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In the paper Gorenstein algebras presented by quadrics,
Migliore and Nagel proposed the following two conjectures.

Conjecture

(Injective Conjecture) For any Artinian Gorenstein algebra
presented by quadrics, defined over a field K of characteristic
zero, and of socle degree at least three, there exists L ∈ A1,
such that, the multiplication map •L : A1 → A2 is injective.

Conjecture

(WLP Conjecture) Any Artinian Gorenstein algebra
presented by quadrics, over a field K of characteristic zero, has
the Weak Lefschetz Property.
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Let K be an infinite field, R = K[x1, . . . , xn] be the polynomial
ring in n indeterminates and Q = K[X1, . . . ,Xn] the ring of
differential operators. Let I ⊂ Q be a homogeneous ideal. It is
well known that A = Q/I is a Gorenstein algebra if and only if
there exists a homogeneous f ∈ R such that I = AnnQ(f ). In
order to get I generated by quadrics we start choosing f to be
square free, so (X 2

1 , . . . ,X
2
n ) ⊂ I .
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We deal with a very special kind of f that comes from the
theory of Gordan-Noether-Perazzo-Permutti of forms with
vanishing hessian. The forms we consider are naturally
bigraded and the separation of variables of
R = K[x1, . . . , xn, u1, . . . , um] has an important role, as we will

see in the sequel. Let A =
d⊕

i=0

Ai , Ad 6= 0 be a standard

bigraded Artinian Gorenstein algebra with

Ak =
k⊕

i=0

A(i ,k−1).A(d1,d2) 6= 0 for some d1, d2 such that

d1 + d2 = d , we call (d1, d2) the socle bidegree of A. Since
A∗k ' Ad−k and since duality is compatible with direct sum, we
get A∗(i ,j) ' A(d1−i ,d2−j).
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Let f ∈ R(d1,d2) be a bihomogeneous polynomial of total degree
d = d1 + d2, then I = AnnQ(f ) ⊂ Q is a bihomogeneous ideal
and A = Q/I is a standard bigraded Artinian Gorenstein
algebra of socle bidegree (d1, d2) and codimension r = m + n.
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Let f ∈ R(d1,d2) be a bihomogeneous polynomial of bidegree
(d1, d2) and let A be the associated bigraded algebra of socle
bidegree (d1, d2). For all i > d1 or j > d2 we get I(i ,j) = Q(i ,j).
As consequence, we have the following decomposition for all
Ak :

Ak =
⊕

i+j=k,i≤d1,j≤d2

A(i ,j).

Furthermore, for i < d1 and j < d1, the evaluation map
Qi ,j → A(d1−i ,d2−j) given by α 7→ α(f ) provides the following
short exact sequence:

0→ I(i ,j) → Q(i ,j) → A(d1−i ,d2−j) → 0.
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Definition

Let A = Q/AnnQ(f ) =
d⊕

k=0

Ak be a standard graded

Artinian Gorenstein K algebra of socle degree d .Let
i ≤ j ≤ d

2
be two integers and let Bk = {α1, . . . , αs} and

Bl = {β1, . . . , βt} be bases of the K-vector spaces Ak and Al

respectively. The (mixed) hessian matrix of f of order (k , l)
is the matrix:

Hess
(k,l)
f = (αi(βj(f )))s×t .

We denote Hesskf := Hess
(k,k)
f , hesskf := det(Hesskf ) and

hessf := hess1
f .
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The following result is a generalization of a Theorem due to
Maeno - Watanabe in the paper Lefschetz elements of artinian
Gorenstein algebras and Hessians of homogeneous polynomials.

Theorem

(Hessian Lefschetz criterion)
Let A = Q/AnnQ(f ) be a standard graded Artinian
Gorenstein algebra of codimension r and socle degree d and
let L = a1x1 + . . . + arxr ∈ A1, such that f (a1, . . . , ar ) 6= 0.
The map •Ll−k : Ak → Al , for k ≤ d

2
, has maximal rank if and

only if the (mixed) Hessian matrix Hess
(k,d−l)
f (a1, . . . , ar ) has

maximal rank.
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Example

Consider the cubic hypersurface X = V (f ) ⊂ P7, given by

f =

∣∣∣∣∣∣
x0 x1 x2

x3 x4 x5

x6 x7 0

∣∣∣∣∣∣ ∈ K[x0, . . . , x7].

X represents a tangent section of the secant variety of the
Segre variety Seg(P2,P2) ⊂ P8.
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After a linear change of coordinates we can rewrite

f = x1u1u2 + x2u2u3 + x3u3u4 + x4u4u1 ∈ R = K[x , u].

The associated algebra A = Q/I with I = Ann(f ) does not
have the WLP, in fact the map •L : A1 → A2 is
not injective for any L ∈ A1. A is presented by quadrics. Indeed:
I = (u2

4 , u2u4, x2u4, x1u4, u
2
3 , u1u3, x4u3, x1u3, u

2
2 , x4u2, x3u2,

x2u2 − x3u4, x1u2 − x4u4, u
2
1 , x4u1 − x3u3, x3u1, x2u1,

x1u1 − x2u3, x
2
4 , x3x4, x2x4, x1x4, x

2
3 , x2x3, x1x3, x

2
2 , x1x2, x

2
1 ).
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The previous example motivates the study of bihomogeneous
Perazzo polynomials of bidegree (1, d − 1). They can be
written in the form

f = x1g1 + . . . + xngn,

where gi ∈ K[u1, . . . , um]d−1.We say that f is of monomial
square free type if all gi are square free monomials.The
associated algebra, A = Q/AnnQ(f ), is bigraded, has socle
bidegree (1, d − 1) and we assume that I1 = 0, so
codim A = m + n.
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Let us consider the homogeneous (or pure) simplicial complex
K = K(u) of dimension d − 1 whose facets are given by the
monomials gi . The 0-skeleton will be referred as vertex set
and we write V = {u1, . . . , um}. We identify the 1-skeleton
with a simple graph K1 = (V ,E ), hence the 1-faces are called
edges. Since Xi(f ) = gi , we identify each facet gi with the
differential operator Xi . We denote by ek the number of
k-faces, hence e0 = m and ed−1 = n.
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Theorem

Let f be a bihomogeneous polynomial of monomial square-free
type, K the simplicial complex and A the algebra of
codimension m + n and socle bidegree (1, d − 1).Then

A =
d⊕

k=0

Ak where Ak = A(0,k) ⊕ A(1,k−1). Moreover, A(0,k) has

a basis identified with the k faces of K, hence dim A(0,k) = ek .
By duality, A∗(1,k−1) ' A(0,d−k), and a basis for A(1,k−1) can be

chosen by taking, for each d − k-face of K, a monomial Xi G̃i

such that Xi G̃i(f ) represents this d − k-face.In particular, the
Hilbert vector of A is given by hk = dim Ak = ek + ed−k .
Furthermore, I = AnnQ(f ) is a binomial ideal generated by
(X1, . . . ,Xn)2, by all the monomials in Ui that do not represent
faces of K, by all monomials XiFi where fi does not represent a
subface of gi and by all binomials Xi G̃i − Xj G̃j where gi = g̃igij

and gj = g̃jgij and gij represents a common subface of gi , gj .
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Definition

Let K be a homogeneous simplicial complex of dimension
d − 1.We say that K is facet connected if for any pair of
facets F ,F ′ of K there exists a sequence of facets,
F0 = F ,F1, . . . ,Fs = F ′ such that Fi ∩ Fi+1 is a (d − 2)-face.
We say that K is upper closed if for all complete subgraphs
H = Kl ⊂ K1 there is a l-face F ∈ Kl such that H is the first
skeleton of F . In particular K1 does not contain any Kd .
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Theorem

Let f ∈ K[x1, . . . , xn, u1, . . . , um](1,d−1) be a bihomogeneous
polynomial of monomial square-free type, let K be the
associated simplicial complex and let A = Q/AnnQ(f ) be the
standard bigraded Artinian Gorenstein algebra.A is presented
by quadrics if and only if K is facet connected and upper
closed.
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Definition

Let 2 ≤ a1 ≤ . . . ≤ ad−1 be integers, the Turan complex of
order a1, . . . , ad−1, K = TK(a1, . . . , ad−1), is the
Homogeneous simplicial complex whose facets set is the

cartesian product π =
d−1∏
i=1

{1, 2, . . . , ai}.The Turan

polynomial of order a1, . . . , ad−1 it the multihomogeneous
polynomial

f = fK =
∑
α∈π

xαuα ∈ R = K[xα, u(i ,ji )]α∈π,1≤i≤d−1,1≤ji≤ai ,

where α = (j1, . . . , jd−1) ∈ π and uα = u(1,j1) . . . u(d−1,jd−1).
The Turan algebra of order (a1, . . . , ad−1) is
TA(a1, . . . , ad−1) = AK = Q/AnnQ(f ).
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The number of k-faces of a Turan complex is ek = sk where
sk = sk(a1, . . . , ad−1) is the symmetric function of order k .By
Theorem 8, the Hilbert vector of the Turan algebra
TA(a1, . . . , ad−1) is given by hk = sk + sd−k . It is easy to verify
that Turan complexes are facet connected and upper closed.
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Theorem

Let A = TA(a1, . . . , ad−1) be the Turan algebra of order
(a1, . . . , ad−1) with 2 ≤ a1 ≤ a2 ≤ . . . ≤ ad−1. Then A is
presented by quadrics and for all L ∈ A1 the map
•L : A1 → A2 is not injective. Furthermore, if a1 ≈ . . . ≈ ad−1

are large enough, then Hilb(A) is not unimodal in the first
step, that is, dim A1 > dim A2.
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