The European Commission's science and knowledge service Joint Research Centre

Jan .

6

Climate extremes from statistics to society

10

Ŵ

Andrea Toreti

Characterising

Different approaches, different data sets, different problems

EVT, index-based, others, ...

observations from weather stations, satellite-ground observations, reanalysis, ...

Spatio-temporal scales

stationary univariate POT approach

Estimated 5-y ret levels of daily precipitation in winter. Data from the last 5 decades. Source: Toreti, 2010

time-dependent location, univariate GEV approach

Estimated 5-y ret levels of daily maximum temperature in summer. Data from the last 5 decades. Source: Toreti, 2010

(partially) non-stationary approach

Estimated 50-y ret levels of daily precipitation in autumn. Data from 2001-2010. Source: Naveau et al. 2014, WRR 50

EVT - GP family

$$\overline{G}_{\sigma,\xi}(y) = 1 - G_{\sigma,\xi}(y) = \begin{cases} \left(1 + \xi \frac{y}{\sigma}\right)^{-1/\xi} & \text{if } \xi \neq 0, \\ \exp\left(-\frac{y}{\sigma}\right) & \text{if } \xi = 0. \end{cases}$$

 $\sigma(\mathbf{X})$ and assuming ξ constant

Probability weighted moments

 $\mu_r(\boldsymbol{X}) = \mathbb{E}[Y(\boldsymbol{X})\overline{G}_{\sigma(\boldsymbol{X}),\xi}^r(Y(\boldsymbol{X}))] \qquad \text{where } Y(\boldsymbol{X}) \text{ follows } GP(\sigma(\boldsymbol{X}),\xi)$

$$\mu_r(\mathbf{X}) = \sigma(\mathbf{X}) \frac{1}{(1+r)(1+r-\xi)}$$

 $\mu_r(\boldsymbol{X}) = \sigma(\boldsymbol{X}) \mathbb{E}[Z\overline{G}_{1,\xi}^r(Z)] \quad Z \sim GP(1,\xi)$

by using $\mu_0(\mathbf{X})$, $\mu_r(\mathbf{X})$ and $\mu_s(\mathbf{X})$

$$\xi = \frac{(1+s)^2 - (1+r)^2 \alpha_{rs}}{(1+s) - (1+r)\alpha_{rs}} \text{ and } \sigma(\mathbf{X}) = \mu_0(\mathbf{X})(1-\xi)$$

$$\alpha_{rs} = \frac{\mathbb{E}[Z\overline{G}_{1,\xi}^{r}(Z)]}{\mathbb{E}[Z\overline{G}_{1,\xi}^{s}(Z)]}$$

 ξ becomes function of only $\alpha_{r,s}$

Let $\hat{\mu}_0(\mathbf{X})$ and $\hat{\alpha}_{rs}$ be the estimators of $\mu_0(\mathbf{X})$ and α_{rs}

by selecting r = 1 and s = 2

$$\widehat{\xi} = \frac{9 - 4\hat{\alpha}}{3 - 2\hat{\alpha}}$$
 and $\widehat{\sigma}(\mathbf{X}) = \widehat{\mu}_0(\mathbf{X})(1 - \widehat{\xi})$

$$\widehat{\mu}_0(\boldsymbol{X}) = \frac{1}{\sum_i K(\boldsymbol{X} - \boldsymbol{X}_i)} \sum_{i=1}^n Y(\boldsymbol{X}_i) \ K(\boldsymbol{X} - \boldsymbol{X}_i)$$

where K is a Kernel

To estimate α_{rs}

 $Z_i' = Y(\boldsymbol{X}_i) / \hat{\mu}_0(\boldsymbol{X}_i)$

use your favourite method (e.g. U-statistic approach) to estimate $\mathbb{E}[Z'\overline{G'}_{1,\xi}^r(Z')]$ for r = 1, 2

an attempt to model and understand the temporal evolution of precipitation extremes

Characterising V

$$Y(\mathbf{s}) \sim GEV(\mu(\mathbf{s}), \sigma(\mathbf{s}), \xi(\mathbf{s}))$$

$$Y(\mathbf{s}) = \mu(\mathbf{s}) + \frac{\sigma(\mathbf{s})}{\xi(\mathbf{s})} [X(\mathbf{s})^{\xi(\mathbf{s})} - 1]$$

$$X(\mathbf{s}) = U(\mathbf{s})\theta(\mathbf{s}) \text{ with } U(\mathbf{s}) \sim GEV(1, \alpha, \alpha)$$

$$\theta(\mathbf{s}) = \left[\sum_{l=1}^{L} A_{l}w_{l}(\mathbf{s})^{1/\alpha}\right]^{\alpha} \text{ with } A_{l} \sim PS(\alpha)$$
(c) GEV shape, posterior mean

 $Y(\mathbf{s}_i)|A_1,\ldots,A_2,\ldots,A_L \sim_{indep} GEV[\mu^{\star}(\mathbf{s}_i),\sigma^{\star}(\mathbf{s}_i),\xi^{\star}(\mathbf{s}_i)]$

Hierarchical spatial model for precipitation extremes Source: Reich and Shalby 2012. Ann. Appl. Stat. 6

-2-

Index-based approach

2081-2100 Changes w.r.t. 1981-2000. Source: Sillmann et al. 2013, JGR 118

Characterising

- Erroneous data
- Inhomogeneities
- Missing data
- inhomogeneous spatial coverage
- Complexity of the events is often not captured
- Computational and statistical issues when dealing with large data sets
- Constraints and assumptions for large regions

Predicting I

Synoptic patterns associated with extreme preci

Z500 anomalies associated with precipitation extremes. Source: Toreti et al., 2010. NHESS 10

2% larger than 98%

smaller than 2% larger than 98%

PV anomalies and wind at 850 hPa DJF associated with preci extremes in Western Turkey. Source: Toreti et al. 2016, Climate Dynamics in press

Predicting I

Source: Turato et al., 2004. J Hydromet 5

Number of top 10 annual maxima preci events associated with atm rivers. Source: Lavers and Villarini 2013, GRL 40.

Predicting II

Cold Spell winter 2009-10

(a)

(m)

50

Predicting II

a) Jan 2006 SAT anom.

Nonlinear response to decrease in the Barents-Kara sea ice concentration. Source: Petoukhov and Semenov 2010, JGR 115

Predicting III

Soil moisture - air temperature interaction in the development of mega heat waves. Source: Miralles et al. 2014, Nature Geoscience 7.

Sensitivity of hot days to summer atm circulation and soil moisture conditions. Source: Quesada et al. 2012, NCC 2.

Predicting IV

Z500 anomalies associated with Debris Flows in the souther Swiss Alps and convective time scales. Source: Toreti et al. 2013, JAMC 52

- Interactions of different phenomena acting at different spatio-temporal scales
- coarse resolution of available reanalyses
- nonlinear processes

Evaluating I

Bias in mean seasonal temperature of EUR-11 cordex runs 1989-2008. Source: Kotlarski et al. 2014, Geosci. Model Dev., 7

Evaluating II

Taylor diagrams for estimated 50 year return levels in winter and summer over (c, d) northern Eurasia and (e, f) North America . Source: Toreti et al. 2013, GRL 40.

European Commission

27

Evaluating III

Estimated GPD parameters for winter (DJF) precipitation extremes. Model w.r.t. observations Source: Chan et al. 2014, J Clim 27

Evaluating IV

non-parametric approach

$$A = \frac{mn}{N} \int_{-\infty}^{\infty} \frac{(\bar{G}_m - \bar{F}_n)^2}{(\bar{H}_N)} dH_N$$
$$\bar{H}_N = \frac{n\bar{F}_n + m\bar{G}_m}{N}; \quad N = n + m$$

$$T = (A - \mathbb{E}(A))\sigma_A^{-1}$$

$$I(f_e; g_e) = \mathbb{E}_{f_e} \left\{ log \left(\frac{f_e(X_e/\mu_0^{X_e})}{g_e(X_e/\mu_0^{X_e})} \right) \right\}$$

Evaluating IV

Evaluating IV

0 5

10 15

10

15

-15 -10 -5

-15 -10 -5

0 5 10

-15 -10 -5

0 5

-15 -10 -5 0 5 10 15

Rescaled-tail comparison of model simulations and E-OBS. Winter 1966-2005 Source: Toreti and Naveau 2015, ERL 10.

15

Evaluating V

Tail dependence of NARCCAP RCMs w.r.t NCEP reanalysis over Pacific region. Source: Weller et al. 2013, JGR 118.

Evaluating VI

12 $D(x) = \sum p_m(x) \log_2 (12 p_m(x))$

AgMerra

-0.6-0.5-0.4-0.3-0.2-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-0.7-0.6-0.5-0.4-0.3-0.2-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Era-ILand

-0.7-0.6-0.5-0.4-0.3-0.2-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

JRA

-0.7-0.6-0.5-0.4-0.3-0.2-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Comparison of estimated precipitation seasonality of reanalyses with Aphrodite and Chirps. Source: Ceglar et al. 2016, submitted.

Evaluating VII

Seasonal maps of points having a minimal length to estimate internal variability longer than 30 years. Source: Schindler et al. 2015, J Climate 28

Evaluating VII

Zonal plots of % of points having minimum length longer than some fixed thresholds. Source: Schindler et al. 2015, J Climate 28

Evaluating VIII

Surface temperature change (°C)

Temperature changes w.r.t. 1986-2005. Source: Knutti and Sedlacek 2013, NCC1716

Evaluating IX

-30

Ensemble mean changes under RCP8.5. 2020-2059 and 2060-2099 w.r.t. 1986-2005 during winter. Source: Toreti et al., 2013

Changes in 50-y ret. levels of extreme precipitation

Zonal mean changes under RCP8.5. 2020-2059 (green) and 2060-2099 (blue) w.r.t. 1986-2005 during winter. Source: Toreti et al. 2013, GRL 40

Evaluating X

Estimated PDFs of the (transformed) spatial extension of early cold spells over Europe. Blue lines are associated with the historical simulation (1976-2005), green lines with the mid-century (2020-2049) and red lines with the end of the century (2070-2099). Left Panel: RCP4.5. Right Panel: RCP8.5. Source: Toreti et al., in preparation

Evaluating XI

Evaluating

- Grid based evaluations
- complexity of extreme events not really captured
- Gridded observations not anymore available at the current resolution of regional climate models

Total damages (10³ \$) caused by extremes events (floods, drought, extreme temp, storms) in Europe. Data from: EM-DAT, The CRED/OFDA International Disaster Database 2016.

Total number of people affected by extremes events (floods, drought, extreme temp, storms) in Europe. Data from: EM-DAT, The CRED/OFDA International Disaster Database 2016.

Impacts II

2003-2013, Developing Countries. Average percentage share of damage and loss to crops by type of hazard. Adapted from FAO, 2015.

Impacts II

Estimated total losses from disasters attributable to different extremes (1993-2007) - California agriculture. Source: Lobell et al., 2011

The 2012-2015 California drought. 2014 PDSI value w.r.t. the historical and reconstructed values. Source: Griffin and Anchukaitis, 2014.

>65% - <=85%

Number of concurrent early heat waves and significant negative yield anomalies of durum wheat in the period 1995–2013 (% w.r.t. the total number of year with significant negative yield anomalies). Source: Fontana et al. 2015, NHESS 15

cascade of events

Adapted from von Braun and Tadesse, 2012

Impacts III

Temperature (deg C)

Estimated mortality and comfort zone in 54 European regions, 1998-2003. Source: Lowe, 2015

- Interaction of different extremes as well as occurrence of favourable/triggering conditions
- non-climatic factors
- many variables are needed
- Bias in model outputs

Open issues, new challenges,...

- Modelling multivariate extremes having different spatio-temporal scales
- Understanding of past and current changes in extremes still limited
- Process/event oriented evaluation of models
- lack of high resolution gridded observations
- Gap between impact community and climate community

Thank you!

The views here expressed are purely those of the author and may not in any circumstances be regarded as stating an official position of the European Commission.

Stay in touch

JRC Science Hub: ec.europa.eu/jrc

Twitter: @EU_ScienceHub

Facebook: **EU Science Hub – Joint Research Centre**

LinkedIn: Joint Research Centre (JRC) - European Commission's Science Service

