostoli, Greece; Genoa and
Teramo, Italy) a significant negative tendency is found. This
indicates that the probability of observing an event above the
threshold (at those six stations) has decreased over the last
57 years. Moreover, the estimated return levels of those se-
ries are a function of time and the values shown in Fig. 2 can
be considered as mean return levels (since the occurrence rate
of threshold exceedances is assumed to be stationary in the
dePOT approach). Those tendencies might be related to the
decrease of the most intense Mediterranean cyclones (Trigo
et al., 2000; Bartholy et al., 2009).
The classification of atmospheric fields (Z500 and SLP)

associated with extreme precipitation events (dry days and
non-extreme wet days, for testing the significance as ex-
plained in the previous section) is performed for each sta-
tion. Western and eastern Mediterranean anomaly patterns
are derived classifying the station-centroids. For both Z500
and SLP, three clusters are found in the western Mediter-
ranean (hereafter WM) and eastern Mediterranean (EM).

Figures 3 and 4 show the centroids of those clusters and
highlight differences in the identified patterns. Regarding
WM, a Z500 dipole structure characterises two out of three
clusters, with an axis oriented South-West/North-East and
South-East/North-West, respectively. In the first case, the
negative and the positive anomalous centres are located be-
tween Spain and northwestern Africa (Fig. 3a) and over
the Scandinavian Peninsula (with a wide extension towards
north-eastern Europe), respectively. This favours anoma-
lous mid-tropospheric southwesterly flow towards the WM.
The SLP dipole (Fig. 4a) presents a similar structure with
the axis shifted eastward. The second dipole structure of
Z500 (Fig. 3b) shows a negative centre over the Gulf of Lion
and the Balearic Sea, and a positive centre over the north-
ern North Atlantic. As in the previous case, it also has a
nearly barotropic structure (Fig. 4b), favouring an anoma-
lous westerly-southwesterly flow to the WM. The third clus-
ter (Fig. 3c) influencing the WM has a triple-centre structure,
with a mid-tropospheric trough extending from the British
Isles towards northern Africa (Algeria) and two anoma-
lous positive centres in the subtropical North Atlantic and
across north-eastern Europe. All the three clusters are as-
sociated with intensified moisture transport from the At-
lantic (Trigo et al., 2006). Regarding EM, an anomalous
mid-tropospheric trough stretching from the Baltic region to

www.nat-hazards-earth-syst-sci.net/10/1037/2010/ Nat. Hazards Earth Syst. Sci., 10, 1037–1050, 2010

Z500 anomalies associated with precipitation extremes. Source: Toreti et al., 
2010. NHESS 10
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Precipitation extremes in the Mediterranean region and associated upper-level synoptic-scale flow structures

1 3

(a) (b)

(c)

Fig. 12  As in Fig. 4 but for Greece and Puglia

(a) (b)

(c)

Fig. 13  As in Fig. 4 but for western Turkey

synoptic-scale flow and precipitation extremes 11

a) b)

c) d)

e) e)

g) h)

i) j)

k)

Fig. 14: As in Fig. 5 but for western Turkey: a) One day before the autumn
events. b) Two days before the autumn events. c) Three days before the au-
tumn events. d) Four days before the autumn events. e) One day before the
spring events. f) Two days before the spring events. g) Three days before the
spring events. h) Four days before the spring events. i) One day before the
winter events. j) Two days before the winter events. k) Three days before the
winter events.

PV anomalies and wind at 850 hPa DJF associated with 
preci extremes in Western Turkey. Source: Toreti et al. 
2016, Climate Dynamics in press
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cyclonic flow and weak winds over Sicily. A positive PV 
anomaly is present in the area already 2 days before the 
event downstream of an anomalously strong low PV ridge 
over the north-eastern Atlantic (Fig. S10).

During spring extreme precipitation events in Sicily, a 
PV trough is located slightly further to south-west com-
pared with the location of the cut-off during the autumn 
events (Fig. 9b). Two days before the events a statistically 
significant positive PV anomaly is present above the west-
ern Mediterranean (Fig. S10).

Winter extreme precipitation events in Sicily are accom-
panied by a low amplitude, broad PV trough above North 
Africa and Sicily (Fig. 9c).

3.9  Po Valley

Extreme precipitation events in the Po Valley in autumn are 
associated with narrow north-south oriented troughs located 
over central Europe at approximately 10°E (Fig. 10a), 
slightly further east compared to those ones affecting 
Genoa. The troughs are slightly broader at the tip and there 
is a south-east north-west orientation of the eastern flank 
of these troughs directly over the Po Valley. Downstream 
of the troughs a low PV ridge is located over the western 
Black Sea and Turkey. At 850 hPa weak easterly winds are 

present above the Po Valley. The formation of this trough 
takes 1 day (Fig. S11).

The upper level structures associated with extreme pre-
cipitation events during spring and winter are similar. A 
broader trough is located over Sardinia and north-western 
Italy (Fig. 10b, c). The associated cyclonic wind field at 
850 hPa provides weak easterly winds above the Po Val-
ley. In winter a broad south-west north-east oriented trough 
is located over the western Mediterranean with its centre 
located slightly south of the Po Valley. The Po Valley is sur-
rounded by mountains except in the east; thus, easterly and 
northeasterly winds can penetrate into the valley and poten-
tially bring moist air from the Mediterranean towards the 
mountains and thus contribute to heavy precipitation.

3.10  Western Balkans

The main upper-level flow feature associated with autumn 
and spring extreme precipitation events in the western 
Balkans is a broad PV trough located over central Europe 
(Fig. 11a, b). The western Balkans are located along the 
eastern flank of the PV trough, where strong south-westerly 
winds prevail (>10 m/s) at 850 hPa. There is a potential 
for an interaction between the strong moist south-westerly 
winds and NW-SE oriented mountain ranges in the area. 

(a) (b)

(c)

Fig. 10  As in Fig. 4 but for the Po Valley

8 Toreti, Giannakaki and Martius

a) b)

c) d)

Fig. 10: As in Fig. 5 but for Sicily: a) One day before the autumn events. b)
Two days before the autumn events. c) One day before the spring events. d)
Two days before the spring events.

a) b)

c)

Fig. 11: As in Fig. 5 but for the Po Valley: a) One day before the autumn
events. b) One day before the spring events. c) One day before the winter
events.

PV anomalies and wind at 850 hPa DJF associated with 
preci extremes in Po Valley. Source: Toreti et al. 2016, 
Climate Dynamics in press
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case, the interaction with the synoptic-scale cold front
(and the upper-level trough) over the Strait of Sicily
and the orographically generated cyclone to the east of
Calabria seem to play that role.

In the following hours, the system crosses the Salen-
tine peninsula, where the model simulates the lowest
pressure value of 989 hPa near the middle of the pen-
insula, in good agreement with the observations. After
its quick transit over land, the vortex reaches the Adri-
atic Sea. At this time, the pressure minimum is still
deep (990 hPa) and remains constant throughout the
vortex’s transit over the sea until its second landfall in
the northern part of Apulia, where the system finally
decays.

Additional numerical simulations were performed to
better understand the mechanisms responsible for the
genesis and the evolution of the vortex. A numerical
experiment without the Atlas Mountains shows that the
small-scale intense cyclone that ultimately affected
southern Italy originated as an orographic vortex on the
lee side of the Atlas Mountains. In the cyclone’s sub-
sequent passage over the Mediterranean Sea, the sys-
tem evolves into a smaller-scale cyclone with high mois-
ture content in the very low levels. Surface heat fluxes
and convection are shown to be important during this

phase. The surface fluxes are fundamental for the de-
stabilization of the environment, while the latent heat,
released within the convective motions that developed
near the approaching cold front, is necessary to pro-
duce the intensification and contraction of the horizon-
tal scale of the vortex. During its subsequent crossing of
the Ionian Sea, the deepening of the now-small-scale
vortex is very rapid, and is mainly due to latent heating
associated with moist convection, as turning off the la-
tent heat release due to condensation has the effect of
delaying and weakening the system development. The
results are consistent with those found by Lagouvardos
et al. (1999), who stressed the significant role played by
the sensible and latent heat fluxes in the formation of a
tropical-like Mediterranean storm and the strong influ-
ence of the latent heat release due to convective mo-
tions, during its mature stage.

In its last stage, the small-scale cyclone crosses the
Adriatic Sea. During this phase, both the surface fluxes
and the release of latent heat are important in main-
taining the strength of the vortex. At this time the sys-
tem is well formed, and its similarities with tropical
cyclones are apparent by azimuthal averages of the
wind, potential temperature, and the cloud water con-
tent, in a coordinate system where the origin is located

FIG. 19. Summary representing the different stages of evolution of the cyclone. The chain of
events leading to the small-scale vortex over southern Italy begins with the action of the
northerly flow (gray arrows) impinging on the Atlas Mountains (“!” symbols) and producing
an orographic cyclone occurring downwind (“L” indicates pressure low). As the orographi-
cally produced cyclone moves to the east over the Strait of Sicily, its interaction with a
cold-frontal system favors the development of convection (represented by the gray clouds)
nourished by sea surface fluxes (represented with the wave symbols). The latter interaction
transforms the larger-scale orographic vortex into an intense smaller-scale vortex (represented
with the increased number of circles around the “L”), which deepens further due to the
convection over the Ionian Sea and is maintained by both convection and sea surface fluxes
as it progresses over the Adriatic Sea.

NOVEMBER 2008 M O S C A T E L L O E T A L . 4395
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FIG. 12. Accumulated evaporative moisture sources (kg m22; equivalent to mm of liquid water) collected over
TD for rain falling over PD. Sources obtained for different values of the nday parameter (number of days in which
the parcels are tracked, starting from the beginning of the pentad). Total precipitation fallen over PD and total
evaporation collected over TD are on the bottom left of the panel; fractional evaporative sources computed over
subdomains A, M, L, WA, NEA, and AFR, as marked on the map, are on the bottom right of each panel.

to a larger spatial scale, extending from Florida to the
whole North Atlantic Ocean: this source corresponds
remarkably well to the track of the tropical system Leslie
and to its extratropical transition.
In fact, more than 10% of the source originates from

the western Atlantic Ocean, in proximity of the U.S.
East Coast; moreover, part of the evaporation occurring
from the central Atlantic Ocean could be traced back
to the intrusion of tropical air that follows the remnants
of Leslie and to the enhanced evaporation caused by its
redevelopment (recall Figs. 8 and 9). Another relatively
small but interesting contribution is from the African
ITCZ, namely from the Sahel region. It is important to
stress then that only 20% of the total precipitation ac-
cumulated during the pentad over the PD originates
from the Mediterranean basin. This result is related to
the particular event. We performed water vapor back
tracing in other situations and found that generally the
fraction of moisture originated in the Mediterranean is
substantially larger when extraordinary precipitation
events do not occur (not shown).
The sources shown in Figs. 12 and 13 that represent

evaporation accumulated over a relatively long time
with respect to the time scale of the event match gen-

erally well with the overall low-level circulation inferred
from the synoptic discussion. In Fig. 14 we show instead
the evaporation collected at individual time steps: the
values are perhaps less representative because they are
probably subject to large uncertainties. However, it is
worth noting that a good correspondence with synoptic
features can be found. The time steps of the back tracing
most distant in time from the event (between the last
days of September and the first days of October; not
shown) reveal evaporative contributions from the west-
ern tropical Atlantic, consistent with the formation of a
broad region of moist convergence and sporadic and
disorganized thunderstorms (Franklin and Brown 2000)
in which Tropical Storm Leslie develops. As long as we
move forward in time showing time steps of the back-
trajectory calculation closer to the event (Figs. 14a–e),
the evaporative sources at individual time steps seem
to follow well the progression of the extratropical rem-
nants of Leslie and the plume of moist air in its wake
(recall Fig. 8). At the same time, evaporative contri-
butions are produced by the westerlies associated with
the cyclones over the northern Atlantic, and some other
contributions arise from the Mediterranean region and
the African ITCZ. With the approaching of Leslie to the

Other factors contributing to 
precipitation extremes

Source: Moscatello et al., 2008. MWR 136

Source: Turato et al., 2004. J Hydromet 5
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inland penetration into eastern Europe (similar to the approach
by Rutz and Steenburgh [2012] for the western United States),
and (2) the IVT during or up to 1 day after an AR (between
4.5° latitude to the north or south of the precipitation grid)
exceeded the IVT threshold at the AR's point of entry into
Europe at 10°W. The right panels of Figure 2 show the percent-
age of AM that are related to ARs for each season. The largest
AR-AM links are found in SON and DJF, with many places
having more than 40% of their AM caused by ARs (e.g., north-
ern France in DJF). Furthermore, the plots highlight the inland
penetration of ARs into Europe as far as Poland, indicating that
ARs affect extreme precipitation at large distances from the
North Atlantic Ocean. It is evident that the patterns of the
strongest AR-AM relationship tend to follow the orography,
as is seen along the Scandinavian mountains, western Britain,
northern France, southern Benelux, the Pyrenees, and on the
Iberian Peninsula. Therefore, it is the presence ofmountains that
provides the uplift of the moisture-rich air in the AR, in turn
causing high precipitation totals [e.g., Ralph et al., 2005].
Note that in the lee of these mountains the linkage is weaker
(e.g., Scandinavia) due to the rain shadow.
[11] To further illustrate the nexus between ARs and extreme

European precipitation, Figure 3 presents the number of the top
10 AM precipitation events that were related to ARs. Over
large areas of the Iberian Peninsula, northern France, and
southern Norway, six out of the top 10 AM were caused by
ARs; moreover, some locations in Scotland, southwest
England, northern France, and Norway had eight of the top
10 AM associated with ARs. These results indicate that ARs
dominate the upper tail of the rainfall distributions over large
regions of Europe. Figure 3 also confirms that the strongest
AR-AM connection is found in mountainous areas. It is partic-
ularly striking how far inland the impacts of these catastrophic
hazards are felt (see Rutz and Steenburgh [2012] for results on
AR inland penetration for western North America). Among the
AR events identified by our algorithm, we note that Cyclone

Lothar (December 1999) and the Cockermouth flood in
England (November 2009) were detected, which further
illustrates the connection between ARs and well-known heavy
precipitation/flood episodes.
[12] The AR influence on AM precipitation events is mainly

restricted to fall and winter rather than spring or summer
(Figure 2, right panels). It is during the winter half-year across
the North Atlantic Ocean that there is a stronger equator-to-
North Pole temperature gradient resulting in a stronger
baroclinic zone and storm track affecting Western Europe.
The extratropical cyclones that grow in the baroclinic zone
contain the ARs that strike the European land mass. During
the summer, however, a weaker equator-to-North Pole temper-
ature gradient and North Atlantic storm track means that
extratropical cyclones are not as prevalent, and thus the AR
effect on precipitation is weaker. Precipitation in summer
tends to be more associated with convective storms [e.g.,
Berg et al., 2009], and the fact that a high proportion of central
European AM precipitation events occur in JJA (Figure 2; left
panels) suggests that convective storms are the key driver of
extreme precipitation in this region.
[13] For each AR event, the gridded daily precipitation was

summed over the AR days to create AR storm total precipita-
tion. These storm totals were then binned into 5° latitude bins
(for the bins, see section 2) depending on the point of entry of
the AR into Europe at 10°W. The composite mean of the AR
storm total precipitation for each latitude band is shown in
Figure S1 in the supporting information. It is evident that the
areas with the highest rainfall accumulations depend on the
location where the AR entered Europe (c.f. Figures S1a
and S1e).
[14] For each AR event, we calculated the average MSLP

(at each grid point) over its lifetime. We then computed the
MSLP anomaly pattern for that particular AR event with
respect to the same time period over the years 1979–2011.
The MSLP anomaly fields were then placed into the afore-
mentioned latitude bins, and a composite mean anomaly
pattern was calculated for each latitude band (Figure 4). We
also computed the composite standard deviation for each
latitude band (Figure S2); the results support the signals
shown in the composite mean anomaly patterns. For the
southernmost occurring ARs (Figure 4a; 35°N–40°N),
positive MSLP anomalies are located over Iceland and
Greenland, and negative MSLP anomalies extend from
Britain to the Iberian Peninsula. This setup relates to a nega-
tive North Atlantic Oscillation (NAO) pattern, with a blocked
flow over northern Europe and the North Atlantic storm track
(and their embedded ARs and heavy precipitation) impacting
southern Europe; this is highlighted in the precipitation
composite (Figure S1a) and corroborates earlier NAO find-
ings [e.g., Hurrell, 1995; Hurrell et al., 2003; Pinto and
Raible, 2012]. A negative, albeit weaker, NAO influence on
ARs is also found between 40°N and 45°N (Figure 4b). In
the latitude band 45°N–55°N (Figures 4c and 4d), the
MSLP dipole pattern relates to a positive NAO phase,
with the ARs within the extratropical cyclones delivering rain-
fall from northern France, through the western British Isles to
Norway. Further north between 55°N and 70°N (Figures 4e,
4f, and 4g), ARs and their associated precipitation are related
to an MSLP dipole of positive anomalies near the British
Isles and negative anomalies over Greenland and Iceland.
The storm track and the passage of extratropical cyclones
can be thought of as passing through the region of negative

Figure 3. The number of the top 10 AM precipitation
events that are related to ARs.

LAVERS AND VILLARINI: ARS AND EXTREME EUROPEAN PRECIPITATION

3262

Number of top 10 annual maxima preci events associated 
with atm rivers. Source: Lavers and Villarini 2013, GRL 40.
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[13] Averaged over all European stations the winter 2010
anomaly of daily mean temperature is −1.3°C, corresponding
to a departure of −0.9s from the 1949–2010 distribution
(Figure 3d). As in previous studies [e.g., van Loon and
Rogers, 1978], we find high correlations between Euro-
pean temperatures and both the phase and amplitude of the
NAO (e.g., r = 0.70 for Tavg–NAOi and r = 0.75 for Tavg–
NAO+ regime frequency, both p − values < 1%), and that
most of cold peaks are associated with significantly low
NAOi or NAO+ frequency (not shown). Note that the fre-
quency of NAO− regime is less significantly anti‐correlated
with temperatures (r = −0.56, p − value < 1%) since cold
events can also be linked to Scandinavian blockings or
Atlantic Ridge conditions (Figure 2).
[14] Winter 2010 ranks as the 13th coldest winter since

1949 over Europe, far behind the cold record of 1963 (−4.0°
C, −2.9s) despite comparable atmospheric dynamics indi-
ces. Winter 1963 indeed experienced the 3rd lowest NAOi
since 1824 (Figure 1b), and the 2nd lowest NAO+ regime
frequency (Figure 2e). However cold temperatures of winter
1963 seem caused by both NAO− and strong Scandinavian

blockings, while NAO− largely dominates in winter 2010
(Figure 2).

5. Temperatures in Flow‐Analogues
of Winter 2010

[15] For 84% of stations (193/230) flow‐analogues sam-
pled in past winters were associated with significantly colder
daily mean temperature (Tavg) anomalies than observed in
winter 2010 (Figures 3b and 3c). Only a few stations in
Southern Europe exhibit a higher analog temperature than
observed. The maximal departure is found over the Alps
region, where observed temperatures were close to average
while analog anomalies reach −2s. Averaged over all sta-
tions, past flow‐analogues of winter 2010 were associated
with a negative temperature normalized anomaly reaching
−2.1s, the 2nd coldest analog anomaly close behind winter
1963 (−2.3s, see Figure 3d). In other words the daily
atmospheric dynamics of the winter 2010 was favorable to a
temperature anomaly comparable in amplitude to the cold
record of winter 1963.

Figure 3. Winter 2010 normalized (a) observed and (b) analog Tavg anomaly (from ECA&D stations). (c) Difference
between Figures 3a and 3b. (d) Normalized 1949–2010 time series of observed (analog) Tavg anomaly in black (gray) line.
Red (blue) segments indicate positive (negative) observed–analog differences. Winter 2010 values are indicated by dashed
lines. 1980–2009 linear trends are added. (e) Same as Figure 3d with the 1980–2009 linear trend removed from observed
Tavg time series. (f) Same as Figure 3d for normalized Tmax–Tmin time series.
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method computed in the Empirical Orthogonal Functions
phase space [Michelangeli et al., 1995] over the NAE
domain and the period 1974–2007.
[7] Temperature data are from the European Climate

Assessment and Dataset (ECA&D) project [Klein‐Tank
et al., 2002], which provides daily minimum, maximum
and mean temperatures (respectively Tmin, Tmax and Tavg)
at European stations (http://eca.knmi.nl/dailydata/). The data
set is geographically homogenized by selecting the stations
on the basis of (i) the simultaneous availability of Tavg,
Tmin and Tmax data, (ii) the availability of more than 80%
of daily values between 1 January 1948 and 28 February
2010, (iii) a selection of only one station per grid cell of
0.75° × 0.5° size. This method is similar to that used in
previous studies [Vautard and Yiou, 2009; Yiou et al., 2007],
and retains here 230 stations over Europe. Anomalies are
computed by removing at each station the 1961–1990 daily
climatology, and in order to better quantify their amplitude,
normalized anomalies relative to the mean and the standard
deviation (s) of the 1949–2010 anomalies distribution are
used.
[8] The “flow‐analogues” method, used in section 5 to

estimate daily temperatures observed during similar flow
conditions in past winters, was developed by Yiou et al.
[2007] and consists as follows: for each day of winter
2010, ten flow‐analogues are selected among winters 1949
to 2009 in a 30‐day window centered on this given day. The
selection is made on the basis of maximizing the Spear-
man’s correlation of daily Z500 NAE maps. Then, for each
station, the daily “analog” temperature anomaly is defined
as the median of daily temperature anomalies of the ten

flow‐analogue days. Using rather Euclidean distance or
linear correlation for Z500 ranking, five or twenty flow‐
analogues, and the mean in analog temperature computation
does not change our results in a significant manner.

3. Extreme Persistence of Daily NAO− Conditions
During Winter 2010

[9] Winter 2010 is characterized by an exceptional
Northern Hemisphere mean atmospheric circulation [Wang
et al., 2010]. The Z500 anomaly exhibits a strong zonal
hemispheric pattern, with anomalously high (low) pressures
over the pole (mid‐latitudes) (Figure 1a). Such a structure
corresponds to a negative phase of theArctic Oscillation (AO)
[Thompson and Wallace, 1998]. In particular L’Heureux
et al. [2010] highlighted that the negative AO of December
2009 was a record.
[10] Wintertime European temperatures are largely con-

trolled by the NAO [e.g., Hurrell, 1995; van Loon and
Rogers, 1978], which can be interpreted, even if controver-
sial, as the regional signature of the AO [e.g., Ambaum et al.,
2001]. Over the NAE domain, the winter 2010 hemispheric
zonal structure is associated with an extremely negative
phase of the NAO, even constituting a record of NAOi since
winter 1824, almost 3s below average (Figure 1b). Negative
NAO events usually favor the development and persistence
of North‐Atlantic atmospheric blockings [e.g., Shabbar et al.,
2001]. This is the case of winter 2010 which has the 2nd
highest blocking frequency since 1949 (Figure 1c, freq =
33%), close to the record of the winter 1963 (freq = 34%).
Moreover the winter 2010 SDI value is the 6th lowest

Figure 1. (a) Geopotential height at 500mb (Z500) anomaly averaged over winter 2010 above 20°N (from NCEP).
Units: m. Labeled gray contours indicate standard deviations levels. (b) Normalized 1824–2010 time series (bars) and
spline‐smoothing (line) of NAOi. Winter 2010 is indicated by the blue dashed line. (c) Normalized 1949–2010 time
series of NAOi (bars), SDI (gray) and North‐Atlantic blocking days frequency (black). Winter 2010 values are indicated
by dashed lines. Levels are inversed for blockings, see right axis. NAOi differ from Figures 1b to 1c since normalizing
periods differ.
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Cold Spell winter 2009-10

[13] Averaged over all European stations the winter 2010
anomaly of daily mean temperature is −1.3°C, corresponding
to a departure of −0.9s from the 1949–2010 distribution
(Figure 3d). As in previous studies [e.g., van Loon and
Rogers, 1978], we find high correlations between Euro-
pean temperatures and both the phase and amplitude of the
NAO (e.g., r = 0.70 for Tavg–NAOi and r = 0.75 for Tavg–
NAO+ regime frequency, both p − values < 1%), and that
most of cold peaks are associated with significantly low
NAOi or NAO+ frequency (not shown). Note that the fre-
quency of NAO− regime is less significantly anti‐correlated
with temperatures (r = −0.56, p − value < 1%) since cold
events can also be linked to Scandinavian blockings or
Atlantic Ridge conditions (Figure 2).
[14] Winter 2010 ranks as the 13th coldest winter since

1949 over Europe, far behind the cold record of 1963 (−4.0°
C, −2.9s) despite comparable atmospheric dynamics indi-
ces. Winter 1963 indeed experienced the 3rd lowest NAOi
since 1824 (Figure 1b), and the 2nd lowest NAO+ regime
frequency (Figure 2e). However cold temperatures of winter
1963 seem caused by both NAO− and strong Scandinavian

blockings, while NAO− largely dominates in winter 2010
(Figure 2).

5. Temperatures in Flow‐Analogues
of Winter 2010

[15] For 84% of stations (193/230) flow‐analogues sam-
pled in past winters were associated with significantly colder
daily mean temperature (Tavg) anomalies than observed in
winter 2010 (Figures 3b and 3c). Only a few stations in
Southern Europe exhibit a higher analog temperature than
observed. The maximal departure is found over the Alps
region, where observed temperatures were close to average
while analog anomalies reach −2s. Averaged over all sta-
tions, past flow‐analogues of winter 2010 were associated
with a negative temperature normalized anomaly reaching
−2.1s, the 2nd coldest analog anomaly close behind winter
1963 (−2.3s, see Figure 3d). In other words the daily
atmospheric dynamics of the winter 2010 was favorable to a
temperature anomaly comparable in amplitude to the cold
record of winter 1963.

Figure 3. Winter 2010 normalized (a) observed and (b) analog Tavg anomaly (from ECA&D stations). (c) Difference
between Figures 3a and 3b. (d) Normalized 1949–2010 time series of observed (analog) Tavg anomaly in black (gray) line.
Red (blue) segments indicate positive (negative) observed–analog differences. Winter 2010 values are indicated by dashed
lines. 1980–2009 linear trends are added. (e) Same as Figure 3d with the 1980–2009 linear trend removed from observed
Tavg time series. (f) Same as Figure 3d for normalized Tmax–Tmin time series.
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recorded since 1949, which confirms the exceptional
character of the winter 2010 dynamics at European scale
(Figure 1c). Blocking frequency and SDI are significantly
correlated with NAOi (respectively r = −0.73 and r = 0.73,
p − value < 1%).
[11] Seasonal values of NAOi are closely linked to daily

occurrences of NAE weather regimes presented in Figure 2.
The first (third) regime is indeed generally connected to the
positive (negative) phase of the NAO, the second one is
referred to as Scandinavian Blocking and the fourth one as
Atlantic Ridge [e.g.,Michelangeli et al., 1995]. Winter 2010
extreme NAO is thus caused by both a record frequency of
NAO− occurrences over winters 1958–2010 (63/90 days,
8 more days than the previous record in winter 1966) and a
very low frequency of NAO+ occurrences (5/90 days, the
3rd lowest after 1969, 3/90, and 1963, 4/90). Although
referring to very different quantifications of the NAO, sea-
sonal NAOi and frequencies of NAO+ (NAO−) regimes
are highly correlated (r = 0.8 (−0.75), p − values < 1%).

In addition, while positive (negative) phases of the NAO
dominate winters 1980–1995 (1995–2010), we found no
significative (p − values < 5%) trends in any seasonal index
or weather regime frequency over the last three decades.

4. How Cold Was Winter 2010 in Europe?

[12] Winter 2010 European temperatures were on average
anomalously cold (Figure 3a), with largest negative
anomalies (about −1.5s) over North‐Western Europe while
milder conditions prevailed over Southern Europe. This
seesaw latitudinal pattern is entirely consistent with the
canonical signature of the negative NAO [Hurrell, 1995].
More generally, Wang et al. [2010] showed that the winter
2010 negative NAO was responsible for the quadripole
structure in NAE temperature anomalies (warm over Canada/
Greenland and North Africa/Middle East, cold over United
States and Eurasia).

Figure 2. (a–d) Winter weather regimes as computed from Z500 by [Cassou, 2008]: NAO+, Scandinavian Blocking,
NAO− and Atlantic Ridge. Units: m. Percentages represent each regime frequency over the computation period (1974–
2007). (e–h) Frequencies of occurrence of each regime over 1958–2010. Units: days/90 (left axis) and s (right axis). Winter
2010 values are highlighted in red and mean 1950–2010 frequencies are indicated.
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tinental scale. Case studies of this exceptional event reveal a
specific “blocking‐like” circulation pattern, which might
have been favored by warm SST anomalies in the northern
North Atlantic [Croci‐Maspoli and Davies, 2009] with
indications for important role of troposphere‐stratosphere
interactions [Scaife and Knight, 2008]. Circulation anoma-
lies linked to stratospheric warming may descend into the
troposphere leading to weak NAO (AO) and associated
cooling over Eurasia [Baldwin and Dunkerton, 2001]. The
stratosphere warming events, in turn, may be triggered by
enhanced planetary waves in the previous fall related to
anomalous troposphere circulation or boundary forcing,
such as snow cover or sea ice [Takaya and Nakamura, 2005,
2008; Cohen et al., 2007; Honda et al., 2009]. This latter
mechanism involves delayed (by 2–3 months) dynamical
response implying importance of lower boundary forcing in
autumn for the following winter conditions.
[4] Several modeling studies have reported on significant

impact of altered Arctic sea ice conditions on atmospheric
circulation [Herman and Johnson, 1978; Bengtsson et al.,
2004; Magnusdottir et al., 2004; Deser et al., 2004;
Alexander et al., 2004; Singarayer et al., 2006; Seierstad and
Bader, 2009]. In the study by Alexander et al. [2004], the
local circulation response was baroclinic and resulted in
rather shallow near‐surface warming, whereas the associated
large‐scale circulation realignment was of barotropic struc-

ture. Feedback of ice changes upon circulation was positive
(negative) in the Pacific (Atlantic) sectors. Similar results
have been obtained by Magnusdottir et al. [2004] and Deser
et al. [2004].
[5] Here, we highlight that the cold winter 2005–2006

coincided with the lowest recorded, to that time, December–
January–February sea ice extent in the Barents and Kara
(B‐K) seas in the eastern opening of the Arctic Ocean
(Figures 1d and 1e). It was the first year since the satellite
observations era, when the western part of the Kara Sea was
free of ice in winter months, and the sea ice cover in both
seas was unprecedentedly low [Cavalieri et al., 1996].
[6] The wintertime SAT 2005–2006 warming in the

Eastern Arctic was linked to increased heat losses from the
ice‐free sea surface, exposed to the cold and windy Arctic
atmosphere. This is indicated by location of the strongest
positive SAT anomaly over the area of major sea ice
changes (Figures 1a and 1f). We note that the pattern of cold
northern continents contrasting warm Arctic was not unique
for winter 2005–2006. For example, two similar cold events
have occurred in December 1984 and February 1976 (shown
in Figures 1b and 1c), as well as several others, e.g., in
December 1966, December 1969, and February 1984 (not
shown). These events also featured low B‐K sea ice cover
and exhibited large‐scale SAT anomaly patterns that are
rather similar to those shown in Figures 1a–1c. Yet the

Figure 1. Observed winters with cold continental temperatures contrasting warm Arctic and negative sea
ice anomalies in the Barents and Kara seas. SAT anomalies (in °C) relative to the 1948–2006 mean for
(a) January 2006, (b) December 1984, and (c) February 1976. Time series of the mean sea ice concen-
tration (as a fraction of one) for December–January–February (DJF) in (d) the Barents Sea (30°E–60°E,
70°N–80°N) and (e) the western Kara Sea (60°E–80°E, 70°N–80°N); (f) DJF sea ice concentration
anomalies (as a fraction of one) averaged over the years 2006 and 2007 relative to the (1981–2000) mean;
the marked 30°E–60°E/65°N–80°N sector is the area, where the sea ice concentration was modified for
November through April in the six ECHAM5 simulations.
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Figure 3. Simulated with ECHAM5 monthly SAT and the low‐troposphere circulation responses to
decrease in the Barents‐Kara sea ice concentration (SIC) from 100% to 80%, 80% to 40%, and 40%
to 1% for February. Differences between SAT (in °C) simulated with SIC change from (a) 100% to
80%, (b) 80% to 40%, and (c) 40% to 1%; (d–f) same as Figures 3a–3c but for the vector of the horizontal
wind at 850 hPa (in m/s); (g–i) same as Figures 3a–3c but for the geopotential height at 850 hPa (Z850, in
gpm); (j–l) same as Figures 3a–3c but for probabilities (in %) for the February SAT to be less than −1.5
standard deviation. The reference probabilities in all cases correspond to higher SIC. Thick green contour
lines encompass SAT and Z850 anomalies that are statistically significant at 90% confidence level.
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Figure 4 | Land–atmosphere interactions during mega-heatwaves
revisited. Representation of the main soil moisture–air temperature
interactions in the development of a mega-heatwave. Red and blue arrows
represent positive and negative correlations, respectively.

and observations in Fig. 3b gives us confidence as to the model’s
ability to quantify the heat budget during mega-heatwaves (see also
Supplementary Fig. 4b).

Next, we investigate the sensitivity of themodel to changes in soil
moisture and advection. First, by initializing the experiments using
the mega-heatwave night-time conditions (orange line in Fig. 3a),
we find that the observed afternoon temperatures exceeding 40 �C
(313K) atmid-latitudes can occur only under the cumulative e�ects
of low soil moisture and high heat advection (Fig. 3d). Under these
conditions, convection is intensified and the growth of the ABL is
enhanced, leading to further entrainment of warm air from its top
(which counteracts the increased dilution capacity of the ABL as it
grows24,27). Second, by initializing ourmodel using the pre-heatwave
night-time sounding conditions (blue line in Fig. 3a), we find
that afternoon temperatures are ⇠10K lower (Fig. 3e). This shows
that the storage of heat in the persistent nocturnal residual layer
is key to explaining the escalation of temperatures during mega-
heatwaves: without the multi-day accumulation of atmospheric
heat, temperatures cannot escalate to reach the observed extremes.
For the mega-heatwave experiment, we estimate a similar average
diurnal contribution of heat into the ABL from surface sensible
heat (⇠50%) and advection (⇠40%), and a lower contribution
from entrainment (⇠10%), although these proportions vary greatly
during the diurnal cycle.

Consequently, our results indicate that the record high
temperatures of 2003 and 2010 occurred as a result of a combination
of factors: the prevailing persistent synoptic patterns led to warm air
advection and clear skies, the high atmospheric demand intensified
soil desiccation (causing a strong surface sensible heat flux), the
subsequent diurnal convection favoured the entrainment of warm
air, and the formation of deep and warm nocturnal residual layers
allowed the heat to re-enter the mixed layer in the following days.
Soil moisture deficits have both direct and indirect e�ects in all
these processes—e�ects that have not been scrutinized separately
in previous model studies9,18. This suggests the need to revisit the
traditional view of the soil moisture–temperature feedback during

mega-heatwaves, in which only the direct impact of dry soils on the
surface energy balance is explicitly considered15,28.

Reinforced by our findings, a more complete conceptualization
of the development of mega-heatwaves is provided in Fig. 4, with
drying soils enhancing diurnal warm air entrainment and leading to
the formation of persistent residual layers that favour the progressive
build-up of atmospheric heat. This conceptualization provides a
plausible answer as towhy temperatures become increasingly higher
as events evolve, and why they reach values that are so far outside
the expected range of variability1,7. Our results do not suggest that a
seasonal history of rainfall deficits is a necessary requirement (given
the high atmospheric demand and fast soil dry-out in the early
phases of the events), nor that soil desiccation plays an important
role in the event duration, which seems ultimately determined by
the synoptic conditions (see di�erence in length between the 2003
and 2010 events despite analogous land–atmospheric interactions).
On the other hand, our results do indicate that the escalation
of temperatures in mega-heatwaves can only be explained by
considering the combined multi-day memory of land surface and
ABL, and that improving the climate-model representation of land–
atmosphere interactions is crucial to increasing our predictability of
these events.

Methods
The ⇡ diagnostic of soil moisture–temperature coupling10 (Fig. 1b) is the product
of the anomalies in afternoon near-surface air temperature (T 0) and the
anomalies in the e�ect of soil moisture deficits in the energy balance (e0). The
latter is calculated as:

e0 =(Rn ��E)0 �(Rn ��Ep)
0 (1)

where Rn refers to the surface net radiation, �E is latent heat flux and �Ep is the
latent heat flux based on potential evaporation (Ep) instead of actual (E). Primes
indicate the use of normalized anomalies expressed as the number of standard
deviations relative to the multi-year (1980–2011) mean for each day of the year
and a 31-day window moving average. Here, data of T and Rn come from
ERA-Interim19, while �E and �Ep come from GLEAM (refs 20,29) (all at 0.25�

resolution). GLEAM is a satellite data-driven methodology based on a Priestley
and Taylor formula to calculate Ep, which is then converted into E using a
multiplicative evaporative stress factor derived from observations of vegetation
water content, precipitation and surface soil moisture. Here, we use the GLEAM
reference product with no data assimilation of soil moisture29 to keep our
coupling estimates independent of the surface soil moisture observations in
Fig. 2b,f. For more details on GLEAM, and its forcing data and uncertainties, see
Supplementary Information.

Our coupled model of the soil water–atmosphere column is a modelling
system designed to study land–atmosphere interactions. It is based on a bulk
representation of the conservation equations of momentum, heat and moisture in
the atmosphere, and a force–restore model for soil heat and moisture24–26. The
contributions of heat advection and soil moisture are treated as external forcing;
here they are guided by the observed vertical profiles of ✓ and q, and by the
Bowen ratios from GLEAM (Fig. 2d,h). Advection is assumed to occur only
within the ABL and at constant rates during the day. The surface energy balance
to calculate sensible, latent and ground heat fluxes uses net radiation as its input.
This net radiation is the budget between: incoming shortwave (based on solar
angle and transmissivity), outgoing shortwave (based on surface albedo),
outgoing longwave (related to land surface temperature), and incoming longwave
(based on atmospheric temperature). Both longwave components are solved using
the Stefan–Boltzmann law. Initial and boundary conditions of our experiments
are listed in Supplementary Tables 2 and 3.
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Figure 2 | Sensitivity of summer hot days to summer weather regimes frequency. a, Frequency distributions of each weather regime of Supplementary
Fig. S1, in summer periods that follow the driest winter/spring seasons (the lowest tercile of F(JFMAM)

RR characterizes the driest seasons), with two cases: the
seven seasons with lowest (blue) number of hot days and the seven seasons with the largest number of hot days (red). b, F(JJA)

T versus summer frequency
of BL + AL, with southern European F(JFMAM)

RR indicated as symbol colour from blue to red. Regression lines for twenty driest (wettest) JFMAM periods in
red (blue) are plotted. Correlation coefficients are indicated for each slope. c, Regression slopes of F(JJA)

T versus the frequency of BL + AL (as in b)
versus number of driest (red) and wettest (blue) JFMAM periods considered for the regression, in %/%. 95% confidence intervals for regression
slopes are indicated on each bar. d, Idealized schematic picture of the combined sensitivity of hot days to summer atmospheric circulation and
soil-moisture conditions.

provides a time series of the predicted median and the 10–90%
interval of F (JJA)

T in continental Europe, using quantiles regressed
on average southern European F (JFMAM)

RR , and calculated in leave-
one-out cross-validation mode. Predictability is enhanced (tight
intervals) for wet winter/spring conditions (we verify a posteriori
that the low F (JJA)

T in 1978, 1979 or 1972was correctly predicted) and
poor in the dry cases. The cool summer of 2011, with a percentage of
hot days below average (⇠7%), followed an intense spring drought
with record values andhad a large range of predicted possible values.
European summer hottest extremes (for example 2003 or 2006)
are off the predicted 10–90% regressed quantiles range, but poor
predictability (large range) was expected. These statistical results
are robust to changes in methods parameters and indicators (see
Supplementary Table S1).

The asymmetry in the effects of soil moisture on hot extremes
has been recently suggested to be related to the nonlinear rela-
tionship of evaporative fraction with soil moisture29,30 in numer-
ical experiments where soil moisture was prescribed. To provide
observational evidence of processes driving predictability asymme-
tries, we investigated here the combined effects of summertime
atmospheric circulations and preceding precipitation. We found
indications of a marked difference in the sensitivity of hot-day
frequency to summertime weather regime frequencies, as obtained
from cluster analysis31, in initially dry versus wet cases. In the
dry case, the difference between hot and cold summers seems
characterized by the distribution of weather regimes: hot summers

have a higher frequency of blocking (BL) and a lower frequency of
Atlantic ridge (AR, see Fig. 2a and Supplementary Fig. S1 for spatial
patterns). Grouping weather regimes into schematically cyclonic
(AR and North Atlantic Oscillation—negative phase, NAO-) and
anticyclonic (BL and Atlantic low, AL) regimes31, we find evidence
of a sensitivity of hot-days frequency to regime occurrence in
the dry case (significant at the 95% level when taking the twenty
driest years), but not in the wet case (Fig. 2b–c). Thus, even
frequent anticyclonic regimes hardly increase temperatures enough
to produce hot days when wet conditions initially prevail, whereas
after a deficit of rainfall, temperature is very sensitive to atmospheric
circulation (see schematic in Fig. 2d). This probably results from the
nonlinearity of the surface energy budget response to soil moisture
and radiation: in sunny anticyclonic conditions, dry soils induce the
development of a positive feedback allowing extreme temperatures,
whereas this feedback gets inhibited by cyclonic conditions (leading
to less input radiation and possibly fast rewetting) and does not take
place over wet soils.

For instance, the relatively cool 2011 European summer was
preceded by an intense spring drought, but several waves of strong
convective activity with heavy rainfall occurred in June, which may
have inhibited the trigger of feedbacks.We found that the difference
in the amount of summer precipitation, averaged over the whole
domain, between the coldest and warmest summers following
dry winter/spring becomes positive in June and peaks in July
(Supplementary Fig. S2). Although this suggests that early summer
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the development of mega heat waves. Source: 
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also analyzed through a subdivision of the investigated
time period into four equally long time intervals. Figure
3c shows that CL1 frequency has apparently increased
over the last 140 years. Only 32.5%of all events between
1872 and 1905 are associated with CL1, whereas in the
most recent time interval (i.e., 1974–2008) that per-
centage is 65.2%. SLP shows the same changes over time
as Z500 (not shown). For the occurrence of CL1 and
CL2 during nontriggering rainy days, the pattern clas-
sification reveals small values for both patterns—18.1%

and 11.8%, respectively—that highlight the strong con-
nection between large-scale atmospheric configurations
and debris-flow events.
For the vertical structure of the atmosphere, all events

(there are no differences among the 1-, 2-, and 3-day
classes) are characterized by high potential instability—
significantly higher when compared with the other days
in the same period (not shown). The destabilization of
the atmosphere is likely to be caused by the south-
westerly flow that increases the moisture content of the

FIG. 2. Identified atmospheric patterns (anomalies of geopotential height at 500 hPa; Z500) associated with debris
flows in the southern Swiss Alps: (a) CL1 and (b) CL2.
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lower layer of the troposphere. For the period 1992–
2006, for which hourly precipitation data are available,
the estimated convective time scales (Fig. 4) support
a convective equilibrium for the three classes (1, 2, and
3 days), thereby pointing to the main role of large-scale
circulation. When the convective time scale is equal to
zero (Fig. 4) the event can be considered to be non-
convective and, therefore, included in the equilibrium-
event class (Molini et al. 2011; Zimmer et al. 2011).

Similarities between the convective time scales esti-
mated by using the Twentieth Century Reanalysis and
ERA-Interim (cf. Figs. 4a,b) provide further evidence
to support a relevant role of the large-scale forcing, al-
though CAPE is not observed. It is also worth high-
lighting that the presence of a convective equilibrium
implies a higher predictability relative to nonequilibrium
processes (characterized by weak synoptic forcing; Done
et al. 2006).

5. Discussion and conclusions

The analysis reveals that two clusters are associated
with the occurrence of debris flows in the southern Swiss
Alps, both showing an anomalous southwesterly mois-
ture transport from the North Atlantic Ocean and the
Mediterranean Sea to the south of the Alps, where
orographic effects favor the release of large quantities
of rainfall. Moreover, their occurrence seems to have
changed over time and especially in the last decades.
The incidence of these two large-scale atmospheric
patterns is closely related to the triggering of debris-flow
events. Indeed, their frequency of occurrence during
nontriggering rainy days is low (i.e., 11.8% and 18.1%)
and can be further reduced by taking into consideration
the high potential instability during debris-flow events.
The main role of the large-scale circulation is also
highlighted by the convective equilibrium identified dur-
ing the analysis of convective time scales, although the
results only refer to the period 1992–2006 and CAPE is
based on reanalysis data. These findings can be used to
develop an automatic procedure that is based on the
recognition of the identified large-scale atmospheric
patterns through the nSVC and the potential instability
index and can be integrated into existing (or to be de-
veloped) alert systems (e.g., Badoux et al. 2009).
Cluster CL1 is more important in summer and is

mainly associated with short-duration but high-intensity
rainfalls. CL2 shows a negative closed anomaly which
implies a slow-moving disturbance that favors the re-
lease of large quantities of rainfall over longer time
periods (e.g., 3 days). A similar pattern was also iden-
tified by Massacand et al. (1998) for a torrential disaster
in the wider study area that occurred in September of
1993. The increase in the frequency of CL1 might be
linked to the combined effect of a positive tendency
affecting the ‘‘East Atlantic pattern’’ (e.g., Barnston and
Livezey 1987) and a negative tendency in the North
Atlantic Oscillation series in the same period (1974–
2008) and season. The former prevents the development
of CL2-similar patterns, whereas the latter is favorable
to the occurrence of CL1-similar patterns. Although the
number of debris-flow events does not show statistically

FIG. 3. (a) Frequency of CL1 (gray) and CL2 (black) for 1-, 2-,
and 3-day events. (b) Frequency of CL1 and CL2 for each month
from May to October. (c) Frequency of CL1 and CL2 for the four
time periods.
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significant tendencies over the full time period, the
changes to be confirmed in the frequency of the atmo-
spheric patterns once current and future reanalysis data
become available might imply a higher risk associated
with debris-flow events. Last, our findings imply a cer-
tain degree of predictability of debris-flow events and
can thus be used to improve existing alert systems.
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Figure 2. Mean seasonal temperature bias (K) for all experiments of the EUR-11 ensemble and the period 1989–2008. Upper rows: winter
(DJF), lower rows: summer (JJA). The upper-left panel of each section shows the horizontal pattern of mean seasonal temperature as provided
by the E-OBS reference (K).

structure in most cases. Exceptions are (a) the SMHI model,
which shows a small-scale but strong overestimation in the
northwestern corner of the analysis domain and an underes-
timation over continental Europe in winter, leading to a re-
duced meridional pressure gradient, and (b) the WRF exper-
iments (IPSL-INERIS, UHOH and CRP-GL), which under-
estimate mean sea-level pressure over continental Europe in
both seasons and, in the case of UHOH, also in the north-
western corner in summer. A particular feature of the WRF
experiments is their agreement on a pronounced negative bias
over mountainous terrain in winter (Scandinavian Alps, Eu-
ropean Alps, Carpathians, Balkan Mountains) and the small-
scale structure of the bias pattern, which is not found in the
other models (except for positive summer biases over moun-
tainous regions in CNRM and KNMI). This indicates a con-
tribution of the model-specific method to reduce simulated
surface pressure to mean sea level, and the pronounced bi-
ases in the mentioned regions should not be overinterpreted.
Still, the underestimation of mean sea-level pressure by sev-
eral hectopascal over large parts of continental Europe partic-
ularly in wintertime seems to be a robust feature of the WRF

experiments and is also described by Mooney et al. (2013) in
a sensitivity study of WRF in Europe.

4.2 Temporal and spatial means

The regionally averaged biases in mean seasonal and annual
temperature and precipitation of both the EUR-11 and the
EUR-44 ensemble are summarized in Figs. 5 and 6 (and
Figs. B1, B2). For temperature the analysis reveals a cold
bias of up to �2 �C for most models, most seasons and most
subdomains. Exceptions are the CSC simulations that mostly
show a slight warm bias as well as the tendency of both en-
sembles to overestimate summer temperatures over south-
ern and southeastern Europe (subdomains EA, IP and MD).
While CNRM, KNMI and SMHI are mostly located at the
cold end of the model range, temperatures in CLMCOM and
CSC are in many cases higher than in the rest of the ensem-
ble. No obvious benefit of the higher resolution (EUR-11 vs.
EUR-44) is apparent. The 0.11� experiment of a given model
performs worse or better than the corresponding 0.44� ex-
periment depending on season and subdomain. A systematic
difference between both resolutions can be detected only for

www.geosci-model-dev.net/7/1297/2014/ Geosci. Model Dev., 7, 1297–1333, 2014

Bias in mean seasonal temperature of EUR-11 cordex runs 1989-2008.  
Source: Kotlarski et al. 2014, Geosci. Model Dev., 7  
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Figure 1. Ensemble mean 50 year return levels (mm) estimated for the period 1966–2005 in boreal (a) winter and
(b) summer. Blue colored areas identify grid points where at least 75% of the models pass the goodness-of-fit test (reliable
points). Taylor diagrams for estimated 50 year return levels in winter and summer over (c, d) northern Eurasia and (e, f)
North America. The full symbols denote models with at least 75% of reliable grid points in the region.

(position and shape) of the Intertropical Convergence Zone
[Huang et al., 2004; Dai, 2006; Richter and Xie, 2008; Good
et al., 2009].

[14] For the middle and high latitudes, six out of eight
models show a spatially homogeneous tail behavior with
slightly negative and positive values of the shape parameter
(not shown). This means that the probability of precipita-
tion extremes either has a finite upper bound or decreases
approximately exponentially or slightly slower toward zero.
Nevertheless, a glance at the individual simulations reveals
remarkable intermodel differences as well as areas with
a larger probability of higher extremes. In the Euro-
Mediterranean area, northern Eurasia, and North America,
the simulations show lower intermodel variability and higher
correlation with the observations in boreal winter (Figures 1
and S1). Conversely, for Australia, southern Asia, and the
Middle East, all seasons are characterized by larger inter-
model variability and lower correlation with the observa-
tions (Figures S1 and S2).

[15] For the period 2020–2059, both scenarios reveal
reliable and consistent changes only for scattered areas in
the middle and high latitudes of both hemispheres (Figures 2
and S3). A similar global pattern with regional differences
is estimated for the other seasons (not shown). It is worth
noting that the intensity reduction over the northern tropical

Atlantic is strongly seasonally dependent as it almost dis-
appears in boreal summer and is less pronounced in spring
and autumn.

[16] Toward the end of the 21st century (2060–2099),
a similar pattern but with more pronounced changes com-
pared to the middle of the century is projected under the
RCP8.5 scenario. For the RCP4.5 scenario, for which the
radiative forcing stabilizes in the second half of the 21st
century, changes in extremes are less pronounced. Con-
sistent and reliable increases of precipitation extremes are
obtained for all seasons over the middle and high lati-
tudes of both hemispheres mainly for the RCP8.5 scenario.
In the SH, the spatial pattern of consistent and reliable
areas does not show a marked seasonal dependence. In
the NH within the zone showing consistency and relia-
bility, different areas can be highlighted for each season
(potentially connected with sea ice changes [e.g., Budikova,
2009; Screen et al., 2013]), for instance, northern Eurasia
in boreal winter and the North Pacific and northwestern
Atlantic/Arctic Ocean in boreal summer (Figure 2). Merid-
ional differences are clearer in the zonal means (Figures 3
and S4). They show more pronounced increases over the
high latitudes of both hemispheres in all seasons, with the
exception of the NH in the mid-century boreal summer,
associated with larger intermodel variability. Over the SH,

4889

Taylor diagrams for estimated 50 year return 
levels in winter and summer over (c, d) 
northern Eurasia and (e, f) North America  
. Source: Toreti et al. 2013, GRL 40.
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gauges), and this is well simulated by both the 12- and the
1.5-km RCMs. Like the JJA 1-day extremes, there is
a concentration of larger event frequencies, thresholds,
and scale parameters over orography as one may expect
from orographic precipitation.
Similar to the 1-day JJA estimates, both radar and

UK5 have similar spatial patterns in the threshold and
frequency of events. Again, radar estimates are showing
high shape parameters in the southeast.

b. Return levels as functions of return periods

In Fig. 6, we compare the JJA and DJF return level
estimates from the model and observational data. Since
UK5 are daily, return levels are only shown for 1- and
5-day accumulations. The hourly gauge return levels
are not shown to avoid the usage of ARF. Generally
speaking, return levels are higher in JJA than in DJF for
both the models and observations and across all com-
pared accumulation periods.
For JJA, the 12-km RCM appears to simulate 5–10-yr

return levels better than the 1.5-kmRCM across a range

of accumulation periods (from 3- to 12-h totals); how-
ever, the good estimates there are a consequence of
underestimating shorter returns periods and over-
estimating longer return periods. For 1-h accumulations,
z(2) values are overestimated (underestimated) by the 1.5-
km (12km) RCM. For the 1.5-km RCM, z(2) values are
overestimated for all accumulation periods; this is in
contrast with the 12-km RCM in which z(2) biases de-
crease with increasing accumulation period. Both RCMs
have comparable 20–50-yr return levels—higher than
both gridded observation estimates. For JJA, the 12-km
RCM 1-h to 6-h accumulations return levels exceed the
1.5-km RCM return levels for 40–60-yr and longer return
periods. For 6- and 12-h accumulations, both model-
simulated z(100) values are nearly two times higher than
the radar estimates. In summary, the 1.5-km RCM shows
consistent positive return level biases across all examined
accumulation periods, but the 12-kmRCMbiases depend
on the accumulation period.
A key difference between the 12- and 1.5-km RCM

return levels is in the gradient of z(n). Owing to the

FIG. 4. As in Fig. 2, but for JJA 1-day precipitation accumulations. Both UK5 (middle bottom) and Radarnet (bottom) are shown. The
units for threshold (t) and the scale parameter (s) are millimeters per day.
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Estimated GPD parameters for winter (DJF) precipitation 
extremes. Model w.r.t. observations 
Source: Chan et al. 2014, J Clim 27
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Mediterranean region generated by eight high resolu-
tion (spatial resolution higher than 1.5°) CMIP5-
GCMs (table S2). Model runs were remapped on a
common °1.5 grid by using a conservative remapping
scheme (Chen and Knutson 2008, Jones 1999). His-
torical simulations (1966–2005) and two future time
periods (2020–2059 and 2060–2099) under the high
emission scenario RCP8.5 (Taylor et al 2012) were
analyzed as well as the gridded daily observations of
the E-OBS dataset (Haylock et al 2008). Complemen-
tary to the test, the existence of a simple linear
relationship between the tail scaling factors (i.e, the
conditionalmeans of the excesses of themodels μ̂0

model

and of the observations μ̂0
obs) was investigated by

applying a Spearman-based spatial correlation analysis
in the period 1966–2005. Then, also the ratio of the
estimated models’ scaling factors for the two future
time periodsw.r.t. the historical periodwas computed,
μ μˆ ˆ0

scenario
0
hist, to identify changes in the climate

projections. The inter-model comparison and the
comparison of each model with the gridded observa-
tions in the historical period (1966–2005) reveal
interesting features (figures 1, 2, S1 and S2). In winter,
a simple linear relationship seems to hold between the
scaling factors of all models, but it is much weaker
when simulations and observations are compared
(figure 1). However, as shown in figure 1, better results
are achieved if the southern part of the domain is not
included in the assessment. This effectmight be caused
by some data issues affecting E-OBS in areas where not

so many stations are available. Similar results can be
observed in autumn (figure S1). A further look to the
model-observation comparison (figures 2 and S2)
shows that remarkable spatial differences as well as
similarities among models exist for the rescaled tails.
In winter, tails in the southern part of the domain are
over-simulated by all models, while the rest of the
domain shows under-simulated tails, with some local
exceptions such as in southern Spain and France
(figure 2). The same holds for autumn (figure S2).
Similar findings can be observed by replacing the
Anderson–Darling method with the divergence
method ofNaveau et al (2013) (not shown).

Concerning the projections for the 21st century,
figure 3 highlights that in winter and for both future
periods (2020–2059 and 2060–2099), a slight increase
(w.r.t. the period 1966–2005 and higher at the end of
the current century) characterizes the conditional
mean of the excesses (i.e., the estimated tail scaling fac-
tors), except for the inmmodel. As shown in figure 3,
large spatial variability affects themajority of themod-
els (e.g., HadES). Similar findings can be observed in
autumn (figure S3). The projections for the mid-cen-
tury (figures 4 and S4) do not show a significant signal
in the rescaled tails, expect over north-western Africa
mainly in the CMCC run (and the HadES run in win-
ter) and some local significant changes in the other
models (e.g., IPSL). The divergencemethod of Naveau
et al (2013) provides similar findings (not shown). At
the end of the century (2060–2099), a significant signal

Figure 1. Spearman-based spatial correlationmatrix of the tail scaling factors, estimated for the eight GCMs, μ̂0
model, and the gridded

observations E-OBS, μ̂0
obs, in thewinter period 1966–2005. The colors and the shape of the ellipses are associatedwith the correlation

values. The last column refers to the same analysis without the southern part of the domain (South of 38.25°North).

3

Environ. Res. Lett. 10 (2015) 014012 AToreti and PNaveau

Spearman-based spatial correlation matrix of 
the tail scaling factors. Winter 1966-2005. 
 Source: Toreti and Naveau 2015, ERL 10.
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WELLER ET AL.: NARCCAP PRECIPITATION EXTREMES

Figure 5. Estimates of !(q) for prairie region precipitation plotted against q for six RCMs and NCEP
reanalysis. Bounds of 95% confidence bands (thin dashed lines) added for MM5I (summer) and ECP2
(winter).

no correspondence between the largest summer precipitation
events over the region produced by any of the model prod-
ucts and those seen in observations. Interestingly, estimates
of this parameter tend to be higher in both seasons for the
NCEP reanalysis product than for the RCMs, though the dif-
ferences are not significant. This is in opposition to estimates
for winter Pacific region precipitation shown in Figure 2.
We also add 95% confidence bands for the MM5I (summer)
and ECP2 (winter) models to the plots to illustrate the uncer-
tainty in these estimates. In contrast, estimates of !(q) tend
to be much larger for all models over this region in the win-

ter season. The NARCCAP models and reanalysis exhibit
greater skill in capturing extreme winter precipitation events
in this region than summer extremes. In both seasons, esti-
mates of !(q) tend to be higher for the two nudged models,
CRCM and ECP2. This is particularly noticeable for win-
ter extremes, for which a separation in !(q) is seen between
two groups: a group consisting of the reanalysis and the two
nudged models, and a group composed of the remaining four
NARCCAP models.

[45] One can further see evidence for asymptotic indepen-
dence in summer precipitation by applying transformations
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Figure 6. Comparison of daily prairie region summer precipitation amounts from (top row) NCEP
reanalysis against observations and (bottom row) CRCM output against observations. Plots are (left col-
umn) original scale, (center column) Fréchet scale (with dashed lines drawn to points outside the plot
window), and a (right column) histogram of angular components for largest 127 radial component values
for each comparison. Points used to construct the histograms are plotted in red.

10,485

�(q) = 2� logP(Z2 < zq, Z1 < zq)

logP(Z2 < zq)

Tail dependence of NARCCAP RCMs w.r.t NCEP reanalysis over  Pacific region. 
 Source: Weller et al. 2013, JGR 118.
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Comparison of estimated precipitation seasonality  of reanalyses with Aphrodite 
and Chirps. Source: Ceglar et al. 2016, submitted.
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variability due to the seasonal cycle. For each of the 17
record lengths between 3 and 100 years, a set of 100
records of equal length (extending over p consecutive
years) is sampled from the 200-yr simulation by ran-
domly choosing the first year. Within each record, only
days with at least 0.01mm of precipitation are consid-
ered for the analysis.
The daily precipitation distribution within one record

is tested against the other 99 records of the same length.
The distributional difference between records is assessed
with the two-sample Cramér–von Mises test (2sCvM)
(Anderson 1962;Csorgo andFaraway 1996). Subsequently,
the Walker test (Fisher 1929; Wilks 2006) is performed on
the resulting 99 p values to account for multiple testing at
grid cell level. To determine field significance and to
identify the significant grid cells, we apply the Benjamini–
Hochberg false discovery rate (FDR; Benjamini and
Hochberg 1995) at a 5% rate.
The procedure is iterated from longer to shorter records

until we obtain the shortest record length for which re-
cords do not differ significantly, the MRL. MRL provides
a lower bound below which the full spectrum of internal
variability of the stationary climate is not sampled.
We assess the test suite’s ability to detect differences

between daily precipitation records (see the supplemental
material). We examine the ability of detecting differ-
ences of various strengths by varying the gamma distri-
butions underlying the simulated samples (the more
different, the easier to detect), over short or long records
(the longer, the easier to detect), as well as the influence
of various rates of temporal (themore periods differ, the
easier to detect) or spatial (the more grid cells differ, the

easier to detect) mixing (see Figs. SM2 and SM3 in the
supplemental material). The behavior of the test is also
investigated by usingmixtures of gamma distributions to
mimic possible mixtures of precipitation-related pro-
cesses (not shown).

3. Patterns of internal variability

a. Internal variability

As Fig. 1 illustrates, regardless of the season, a period
of 30 years—a record length typically used to sample
climate—does not suffice to capture the internal vari-
ability, for this particular simulation, over large areas of the
earth. In particular, this is true all year round for tropical
and subtropical ocean grid cells. Conversely, the MRL is
shorter than 30 years over much of the midlatitudes.
During boreal winter [December–February (DJF)],

North Atlantic grid cells require longer records to
characterize the internal variability (Fig. 1), whereas for
boreal summer [June to August (JJA)] precipitation,
such grid cells are also found in the Caribbean and in the
vicinity of the Antarctic (Fig. 1). Both transitional sea-
sons exhibit regions where the MRL exceeds 30 years in
the Pacific.Moreover, during boreal spring [March–May
(MAM)] and boreal autumn [September–November
(SON)] the band of detected internal variability in the
subtropics extends farther to the north and south (Fig. 1,
bottom). Unlike in winter and summer, internal vari-
ability of transitional seasons exceeding a time scale of
30 years can also be detected at land locations, for in-
stance, in northern and southeastern Asia.

FIG. 1. Seasonal maps of locations at which MRL exceeds 30 years for daily precipitation in (top left) DJF
(green), (bottom left) MAM (pink), (top right) JJA (blue), and (bottom right) SON (red). Colored in gray are grid
points with too few wet days to perform the analysis.

3626 JOURNAL OF CL IMATE VOLUME 28

Seasonal maps of points having a minimal length to estimate internal variability 
longer than 30 years. Source: Schindler et al. 2015, J Climate 28
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Figure 2 shows the meridional distribution of the
proportion of grid cells at which the MRL exceeds
a specific record length. Focusing on the 30-yr record
length, the above mentioned patterns are mirrored in
zonal proportions for all four seasons. In general, the
tropics and the polar regions stand out as areas with
a large proportion of grid cells with detected internal
variability (Fig. 2). For all seasons but SON, there is
a heavier contribution in the tropics from grid cells in the
Northern Hemisphere (NH) than Southern Hemisphere
(SH) at all time scales. In SON, however, this is true at
time scales up to 21 years, whereas at longer time scales
SH grid cells contribute more strongly to the proportion
of grid cells with detected internal variability.
Internal variability can induce distributional changes

between records of 100-yr length (Fig. 2). These are
located north of Fennoscandia for both DJF and MAM,
in the equatorial Atlantic for JJA, MAM, and SON, and
during SON in the southern low latitudes (not shown).
Figure 3 shows boxplots summarizing the MRL at

land and sea grid cells. ComparingMRL for land and sea
grid cells separately underlines the alreadydescribed longer
time scales of internal variability for sea grid cells. While
the MRL for the majority of land grid cells is comprised
between 3 and 14years in all seasons, with the highest up-
per whisker at 52 years (MAM), for sea grid cells the upper

quartiles range from 21 (JJA) to 36 years (MAM), with the
uppermost whisker reaching 91 years (MAM).
Focusing on land grid cell precipitation variability,

Fig. 4 shows summarized MRL results for 26 regions.
The abovementioned differences between low, middle,
and high latitudes, as well as between main and transi-
tional seasons, thus turn out to be true for most regional
results but with notable features (Fig. 4). Regions
showing multidecadal internal variability are mainly
located in the tropics and subtropics of North America
and Asia except for Alaska and northern Asia. These
regions show the longest time scales of internal vari-
ability in MAM and SON. The Euro-Mediterranean
region and western Africa display decadal variability for
DJF precipitation and very little for the other seasons.
For dry regions, the overall small number of wet days
influences the regional results: to apply the test suite for,
say, the Sahara, at least 10 years are needed to reach
a minimum number of 10 wet days. In keeping with the
global patterns, at the regional level, midlatitude pre-
cipitation over land varies on shorter time scales than
the tropical or high-latitude precipitation (Fig. 4).

b. Discussion

Our results, based on the analyzed simulation, show
that daily precipitation variability over the oceans

FIG. 2. Zonal plots (x axis: latitude) of the proportion of grid cells (y axis) for which MRL is
longer than the indicated time scale (yr) for all seasons: (top)–(bottom), DJF (green), MAM
(pink), JJA (blue), and SON (red). Time scales of 3, 10, 21, 30, 52, 76, and 100 years are indicated
by color shading. For readability, a subset of the analyzed record lengths is only displayed.

1 MAY 2015 S CH INDLER ET AL . 3627

Zonal plots of % of points having minimum length longer than some fixed 
thresholds. Source: Schindler et al. 2015, J Climate 28
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Figure 1 |Global temperature change and uncertainty. Global temperature change (mean and one standard deviation as shading) relative to 1986–2005
for the SRES scenarios run by CMIP3 and the RCP scenarios run by CMIP5. The number of models is given in brackets. The box plots (mean, one standard
deviation, and minimum to maximum range) are given for 2080–2099 for CMIP5 (colours) and for the MAGICC model calibrated to 19 CMIP3 models
(black), both running the RCP scenarios.
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Figure 2 | Patterns of surface warming. Multi-model mean surface warming for two seasons (December–February, DJF, and June–August, JJA) and two
20-year time periods centred around 2025 and 2090, relative to 1986–2005, for CMIP5 (left) and CMIP3 (right). Stippling marks high robustness,
hatching marks no significant change and white areas mark inconsistent model responses (see Methods and Supplementary Figs S2 and S3).

2 NATURE CLIMATE CHANGE | ADVANCE ONLINE PUBLICATION | www.nature.com/natureclimatechange

LETTERS NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE1716

CMIP3 models, SRES scenarios CMIP5 models, RCP scenarios
Comparison with

emulated CMIP3 RCP

RCP 8.5

RCP 6.0

RCP 4.5

RCP 2.6

4

3

2

1

0G
lo

ba
l s

ur
fa

ce
 w

ar
m

in
g 

(°
C

)

5

–1

1950 2000 2050
Year

1900 2100

4

3

2

1

0G
lo

ba
l s

ur
fa

ce
 w

ar
m

in
g 

(°
C

)

5

–1

1950 2000 2050
Year

1900 2100

Historical (24)
SRES B1 (20)
SRES A1B (24)
SRES A2 (19)

Historical (42)
RCP 2.6 (26)
RCP 4.5 (32)
RCP 6.0 (17)
RCP 8.5 (30)
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Figure 2 | Patterns of surface warming. Multi-model mean surface warming for two seasons (December–February, DJF, and June–August, JJA) and two
20-year time periods centred around 2025 and 2090, relative to 1986–2005, for CMIP5 (left) and CMIP3 (right). Stippling marks high robustness,
hatching marks no significant change and white areas mark inconsistent model responses (see Methods and Supplementary Figs S2 and S3).
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Temperature changes w.r.t. 1986-2005. Source: Knutti and Sedlacek 2013, NCC1716
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Evaluating IX
TORETI ET AL.: CMIP5 PRECIPITATION EXTREMES

Figure 2. Ensemble mean changes of the estimated 50 year return levels (%) with respect to the period 1966–2005,
under the RCP8.5 scenario for winter (a) 2020–2059 and (b) 2060–2099 and summer (c) 2020–2059 and (d) 2060–2099.
Blue dots mark grid points where at least 75% of the models pass the goodness-of-fit test and agree on the sign of the
estimated changes.

a sharp decrease in the estimated positive changes from
the high to the middle latitudes is evident in all seasons
and, with the exception of the austral winter, followed by
a strong increase toward the low latitudes. Over the NH,

the poleward meridional increase of the estimated positive
changes is almost continuous in boreal winter (Figure 3) and
autumn (not shown), while a stepwise poleward increase is
projected for summer (Figure 3) and spring (not shown).

Figure 3. Zonal mean changes of the estimated 50 year return levels (%) with respect to the period 1966–2005 in (a) winter
and (b) summer under the RCP8.5 scenario. Blue and green lines represent the ensemble mean for the periods 2020–2059
and 2060–2099, respectively. Blue and green shaded areas show the intermodel variability for the periods 2020–2059 and
2060–2099, respectively. The ensemble mean and the intermodel variability are plotted only when at least six models out of
eight provide at least 75% of reliable grid points for the zonal mean.
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Changes in 50-y ret. levels of 
extreme precipitation 

Ensemble mean changes under RCP8.5. 2020-2059 and 
2060-2099  w.r.t. 1986-2005 during winter. Source: Toreti et 

al., 2013

Zonal mean changes under RCP8.5. 2020-2059 (green) and 
2060-2099  (blue) w.r.t. 1986-2005 during winter. Source: 

Toreti et al. 2013, GRL 40
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Evaluating X

Estimated PDFs of the (transformed) spatial extension of early cold spells over Europe. Blue lines are associated 
with the historical simulation (1976-2005), green lines with the mid-century (2020-2049) and red lines with the end 

of the century (2070-2099). Left Panel: RCP4.5. Right Panel: RCP8.5.  
Source: Toreti et al., in preparation
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Figure 4 | Spatial distribution of changes in dry spell length and heavy precipitation intensity. a–d, Same as Fig. 3 but for heavy precipitation intensity,
RX5day (a,c) and dry spell length, CDD (b,d). Legend in a applies to all panels. In contrast to Fig. 3 changes at each grid point are expressed as percentages
with respect to the climatological mean 1986–2005.

Europe, the US, China and Australia in less than 30 years, and heavy
precipitation intensity is projected to increase in those regions over
50 years (Supplementary Figs 11 and 12), thus making the results
relevant for decision-makers that are concerned with impacts, cost
and adaptation on a national level.

Methods
Model experiment. The simulations are carried out with the CESM version 1.0.4
including the Community Atmosphere Model version 4 (CAM4) and fully coupled
ocean, sea ice and land surface components30. All simulations are driven with
historical forcing until 2005 and RCP8.5 until 2100. On 1 January 1950, a small
random perturbation of the order of 10�13 is imposed on the atmospheric initial
condition field of the reference run to produce a 21-member initial condition
ensemble (here referred to as CESM-IC) covering the period 1950–2100. All
simulations share the same model version, emission scenario and initial conditions
except for the atmosphere. The set-up is very similar to the one described in
refs 18,22. After the initial perturbation to the atmospheric initial conditions the
model is run freely as a fully coupled Earth system model with no perturbation
imposed on any run at any point during the simulation until the end of the run in
2100. Owing to the same ocean initial state the different realizations have similar
annual mean temperatures in the first year. However, because of the chaotic nature
of the climate system manifesting itself in the internal variability, after a few years
the members are in an entirely different state of variability in the ocean, sea ice and
atmosphere and thus show a completely different evolution even of global mean
temperatures (Supplementary Fig. 2).

Extreme indices. The following standard definition of extreme indices17 adapted
from the Expert Team on Climate Change Detection and Indices for calendar years
are used consistent with recent comprehensive analysis of the CMIP5 experiments12.
All indices are calculated on an annual basis (calendar year):

Intensity of hot extremes (TXx): let TX be the daily maximum temperature,
then TXx is the annual maximum value of TX.

Intensity of cold extremes (TNn): let TN be the daily minimum temperature,
then TNn is the annual minimum value of TN.

Dry spell length or consecutive dry days (CDD): PR
ij

is the daily precipitation
amount in mm on day i in period j. Count the largest number of consecutive days
per time period (here calendar year) where PR

ij

<1mm.
Heavy precipitation intensity or maximum accumulated five-day precipitation

(RX5day): let PR
k

be the precipitation amount in mm for the five-day interval
ending on day k. Then RX5day is the annualmaximum value of PR

k

.

Spatial PDFs. To produce the spatial PDFs in Figs 3 and 4, we calculated changes
of 20-year averages of extreme indices at each land grid point (66� N–66� S)
between the future and reference period (1986–2005). For temperature extremes
(Fig. 3) the local changes are normalized by the standard deviation (in the same
model and member, respectively) across the 20 values for the same index in
the period 1986–2005. For precipitation extremes the changes are expressed as
percentage changes with respect to the local mean of the same model or member
in the period 1986–2005. The grid points falling in each bin of the PDF have been
weighted according their latitude-dependent area. The PDFs are derived from
a rectangular kernel density estimate in statistical package R with only a very
weak smoothing applied to retain the information one would see in a histogram.
For each member and model the PDFs illustrate the land fraction exhibiting a
certain change. The red and blue bands are calculated as 5th to 95th percentile
interval for each bin.

Received 19 July 2013; accepted 16 October 2013; published online
17 November 2013
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• Grid based evaluations 

• complexity of extreme events not really captured 

• Gridded observations not anymore available at the 

current resolution of regional climate models  
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Impacts I

Total damages (103 $) caused by extremes events (floods, drought, extreme temp, storms) 
in Europe. Data from: EM-DAT, The CRED/OFDA International Disaster Database 2016. 
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Impacts I

Total number of people affected by extremes events (floods, drought, extreme temp, storms) 
in Europe. Data from: EM-DAT, The CRED/OFDA International Disaster Database 2016. 



43
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2003-2013, Developing 
C o u n t r i e s . A v e r a g e 
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Adapted from FAO, 2015.
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whereas the true magnitude of damage may not be apparent until harvest. In the database,
data were originally sorted into individual events, with 237 total events for 1993–2007. For
this project, data was summed by year and binned into broader categories: Heat, Cold, Fire,
Excess Moisture, Wind, and Other.

3 Results

The indemnity and disaster data show similar patterns over the 1993–2007 period in terms
of the average relative importance of different types of events (Fig. 1). In both datasets,
excess moisture related to heavy rainfall events has been the most costly type of extreme
event over this period, followed by cold events and then heat events. Damages from wind,
fire, and other events account for a substantially smaller amount of damages.

A breakdown of damages by year indicates that indemnity payments are much less
variable than estimated disaster losses, with the former ranging from roughly $20–$130
million per year and the latter ranging from near zero to over $1 billion, in the case of 1998
(Fig. 2). Since the disaster dataset assigns the cost to the date of the event, while the
indemnity data record the date of payment, there is some mismatch between the years in
which particular events show up. For example, the extreme freeze of late December 1998
shows up mainly in 1999 under the indemnity data, but mainly in 1998 in the disaster loss
estimates. Nonetheless, the relative importance of different events tends to coincide
between the two datasets.

A list of the top 10 events from 1993–2007, according to the NOAA dataset, indicates
that the single most costly event to agriculture in California was the freeze in December
1998, which led to major losses in various crops including oranges, lemons, olives, and

(A) Indemnities

(B) Disasters

Other

Heat

ColdCold

Fire

Excess Moisture

Wind

Failed Irrigation Supply

Other

Heat

Cold

Fire

Excess moisture

Wind

Fig. 1 Relative amount of (a)
indemnity payments and (b)
estimated total losses from
disasters attributable to different
types of extreme events

S358 Climatic Change (2011) 109 (Suppl 1):S355–S363

Est imated tota l losses f rom d isasters 
attributable to different extremes (1993-2007) - 
California agriculture. Source: Lobell et al., 2011

Geophysical Research Letters 10.1002/2014GL062433

Figure 1. (a) Regional mean North American Drought Atlas (NADA) PDSI for Central and Southern California (33◦N to
38◦N and 118◦W to 125◦W; black line) and instrumental June through August NOAA Climate Division 4–7 PDSI (solid
red line) for the observational period 1895 to 2014 [Vose et al., 2014]. The JJA season is chosen to match the NADA
reconstruction target. Uncertainty (1!) calculated as the root-mean-squared error from the residual fit of the NADA to
the instrumental series shown as the shaded gray region. The red line and star indicate the 2014 value. (b) Distribu-
tion of the composite NADA-NOAA JJA PDSI values for the period 800 to 2014. The 2014 value is indicated by the red
line and is labeled. (c) Long-term (800 to 2014) composite NADA-NOAA (black line) and instrumental (solid red line)
PDSI. The horizontal dashed red line and star indicate the 2014 value. Uncertainty on the composite calculated as the
root-mean-squared error from the residual fit of the NADA to the NOAA instrumental series shown as light (2!) and dark
(1!) shaded gray regions.

most of California below 38◦N and south of San Francisco Bay and has experienced the most historically
severe drought conditions (Figure S2). The first reconstruction is the North American Drought Atlas (NADA)
[Cook et al., 2004, 2010], a 2.5◦× 2.5◦ gridded continental-scale reconstruction of the June through August
(JJA) Palmer Drought Severity Index (PDSI) based on an extensive network of nearly 2000 tree ring chronolo-
gies. PDSI integrates precipitation and temperature into an estimate of available soil moisture. For the
western United States in particular the NADA displays strong calibration and verification statistics and
resolves between ∼40 and 60% of the variance in the target PDSI series over California [Cook et al., 2010]. We
extend the NADA tree ring PDSI reconstructions for Central and Southern California through the present by
using the latest NOAA climate division instrumental PDSI [Vose et al., 2014]. We also develop new tree ring
estimates of water year (October through June) precipitation in Central and Southern California through the
2014 growing season using updated and existing blue oak (Quercus douglasii) tree ring chronologies from
four sites. Blue oak tree ring chronologies have one of the strongest moisture signals of all the species used
for dendroclimatology [St. George, 2014], can resolve more that 80% of the local variability in precipitation
[Meko et al., 2011; Stahle et al., 2013], and reflect coherent large-scale rainfall anomalies over hundreds of
kilometers [Meko et al., 2011]. The data from the NADA provides a longer-term, highly replicated and inte-
grative moisture perspective on California drought, while the blue oak data are a unique and up-to-date
proxy source of local, precise, and highly sensitive precipitation information.

2. Methods

From the North American Drought Atlas [Cook et al., 2004, 2010] we extracted all the terrestrial grid points
in the range 33◦N to 38◦N and 118◦W to 125◦W for 800 to 2006 [Cook et al., 2004] and calculated the area
mean June through August (JJA) PDSI value. In order to maintain consistency with the NADA and make valid
seasonal comparisons to the current drought, we averaged California’s NOAA Climate Division 4 though 7
PDSI data [Vose et al., 2014] for June through August and scaled the NADA time series by the mean of the
observations and verified their standard deviations. Even prior to adjustment, these two time series are

GRIFFIN AND ANCHUKAITIS ©2014. American Geophysical Union. All Rights Reserved. 9018

The 2012-2015 California drought. 2014 
PDSI value w.r.t. the historical and 
reconstructed values. Source: Griffin and 
Anchukaitis, 2014. 
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G. Fontana et al.: Early heat waves over Italy and their impacts on durum wheat yields 1635

Figure 5. Left panel: intensity of the early heat waves that occurred in 2003, values in degrees. Right panel: yield anomalies in 2003.

Figure 6. Number of concurrent early heat waves and significant
negative yield anomalies in the period 1995–2013 (expressed in per-
centage with respect to the total number of year with significant
negative yield anomalies).

2011; Teixeira et al., 2013) and ensemble of crop models
(Webber et al., 2015). These studies substantially agree on
the strong effect of extreme temperatures in the reduction of
final yields. However, the magnitude of reduction, the mech-
anism of the effects of extreme temperature on crops and
the identification of temperature thresholds at different crop
growing stages are still under debate (Luo, 2011).
In general, durum wheat is more tolerant to heat stress

when compared with soft wheat, as stomatal conductance
and transpiration are less affected by high temperature (Dias
et al., 2011). Nevertheless, durum wheat frequently experi-
ences heat stress in the regions where it is mainly grown
(southern Europe, western Asia, and northern Africa). In ad-
dition, there is limited literature on the effects of heat stress

on durum wheat yield compared with soft wheat (Li et al.,
2013).
A substantial new approach has been here applied: a spa-

tial characterisation of early heat waves in the crop rele-
vant period (May–June), an investigation of concurrency of
heat waves and significant negative yield anomalies of du-
rum wheat at the province level of Italy. This analysis has
confirmed, as expected, the 2003 event and has identified
other significant events, for instance in 2006, 2007 and 2009.
The development and growth of annual crops were greatly
influenced by heat stress during 2003, as shown by the very
low values of durum wheat yields in Apulia (southern Italy),
Viterbo and Grosseto (central-western Italy) and in Basilicata
(southern Italy). A very low number of provinces with nega-
tive yield anomalies and highest values in the average yields
was found in 1998, 2004 and 2008. In particular, no event
has been identified in 2004 when the second highest average
yield value was registered. The spatial analysis highlights the
high values of concurrent heat waves/annual negative yield
anomalies for the following provinces: Ferrara (northern
Italy); Pesaro–Urbino, Teramo and Chieti (central-eastern
Italy); Rome and Viterbo (central-western Italy); Benevento
(south-western Italy); Foggia, Taranto (south-eastern Italy);
and Cosenza (southern Italy). In Sicily, the concurrent heat
waves/significant negative yield anomalies are lower than
55%, mainly due to timing of early heat waves, more fre-
quent at the end of June. In this period, early heat waves
could not affect the final yields in Sicily since they occurred
after the durum wheat maturity and in some years after the
harvest. Furthermore, the analysis of the cumulated climatic
water balance in the Sicilian provinces has shown that the
significant negative yield anomalies, recorded in 2002 and
2001, are associated with prolonged water stress.
This study has also highlighted a change after 2003 in

the annual yield time series of durum wheat. The significant
2003 event seems to have marked a turning point, probably
in the choice of the variety that, together with other unknown

www.nat-hazards-earth-syst-sci.net/15/1631/2015/ Nat. Hazards Earth Syst. Sci., 15, 1631–1637, 2015

Number of concurrent early heat waves and significant negative yield anomalies 
of durum wheat in the period 1995–2013 (% w.r.t. the total number of year with 
significant negative yield anomalies). Source: Fontana et al. 2015, NHESS 15   
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47

Impacts III

Int. J. Environ. Res. Public Health 2015, 12 1285 
 

 

(1-specificity) is the proportion of regions for which the mortality rate was predicted to exceed the 
emergency threshold, but did not. 

For any event, a graph can be constructed (known as a relative operating characteristic (ROC) curve) 
that indicates the hit rates and false alarm rates that would result from using different probability decision 
thresholds [53]. The ROC score (equivalent to the area under the modelled ROC curve), is a widely used 
measure of skill. The ROC score characterises the quality of a forecast system by describing the system’s 
ability to anticipate correctly the occurrence or non-occurrence of pre-defined events. A ROC score 
value of 50% indicates zero skill while a value of 100% represents perfect skill. 

3. Results and Discussion 

3.1. Temperature and Mortality Curves 

Figure 1 shows the mean and 95% credible intervals (Bayesian equivalent of confidence intervals) 
obtained from the probabilistic simulations of the Bayesian probabilistic model, for each of the 54 regions. 
The region-specific comfort temperature, i.e., the temperature at minimum mortality, is indicated by a 
purple dot. This comfort temperature occurs twice a year around June and September, defining a summer 
season of warm tail temperatures with non-linear mortality sensitivity and a long 3-season period 
(autumn, winter and spring) of cold tail temperatures with near-linear mortality increases with decreasing 
temperature [3].  

 

Figure 1. Posterior predictive distributions (mean and 95% credible intervals) for cold tail 
(blue) and warm tail (pink) estimations for all 54 regions across Europe. The comfort 
temperature threshold for each region is marked with a purple dot. The mean mortality 
curves for two contrasting regions (South Portugal and Denmark) are magnified. 

To demonstrate the difference in comfort temperature and the rate at which mortality increases due 
to heat or cold, the mortality curves for two contrasting regions, namely South Portugal and Denmark, 
are highlighted. The comfort temperature is higher in South Portugal than in Denmark. Portugal is more 

Estimated mortality and comfort zone in 54 European regions, 1998-2003. 
Source: Lowe, 2015
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Impacts

• Interaction of different extremes as well as 

occurrence of favourable/triggering conditions 

• non-climatic factors 

• many variables are needed 

• Bias in model outputs
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Open issues, new challenges,…

• Modelling multivariate extremes having different 

spatio-temporal scales 

• Understanding of past and current changes in 

extremes still limited 

• Process/event oriented evaluation of models 

• lack of high resolution gridded observations 

• Gap between impact community and climate 

community



50

Thank you!

The views here expressed are purely those of the author and may not in any circumstances be regarded as stating 
an official position of the European Commission. 
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Stay in touch
JRC Science Hub:  
ec.europa.eu/jrc 

Twitter: 
@EU_ScienceHub 

Facebook:  
EU Science Hub – Joint Research Centre 

LinkedIn:  
Joint Research Centre (JRC) - European 
Commission's Science Service

YouTube:  
JRC Audiovisuals 

Vimeo:  
Science@EC


