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Generalized Thom spectra

Let R be an E,, ring spectrum.
Then R*(X) is a multiplicative cohomology theory.
The space of units GL1(R) represents the units in the ring RO(X):

RO(X)" = [X, GL1(R)]

Ando-Blumberg-Gepner-Hopkins-Rezk define an R-module Thom
spectrum functor

M: Top/BGL1i(R) — R—modules
in the Elmendorf-Kriz-Mandell-May category of spectra.

For R =S, the sphere spectrum, this gives the classical theory of
Thom spectra over BF ~ BGL4(S).



We shall discuss how to implement a symmetric monoidal version
of such a Thom spectrum functor in the setting of symmetric
spectra. (A similar construction applies for orthogonal spectra).

The first step is to replace the category Top/BGL1(R) by a
(Quillen) equivalent symmetric monoidal category.

This requires that we find a strictly commutative model of
BGLi(R).



Background on Z-spaces and symmetric spectra

Let Z be the category with objects the finite sets n = {1, ..., n}
and morphisms the injective maps.

The ordered concatenation of ordered sets m LIn makes Z a
symmetric monoidal category.
Definition
The category of Z-spaces Top” is the category of functors
X:Z— Top.
The U-product on Z induces a symmetric monoidal “convolution
product” X on Top’:

XX Y(n)= colim X(n1)x Y(n2).

nilino—n

We use the term Z-space monoid for a monoid in Top”.



A map of Z-spaces X — Y is said to be an Z-equivalence if the
map of homotopy colimits Xz — Yz is a weak equivalence.

Theorem (Sagave-S.)

There is a symmetric monoidal Quillen equivalence
colim: Top? = Top : const
and an induced Quillen equivalence

{commutative Z-space monoids} ~ {E., spaces}

The derived equivalence takes an Z-space X to the homotopy
colimit Xjz.

If M is a commutative Z-space monoid, then M7 is an E,, space
(with an action of the Barratt-Eccles operad).



Let Sp™ be the category of symmetric spectra with the symmetric
monoidal structure given by the smash product A.

There is a symmetric monoidal Quillen adjunction
sT: Top? = Sp* : O
where ST[X], = S" A X(n)1 and QZ(E)(n) = Q"(E,).

If R is a (semistable) commutative symmetric ring spectrum, then
QZ(R) is a strictly commutative model of the E,, space Q°(R).

Definition

The Z-space units GL¥(R) of R is the sub commutative Z-space
monoid of QZ(R) such that GLZ(R)(n) is the union of the path
components in Q"(R,) that represent units in the commutative
ring mo(R) = colim, m,(R,)-



Remark
There is a map of commutative symmetric ring spectra

STIGLE(R)] = R

analogous to the algebraic situation where a commutative ring
receives a homomorphism from the integral group ring of its units.

Notation
We write G for GLZ(R) (or for a cofibrant replacement)

The classifying space BG can be defined by a bar construction in
Top?: BG = B®(x, G, ). This is a commutative Z-space monoid.
Definition

The universal G-fibration EG —— BG is defined by a

factorization B¥(*, G, G) —~— EG —» BG in the category of
commutative Z-space monoids.



Let Top%; be the category of G-modules in Top”.

Proposition
There are symmetric monoidal Quillen equivalences

Top? /| BG ——; Top%/EG —— Top~
U

where U(X < BG) is given by the pullback

U(a) — EG

P

—= - BG.

This justifies the term “classifying space” for BG.



The R-module Thom spectrum functor on Top®/BG

Let R be a (flat) commutative symmetric ring spectrum, and let
Spﬁ be the category of R-modules in Sp*.

Definition
The R-module Thom spectrum functor TZ is given by
_ gz
TT: Top” /BG % TopL/EG s Sphuiy/STIEG) 221D, 6ok mGLE(R)
where

» the two-sidet bar construction B(ST[U(a)],S%[G], R) is a
homotopy invariant version of SZ[U(a)] Aszig) R,

» MGL¥(R) = B(S*[EG],S*[G], R).



The symmetric monoidal product on Top? /BG takes a pair of
objects a: X — BG and 3: Y — BG to

aXfg: XXY - BGKX BG — BG
where the last map is the multiplication in BG.

Theorem
The Thom spectrum functor T is lax symmetric monoidal and
the derived monoidal structure maps

THa) " Ag TH(B) ™ = TH(e) AR TH(B) = TH(a R B)

are stable equivalences.



Generalized Thom spectra from space level data

The homotopy colimit BGpz is an E,, model of the classifying
space BGL1(R) and there is a lax monoidal Quillen equivalence

“I-spacification” : Top/BGur — Top?/BG

(not symmetric monoidal).

Definition
The Thom spectrum functor T on Top/BGpz is the composition

: = 7 ' o % z
T: Top/BGyr — Top”/BG — Spr/MGL7(R).



Theorem

» The Thom spectrum functor T is lax monoidal and takes weak
homotopy equivalences over BGyz to stable equivalences.

» IfC is an operad augmented over the Barratt-Eccles operad,
then there is an induced homotopy functor

T: Top[C]/BGhz — Spk[C]/MGLE(R)

between the corresponding categories of C-algebras.



Thom spectra associated to SU(n)

We consider R-algebra Thom spectra T(SU(n)) associated to loop maps
SU(n) — BGpz and we analyze the filtration by T(SU(m)) for m < n.

Proposition

For m < n there are homotopy pushout squares

T(XCPm—1)of Ag T(SU(m)) — T(SU(m))

l |

T(ZCP™)°f Agr T(SU(m)) — T(SU(m + 1)).
Proof.
There are embeddings “CP™~! — SU(m) such that the outer diagrams

YCP™ 1 x SU(m) — SU(m) x SU(m) ——— SU(m)

l l l

TCP™ x SU(m) — SU(m +1) x SU(m) — SU(m + 1)

are pushout diagrams. Now apply the Thom spectrum functor T O



We must analyze the R-modules T(XCP™).

Lemma

Let ¥ X — BG be a map of based T-spaces with adjoint

a: X = Q(BG) ~ GL1(R). Then there is a homotopy pushout
square

STIX]AR—P2 R

|

R— TZ(EX).

This gives a homotopy cofiber sequence
R A Xpr — R — TEH(XX).

Applies in particular to XCP! = SU(2) — BGyz.



Now suppose that 7.(R) is concentrated in even degrees.
Then R*(CP™) = m.(R)[x]/x™*1, for x € R2(CP™).
The composition YXCP"~! — SU(n) — BGyz has adjoint

u: CP" 1 — Q(BGpz) ~ G-
Let u; € moi(R) for i=1,...,n—1 be such that
[u] = 14 u1x + upx® 4+ -+ u,_1x" 1 € RO(CP1)*
The splitting R A CP"~! ~ \/"_' T%R gives homotopy cofiber sequences
*MR — T(XCP™ ') — T(XCP™)

Applying (=) Ag T(SU(m))<*t, the previous results imply:

Proposition
There are homotopy cofiber sequences

Y2 T (SU(m)) 2= T(SU(m)) — T(SU(m + 1)).



Regular quotients as Thom spectra

Suppose again that m,(R) is concentrated in even degrees.
Given elements u; € mp;(R) for i=1,...,n—1, let
_ 2 n—1 0 n—1\x
u=1+ x4+ x4+ -+ up_1x € RP(CP™H)

be represented by a map u: CP"! — Gur ~ Q(BGz).

Theorem
The adjoint YXCP"~! — BGpz can be extended to a loop map
SU(n) — BGpz, and if uy, ..., up—1 is a regular sequence in m.(R),

then the R-algebra T(SU(n)) is a regular quotient of R:

T(SU(n) ~ R/(u1,...,up-1)



Remark
The theorem shows that for every choice of elements u; € m;(R)
fori=1,...,n—1, there exists a sequence of R-algebras

R=T(1)—»T(2)—---—T(n—=1)— T(n)
such that there are cofibration sequences

Y2 T(m) 2% T(m) — T(m+1).
(Take T(m) = T(SU(m))).



Topological Hochschild homology

Let R be a commutative symmetric ring spectra, and let A be a
(not necessarily commutative) R-algebra.

The cyclic bar construction B/ (A) is the realization of the
simplicial R-module

[kl AARAA - AR A
k+1

If Ais cofibrant, then BR/(A) is a model of the topological
Hochschild homology THHR(A).

For a general R-algebra A, we define THHR(A) = BY (A~f),
where A%f is a cofibrant replacement of A.



Topological Hochschild homology of Thom spectra

Let M be an Z-space monoid, and let a: M — BG be a map of
Z-space monoids.

Then the Thom spectrum TZ(a) is an R-algebra.

Theorem
There is a stable equivalence of R-modules

B2, g (BG) — BG),

THHR(T%(a)) ~ TH(BY(M) ——
where BY(BG) — BG is the iterated multiplication in BG.

Proof.
We have

TI(a)COf AR+ AR TI( )cof T (Mﬁ(kJrl) N BG&(k+1) N BG)

k+1

for each k > 0. ]



Reformulation in terms of loop spaces

Let f: X — BGpz be a loop map, f ~ Q(Bf), for a based map
Bf : BX — B2BGyz. Then T(f) is an R-algebra.

Let L(BX) be the free loop space and

11(BfF): L(BX) 2B [(B2Gyr) ~ B2Gyr x BGrr ~2% BGyy

where 7 is induced by the Hopf map.
Theorem
» If f is a loop map, then
THHR(T(f)) ~ T(L"(Bf)).
» If f is a 2-fold loop map, then
THHR(T(f)) =~ T(f) Ar T(no Bf)et.

» If f is a 3-fold loop map, then
THHR(T(f)) ~ T(f) A BX,.



Example (Work in progress)
Let E, be the 2-periodic Lubin-Tate spectrum,

m(En) = W(Ep)[[v1, - - -, upa])[, v, |ui] =0, Ju| =2
The 2-periodic Morava K-theory spectrum Kj, is given by
KnI n/(p, ul,...,u,,_l), 7T*(Kn) IFPn[U, U_l].

Thus, there exists a loop map f: SU(n+ 1) — BGL1(E,) such
that T(f) ~ K, as an Ep-algebra.



The algebra structure on T(f) ~ K, depends on the map
f: SU(n+ 1) — BGL1(E,). Using this we prove:

Theorem
For each k > 1 such that p > (n+ 1)(k 4+ 1) + 1, there exists an
E,-algebra structure on K, for which

THHE (K @W* /(pyut, ..y up-1)

Here m.(En)/(p, u1, ..., un—1)> denotes the 7, (E,)-module

colim . (E,)/(p', e, ... il Y).

ia.jlr";jﬂ—l

This complements work of Vigleik Angeltveit.
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Graded Thom spectra

For R =S, composing with the maps BO — BF = GLy(S), we
get the classical Thom spectra for stable vector bundles X — BO.

One may also consider graded Thom spectra associated to virtual
vector bundles X — BO x Z.

For instance, we have the periodic cobordism spectra
MOP ~\/,., ¥"MO, MUP ~\/,_, £*"MU
and the connective versions
MOP>o ~\/ 50 £"MO, MUP>o >~/ -, Y2"MU

In the periodic cases, it is natural to consider a logarithmic version
of topological Hochschild homology.



Pre-log ring spectra

In algebraic geometry, a pre-log ring (A, M) is given by
> a commutative ring A,
» a commutative monoid M,

» a monoid homomorphism M — (A, -).

The localization A — A[M~1] admits a factorisation
(A {1}) = (A M) — (A[M~1], M#P)

in the category of pre-log rings.
This was used by Hesselholt-Madsen in their work on algebraic

K-theory of local fields.

In joint work with Rognes-Sagave, we have introduced a analogous
notion of a pre-log ring spectrum (A, M) for a commutative
symmetric ring spectrum A.



Logarithmic topological Hochschild homology

There is a logarithmic version of topological Hochschild homology
THH(A, M) that is sometimes better behaved than THH(A[M~1]).

In particular, certain types of pre-log ring spectra (A, M) gives rise
to THH-localization sequences.
Theorem (Rognes-Sagave-S)

Let E be a d-periodic commutative symmetric ring spectrum with
connective cover j: e — E. Then there is a homotopy cofiber
sequence

THH(e[0, d)) — THH(e) — THH(e, s GLY (E))

where (e, j*GLlj (E)) is the pre-log ring spectrum obtained by
pulling back the graded units GLY (E) of E.

In some cases, such as e = ku, the algebra structure of
THH(e, jxGL{ (E)) is more regular than that of THH(e).



Logarithmic topological Hochschild homology of MUP-

There is a canonical pre-log ring spectrum (MUP>q, V) such that
MUP=o[V~1] =~ MUP.

Theorem
There is a homotopy cofiber sequence

THH(MU) — THH(I\/IUPZO) — THH(MUPZO, V)
where
» THH(MU) ~ MU A SU4

> THH(MUPsq) = MU A SU; V MUPsg A Uy
> THH(MUPsq, V) ~ MUP>o A Uy
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