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Motivation

In spectral graph theory, we are interested in eigenvalues of some
matrix (Laplacian, adjacency, etc).

Since graphs are a union of edges, there is a natural way to think
of these matrices as a sum of smaller matrices.

Typically, we can figure out how the eigenvalues change when
adding a fixed smaller matrix, but many times one might want to
add edges to a graph randomly.

In this talk, I will discuss the idea of adding randomly chosen
matrices to other matrices and then show how the idea can be
used to show existance of Ramanujan graphs in two ways.

Motivation and the Fundamental Lemma 4/51
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Well-known techniques exist for bounding the eigenvalues of
random sums of matrices.

Theorem (Matrix Chernoff, for example)

Let v̂1, . . . , v̂n be independent random vectors with ‖v̂i‖ ≤ 1 and∑
i v̂i v̂

T
i = V̂ . Then

P
[
λmax(V̂ ) ≤ θ

]
≥ 1− d · e−nD(θ‖λmax (EV̂ ))

Similar inequalities by Rudelson (1999), Ahlswede–Winter (2002).

All such inequalities have two things in common:

1 They give results with high probability

2 The bounds depend on the dimension

This will always be true — tight concentration (in this respect)
depends on the dimension (consider n/d copies of basis vectors).
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The goal

I want to find a bound on the eigenvalues that is independent of
dimension.

Furthemore, I want to keep the “probabilistic” nature:

Theorem
If θ̂ is a random variable with finite support, then

P
[
θ̂ ≥ Eθ̂

]
> 0 and P

[
θ̂ ≤ Eθ̂

]
> 0

In other words, I want to study one object (here Eθ̂) and then be
able to assert the existence of something at least as good (in both
directions).
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In fairy-tale land
So given a random frame V̂ =

∑
i v̂i v̂

T
i , I would like to say:

P
[
λmax(V̂ ) ≥ λmax(EV̂ )

]
> 0

and
P
[
λmax(V̂ ) ≤ λmax(EV̂ )

]
> 0

But this isn’t true (pick just v̂ as (0, 1) or (1, 0) uniformly).

So instead, we make an observation:

Observation
The eigenvalues of matrix are the roots of its characteristic
polynomial. That is, if A is a d × d real, symmetric matrix with
eigenvalues λ1, . . . , λd , then

χA(x) := det [xI − A] =
d∏

i=1

(x − λi ).
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REAL fairy-tale land

So now, maybe we can do what we want in terms of polynomials!

That is, given a random frame V̂ =
∑

i v̂i v̂
T
i , maybe we can say:

P
[
maxroot

(
χ
V̂

)
≥ maxroot

(
E
[
χ
V̂

])]
> 0

and
P
[
maxroot

(
χ
V̂

)
≤ maxroot

(
E
[
χ
V̂

])]
> 0

Certainly this is nonsense, but let’s play along with a toy problem:

Let A be a matrix and ŵ a random vector (taking values u or v
uniformly).

What can we say about the eigenvalues of A + ŵ ŵT ?
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Motivation and the Fundamental Lemma 8/51



Two proofs of Ramanujan graphs A. W. Marcus/Princeton

REAL fairy-tale land

So now, maybe we can do what we want in terms of polynomials!

That is, given a random frame V̂ =
∑

i v̂i v̂
T
i , maybe we can say:

P
[
maxroot

(
χ
V̂

)
≥ maxroot

(
E
[
χ
V̂

])]
> 0

and
P
[
maxroot

(
χ
V̂

)
≤ maxroot

(
E
[
χ
V̂

])]
> 0

Certainly this is nonsense, but let’s play along with a toy problem:
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Still playing along
We would (naively) start by looking at the expected polynomial

p(x) =
1

2
χA+uuT (x) +

1

2
χA+vvT (x)

Why is this naive?

Adding polynomials is a function of the coefficients and we are
interested in the roots.
In general, it is easy to get the coefficients from the roots but hard
to get the roots from the coefficients.

Example: p(x) = (x − 2)2 − 1 (has double root at 1) and
q(x) = (x + 2)2 − 1 (has double root at −1).

p(x) + q(x) = x2 + 6

does not have any real roots (roots are ±
√
−6).
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Unless...

Lemma (Separation Lemma)

Let p1, . . . , pk be polynomials and [s, t] an interval such that

Each pi (s) has the same sign (or is 0)

Each pi (t) has the same sign (or is 0)

each pi has exactly one real root in [s, t].

Then
∑

i pi has exactly one real root in [s, t] and it lies between
the roots of some pa and pb.

Proof.
By picture:

s
t

Motivation and the Fundamental Lemma 10/51
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A ray of hope

So if we have the right structure, using characteristic polynomials
could actually work!

Pros:

All eigenvalues are tracked in a compact form

Maybe take advantage of polynomial techniques that “don’t
make sense” to matrices

Cons:

You lose rotation (how can we add without knowing rotation?)

Have to worry about matrix operations that “don’t make
sense” to polynomials

What do I mean by “polynomial techniques”?

Motivation and the Fundamental Lemma 11/51
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Polynomial Techniques
Univariate polynomials inherit techniques from

Convex Analysis

Complex Analysis

Combinatorics

Multivariate polynomials inherit techniques from

(Real) Algebraic Geometry

Matroid theory

Control Theory

Both inherit from recent work in polynomial geometry:

Hyperbolic polynomials

Stable polynomials

Motivation and the Fundamental Lemma 12/51
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What you need to remember

We are interested in the eigenvalues of (random) matrix sums:

V̂ =
∑
i

v̂i v̂
T
i

All known techniques for this require concentration of measure and
(as a result) weaken as the dimension grows.

We will look for new techniques by doing something seemingly
absurd: study their (random) characteristic polynomials.

In the case that we have root separation, we actually have a
chance for this to work.

In exchange for requiring extra structure, we are hoping to get
some new “polynomial techniques” that we can use.

Motivation and the Fundamental Lemma 13/51
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Return on investment

To find separating intervals, we can use results in polynomial
theory.

Let p be a real rooted polynomial of degree d and q a real rooted
polynomial of degree d − 1

p(x) =
d∏

i=1

(x − αi ) and q(x) =
d−1∏
i=1

(x − βi )

with α1 ≤ · · · ≤ αd and β1 ≤ · · · ≤ βd−1.

We say q interlaces p if α1 ≤ β1 ≤ α2 · · · ≤ αd−1 ≤ βd−1 ≤ αd .

Think: The roots of q separate the roots of p.

Example: p′(x) interlaces p(x).

Exploiting Separation: Interlacing Families 15/51
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Common Interlacer

We say that degree d real rooted polynomials p1, . . . , pk have a
common interlacer if there exists a q such that q interlaces every
pi simultaneously.

Think: the roots of q split up R into d intervals, each of which
contains exactly one root of each pi .

Note: if the pi have a common interlacer (say q), then the
intervals defined by the βi can serve as separators for the lemma!

Exploiting Separation: Interlacing Families 16/51
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Back to the toy problem
Recall our goal was to understand the roots of

p(x) =
1

2
χA+uuT (x) +

1

2
χA+vvT (x)

=
1

2
q0(x) +

1

2
q1(x)

We will say that p forms an interlacing star with {qi} if
1 p and {qi} have the same degree and are all real rooted
2 The leading coefficients of the {qi} have the same sign
3 The collection of polynomials {qi} has a common interlacer
4 p is a convex combination of the {qi}

Corollary

If p forms an interlacing star with {qi}, then there exist i , j such
that

kthroot (qi ) ≤ kthroot (p) ≤ kthroot (qj)

Exploiting Separation: Interlacing Families 17/51
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More help from polynomials
Polynomial theory gives us a nice characterization of interlacing:

Lemma (Chudnovsky–Seymour, among others)

Let {pi} be a collection of degree d polynomials. The following are
equivalent:

Every polynomial in the convex hull of {pi} has d real roots.

The collection {pi} has a common interlacer.

Recall (again) our equation

p(x) =
1

2
χA+uuT (x) +

1

2
χA+vvT (x)

If we could show that

p(x) = λχA+vvT (x) + (1− λ)χA+uuT (x)

was real rooted for all λ ∈ [0, 1], then we would get the interlacing
for free.

Exploiting Separation: Interlacing Families 18/51
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Back to reality

But remember we are interested in graphs — that is, sums of
possibly multiple random vectors.

If all of the resulting characteristic polynomials had a common
interlacer, we could study some convex combination and be able
to use the lemma.

p00 p01 p10 p11

p∅

But in general they don’t have a common interlacer...
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Instead...

We can try to group them into smaller stars.

And then try to iterate.

p00 p01 p10 p11

p0 p1

p∅

We will call a rooted, connected tree where each node forms an
interlacing star with its children an interlacing family.
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The punchline

Corollary

Every interlacing family contains leaf nodes pleaf1 and pleaf2 such
that

kthroot (pleaf1) ≤ kthroot (proot) ≤ kthroot (pleaf2) .

To find pleafi :

p00 p01 p10 p11

p0 p1

p∅,

,

,
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Outline

Motivation and the Fundamental Lemma
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Mixed Characteristic Polynomials
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Building an interlacing family
Consider the sum of random vectors

V̂ =
m∑
i=1

v̂i v̂
T
i

where the v̂i have support size at most n.

We will define a choice vector σ ∈ [n]m where σi is the index of a
vector in the support of v̂i . Then the characteristic polynomial of a
fixed frame V in the support V̂ can be denoted

pσ(x) = χV (x).

We then define partial choice vectors σ′ ∈ [n]k for k < m; the
corresponding polynomial will be the conditional expectation:

pσ′ = Ev̂k+1,...,v̂d

[
χ(V̂ )(x) | v̂i = v

σ′i
i for 1 ≤ i ≤ k

]
This forms an n-ary tree with fixed assignments at the leaves and
p∅ = E

[
χ
V̂

(x)
]

at the root.
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Mixed characteristic polynomials

If we choose the vectors independently, the polynomials take a
special form:

Theorem
Let v̂1, . . . v̂m be independent random vectors such that
E
[
v̂i v̂

T
i

]
= Ai . Then

E
[
χ
V̂

(x)
]

=
m∏
i=1

(
1− ∂

∂zi

)
det

[
xI +

m∑
i=1

ziAi

] ∣∣∣∣∣
z1=···=zm=0

In particular, the expected polynomial does not depend on the
vectors or the probabilities — only the expected outer product.

We call this a mixed characteristic polynomial and denote it
µ[A1, . . . ,Am].
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A world of mixed characteristic polynomials
Every polynomial we defined previously is a mixed characteristic
polynomial.

1 Normal characteristic polynomials (for an assignment σ =
v1, . . . , vm with

∑
i viv

T
i = V )

pσ(x) = χV (x) = µ[v1v
T
1 , . . . , vmv

T
m ](x)

2 The expected characteristic polynomial (with E
[
v̂i v̂

T
i

]
= Ai )

E
[
χ
V̂

(x)
]

= µ[A1, . . . ,Am](x)

3 The partial assignment polynomials

pσ′ = Ev̂k+1,...,v̂d

[
χ
V̂

(x) | v̂i = v
σ′i
i for 1 ≤ i ≤ k

]
= µ[v1v

T
1 , . . . , vkv

T
k ,Ak+1, . . . ,Am]
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Real stable polynomials

The advantage of having a multivariate formula is that we can
utilize the theory of real stable polynomials, a multivariate
extension of real rooted polynomials. Let
H = {x ∈ C | =(zi ) > 0}.

An n-variate polynomial p is called stable if it is never 0 in Hn. (i.e.
if p(z1, . . . , zn) = 0, then some zi has nonnegative imaginary part).
If, in addition, all coefficients of p are real, it is called real stable.

Two important properties:

Univariate polynomials are real rooted if and only if they are
real stable.

Real stable polynomials are closed under substitution of reals
(z1, z2, . . . , zn)→ (a, z2, . . . , zn) for a ∈ R.

Similar to hyperbolic polynomials.
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Real stable techniques
Real stability has been well studied in recent years. In particular,

Lemma
Let A1, . . . ,Am be Hermitian positive semidefinite matrices and
x1 . . . xm variables. Then

p(x1, . . . , xm) = det

[
m∑
i=1

xiAi

]

is a real stable polynomial.

Lemma
If p(x1, . . . , xm) is a multiaffine polynomial with real coefficients,
then the following are equivalent:

1 p is real stable

2

∆ij [p](x1, . . . , xm) :=
∂p

∂xi

∂p

∂xj
− ∂2p

∂xi∂xj
p ≥ 0
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Cutting to the chase

Theorem
Mixed characteristic polynomials are real rooted.

Proof.
Follows directly from the formula:

µ[A1, . . . ,Am](x) =
m∏
i=1

(
1− ∂

∂zi

)
det

[
xI +

m∑
i=1

ziAi

] ∣∣∣∣∣
z1=···=zm=0

This provides an easy way to generate interlacing families.

Corollary

Any tree of polynomials resulting from choosing independent
random vectors forms an interlacing family.
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Full Circle

So what have we accomplished?

We now have a “probabilistic” way to deal with roots of
polynomials (under certain conditions).

In the case that we are choosing vectors independently and
wanting to track the eigenvalues, those conditions are satisfied.

Hence we have a “probabilistic” way to deal with eigenvalues.
That is, for any given k , let R be the kth root of the expected
characteristic polynomial (under whatever product distribution you
want). Then there exists

1 an assignment of the random vectors that has λk ≥ R

2 an assignment of the random vectors that has λk ≤ R
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Expanders

Let’s switch gears to talk about expander graphs.

Expander graphs like to see new vertices — in this regard the
“ultimate” d-regular expander is the d-regular infinite tree.

So a “good” d-regular expander should be a “good” approximation
of the d-regular tree.

In spectral graph theory, the definition of “good” is in terms of
eigenvalues, and the spectrum of the d-infinite tree lies inside the
interval [−2

√
d − 1, 2

√
d − 1].

Can we get a finite graph to have all eigenvalues inside this
interval?
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Ramaujan graphs
No — the adjacency matrix of a d-regular graph has either 1 or 2
(so-called) trivial eigenvalues

1 d is always the largest eigenvalue

2 G is bipartite if and only if −d is an eigenvalue

|[ ]

0−d d

?

[ ]

−2
√
d − 1 2

√
d − 1

A d-regular graph with all nontrivial eigenvalues inside
[−2
√
d − 1, 2

√
d − 1] is called a Ramanujan graph and an infinite

collection (all d-regular) a Ramanujan family.

Theorem (Alon, Boppana (1996))

No smaller interval can contain all nontrivial eigenvalues of an
infinite collection of d-regular graphs.
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Previous results

Theorem (Margulis, Lubotzky–Phillips–Sarnak (1988))

Ramanujan families exist for d = p + 1 where p is a prime number.

Extended by Morganstern to d = pk + 1, unknown for all other d .

All known constructions∗ are algebraic — they are Cayley graphs
of highly structured groups.

On the other hand, almost everything is almost Ramanujan:

Theorem (Friedman (2008))

For fixed d, there is a large enough n such that a randomly chosen
d-regular graph on n vertices have a nontrivial spectrum inside the
interval

[−2
√
d − 1− ε, 2

√
d − 1 + ε]

with high probability.

Obvious question: are Ramanujan families really that special?
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Idea 1: Covering space
It is easy to see that small graphs are Ramanujan.

1 Kd has all nontrivial eigenvalues −1
2 Kd ,d has all nontrivial eigenvalues 0

Bilu and Linial (2006) suggested treating the d-regular graphs as
quotients of the d-infinite tree w.r.t. a covering map.

Their idea — construct a sequence of graphs from Kd (or Kd ,d) to
the d-infinite tree using a series of lifts (a common construction in
algebraic topology).
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Lifting

Start with a (Ramanujan) graph.

a

cd

be

f

a1

d1

e1

f1

b1

c1

a2

d2

e2

f2

b2

c2

And make a copy (copies?) of it. And perturb it.

Want to find perturbations that cause new graph to be good.
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2-lifts
Bilu and Linial (2006) studied perturbations they called 2-lifts.

For each possible signing s ∈ {±}|E |, form a graph by doing either

a1

b1

a2

b2

Positive Edge Lift

or

a1

b1

a2

b2

Negative Edge Lift

The action of each 2-lift can be described by its signed adjacency
matrix As :

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0

1 1
1 1

1 1
1 1
1 1

1 1

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0

1 1
1 1

1 1
1 1
1 1

1 1

→

−1

−1
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Main Eigenvalue lemma

Theorem (Bilu–Linial (2006))

Let G be a d-regular Ramanujan graph with n vertices and let s be
a signing of G. If all eigenvalues of As lie in the interval

[−2
√
d − 1, 2

√
d − 1]

then the 2-lift Gs is a d-regular Ramanujan graph with 2n vertices.

Conjecture (Bilu–Linial (2006))

Every d-regular graph contains a signing s for which the
eigenvalues of As lie inside the interval

[−2
√
d − 1, 2

√
d − 1]

We prove the conjecture for every bipartite graph G .
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Bipartite Adjacency Matrices
What is so special about being bipartite?

In this case, the signed adjacency matrix can be written in block
form  0 B

BT 0


causing eigenvalues/vectors to come in pairs

vi = [ui | ui ] and vn−i = [ui | −ui ]

for 1 ≤ i ≤ n/2 and so the eigenvalues satisfy λi = −λn−i .
Corollary

A bipartite signed adjacency matrix As has all of its eigenvalues in
the interval

[−2
√
d − 1, 2

√
d − 1]

if and only if all of its eigenvalues are at most 2
√
d − 1.
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Main idea

For each signing, we consider the characteristic polynomial of the
signed adjacency matrix.

These correspond to picking either

(δi + δj), or

(δi − δj)
independently for each edge (vi , vj).

Corollary

The tree corresponding to these polynomials forms an interlacing
family.

Hence it suffices to bound the largest root of the expected
characteristic polynomial.
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The expected characteristic polynomial

Theorem (Godsil–Gutman (1981))

For any graph G,

Es∈{±}mχAs (x) = µG (x),

the matching polynomial of G .

In the original paper, Heilmann and Lieb also proved the following
bound:

Theorem (Heilmann–Lieb (1972))

Let G be a graph with maximum degree ∆. Then

maxroot (µG ) ≤ 2
√

∆− 1

Ramanujan Graphs 40/51



Two proofs of Ramanujan graphs A. W. Marcus/Princeton

The expected characteristic polynomial

Theorem (Godsil–Gutman (1981))

For any graph G,

Es∈{±}mχAs (x) = µG (x),

the matching polynomial of G .

In the original paper, Heilmann and Lieb also proved the following
bound:

Theorem (Heilmann–Lieb (1972))

Let G be a graph with maximum degree ∆. Then

maxroot (µG ) ≤ 2
√

∆− 1

Ramanujan Graphs 40/51
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Piecing things together

Theorem
There exist bipartite Ramanujan families of degree d for any d.

Proof.
Set G0 = Kd ,d (which is bipartite, d-regular, and Ramanujan for
any d). Given Gi , form Gi+1 as follows:

For each possible signing s ∈ {±1}|Ei |, form the polynomials ps .
By our theorem, this is an interlacing family.

Combining this with Godsil–Gutman and Heilmann–Lieb ensures
some ps∗ such that maxroot(ps∗) ≤ maxroot(p∅) ≤ 2

√
d − 1

Set Gi+1 to be the 2-lift given by s∗ — this is bipartite, d-regular,
and (by Bilu and Linial) Ramanujan — and continue.

Extended to d-lifts by Hall, Puder, and Sawin (2015).
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Two proofs of Ramanujan graphs A. W. Marcus/Princeton

Idea 2: Free group
The 2d-infinite tree is the Cayley graph of the free group on d
elements.

You can “build” a free group on d elements by using the free
product

Fd = F1 ∗ F1 ∗ · · · ∗ F1︸ ︷︷ ︸
d times

Intuitively, you would build a d-regular graph a similar way:

Gd = M1 ∪M2 ∪ · · · ∪Md︸ ︷︷ ︸
d times

where each Mi is a perfect matching.

Can we build a Ramanujan graph this way?
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Fd = F1 ∗ F1 ∗ · · · ∗ F1︸ ︷︷ ︸
d times

Intuitively, you would build a d-regular graph a similar way:

Gd = M1 ∪M2 ∪ · · · ∪Md︸ ︷︷ ︸
d times

where each Mi is a perfect matching.

Can we build a Ramanujan graph this way?
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What’s happening

Perfect matchings on 2n vertices have eigenvalues 1 and −1 (each
n times).

A union of graphs is a sum of matrices... and the eigenvalues of
A + B depend on

1 the eigenvalues of A

2 the eigenvalues of B

3 the dot product of the corresponding eigenvectors

To keep eigenvalues low, you want the eigenvectors to be as
“orthogonal as possible”
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Free probability

As always, we can try to add A and B randomly.

As dimension the matrix gets larger, probability of having aligned
eigenvectors goes down.

In the infinite limit, “orthogonal as possible” happens with
probability one — the corresponding eigenvalue distributions are
known as the free convolution.

The free convolution of d copies of a Bernoulli random variable is
known as the Kesten–McKay law:

dµ(x) =
d

2π

√
4(d − 1)− x2)

d2 − x2
1[λ−,λ+] dx

where λ± = ±2
√
d − 1.
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Finite free probability

Can we do something similar in finite dimensions?

Yes — let A and B be n × n matrices with

det [xI − A] = p(x) and det [xI − B] = q(x).

The finite free convolution of p and q is

[p �n q](x) =

∫
det
[
xI − A− RBRT

]
dµ(R)

where R is a Haar–distributed orthogonal matrix.

The finite free convolution of real rooted polynomials always has
real roots! (Borcea, Brändén)
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Adjacency matrices

Can we do something similar with adjacency matrices?

Theorem (Quadrature for Laplacian matrices)

Let A and B be n × n matrices such that A1 = a1 and B1 = b1
(where 1 is the all-1 vector) such that

det [xI − A] = (x − a)p(x) and det [xI − B] = (x − b)q(x).

Then

EP

[
det
[
xI − A− PBPT

]]
= (x − a− b)[p �n−1 q]

where P is a uniformly distributed permutation matrix.

Since this is also an expected characteristic polynomial, we can use
interlacing families!
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Interlacing Families

Theorem (Quadrature for Laplacian matrices, extended)

Let A and B be n × n matrices with A1 = a1 and B1 = b1 and

det [xI − A] = (x − a)p(x) and det [xI − B] = (x − b)q(x).

Then

EP

[
det
[
xI − A− PBPT

]]
= (x − a− b)[p �n−1 q](x) := r(x)

and there exists a P0 such that the largest root of

EP

[
det
[
xI − A− P0BP

T
0

]]
is smaller than the largest root of r(x).

Proof uses random “swaps” to build an interlacing family.
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Putting everything together

Lastly, we need to compare the free and finite free convolutions:

Theorem
The largest root of the finite free convolution of two eigenvalue
distributions always lies inside the spectrum of the free convolution
of those distributions.

Putting everything together, gives

Theorem
For all d and all even n, there exists a d-regular bipartite
Ramanujan graph on n vertices.

Disclosure: because of the bipartiteness, the actual proof requires a
more complicated convolution, but the proof idea is similar.
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Mixed Characteristic Polynomials

Ramanujan Graphs
Proof 1
Proof 2

Further directions

Further directions 49/51



Two proofs of Ramanujan graphs A. W. Marcus/Princeton

Further research

Typically, this is when I beg the audience to think about trying to
make these polynomial techniques constructive.

Theorem (Cohen, 2015)

The Ramanujan graphs provided by the second proof are
constructible in polynomial time.

Still open:

1. Can the method of interlacing polynomials be extended to
bound the largest root from above and the smallest root from
below simultaneously?

2. Other connections to free probability and/or random matrix
theory?

3. Find more interlacing families!!
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Thanks

Thank you for inviting me to speak today.

And thank you for your attention!
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