The Local Cut Lemma and Critical Hypergraphs

Anton Bernshteyn

University of Illinois at Urbana-Champaign

New Trends in Graph Colouring
October 18, 2016
What is the Local Cut Lemma?

In 1975, Erdsős and Lovász proved the Lovász Local Lemma (or the LLL), an immensely useful probabilistic tool.
In 1975, Erdsős and Lovász proved the Lovász Local Lemma (or the LLL), an immensely useful probabilistic tool.

In 2010, Moser and Tardos found an effective proof of the LLL.
In 1975, Erdsős and Lovász proved the Lovász Local Lemma (or the LLL), an immensely useful probabilistic tool. In 2010, Moser and Tardos found an effective proof of the LLL. In 2013, Grytczuk, Kozik, and Micek noticed that the ideas of Moser and Tardos can be used to improve some combinatorial consequences of the LLL. This technique became known as the entropy compression method.
What is the Local Cut Lemma?

In 1975, Erdsős and Lovász proved the Lovász Local Lemma (or the LLL), an immensely useful probabilistic tool. In 2010, Moser and Tardos found an effective proof of the LLL. In 2013, Grytczuk, Kozik, and Micek noticed that the ideas of Moser and Tardos can be used to improve some combinatorial consequences of the LLL. This technique became known as the entropy compression method.

Since then, the entropy compression method found many applications.
What is the Local Cut Lemma?

In 1975, Erdsős and Lovász proved the Lovász Local Lemma (or the LLL), an immensely useful probabilistic tool.

In 2010, Moser and Tardos found an effective proof of the LLL.

In 2013, Grytczuk, Kozik, and Micek noticed that the ideas of Moser and Tardos can be used to improve some combinatorial consequences of the LLL. This technique became known as the entropy compression method.

Since then, the entropy compression method found many applications.

The Local Cut Lemma is a strengthening of the LLL that implies the combinatorial results obtained using the entropy compression method.
A hypergraph \mathcal{H} is a pair $(V(\mathcal{H}), E(\mathcal{H}))$, where $V(\mathcal{H})$ is a finite set (whose elements are the vertices of \mathcal{H}) and $E(\mathcal{H})$ is a collection of nonempty subsets of $V(\mathcal{H})$ (called the edges of \mathcal{H}).
A hypergraph \mathcal{H} is a pair $(V(\mathcal{H}), E(\mathcal{H}))$, where $V(\mathcal{H})$ is a finite set (whose elements are the vertices of \mathcal{H}) and $E(\mathcal{H})$ is a collection of nonempty subsets of $V(\mathcal{H})$ (called the edges of \mathcal{H}). A hypergraph \mathcal{H} is true if all its edges have size at least 3.
A *hypergraph* \(H \) is a pair \((V(H), E(H)) \), where \(V(H) \) is a finite set (whose elements are the *vertices* of \(H \)) and \(E(H) \) is a collection of nonempty subsets of \(V(H) \) (called the *edges* of \(H \)).

A hypergraph \(H \) is *true* if all its edges have size at least 3.

A *proper \(k \)-colouring* of \(H \) is a function \(f : V(H) \to \{1, \ldots, k\} \) such that \(|f(H)| \geq 2 \) for all \(H \in E(H) \) (i.e., there are no *monochromatic* edges).
A hypergraph \mathcal{H} is a pair $(V(\mathcal{H}), E(\mathcal{H}))$, where $V(\mathcal{H})$ is a finite set (whose elements are the vertices of \mathcal{H}) and $E(\mathcal{H})$ is a collection of nonempty subsets of $V(\mathcal{H})$ (called the edges of \mathcal{H}). A hypergraph \mathcal{H} is true if all its edges have size at least 3. A proper k-colouring of \mathcal{H} is a function $f: V(\mathcal{H}) \to \{1, \ldots, k\}$ such that $|f(H)| \geq 2$ for all $H \in E(\mathcal{H})$ (i.e., there are no monochromatic edges). A hypergraph \mathcal{H} is $(k + 1)$-critical if it is not k-colourable, but all its proper subhypergraphs are.
Question
What is the minimum number of edges in a \((k + 1)\)-critical true hypergraph on \(n\) vertices?

Theorem (Abbott–Hare 1989)
For every \(\varepsilon > 0\), there exists a \((k + 1)\)-critical true hypergraph with \(n\) vertices and at most \((k - 1 + \varepsilon)n\) edges.

Theorem (Kostochka–Stiebitz 2000)
Every \((k + 1)\)-critical true hypergraph with \(n\) vertices has at least \((k - 3k^2/3)n\) edges.
Critical hypergraphs

Question

What is the minimum number of edges in a \((k + 1)\)-critical true hypergraph on \(n\) vertices?

Theorem (Abbott–Hare 1989)

For every \(\varepsilon > 0\), there exists a \((k + 1)\)-critical true hypergraph with \(n\) vertices and at most \((k − 1 + \varepsilon)n\) edges.

Theorem (Kostochka–Stiebitz 2000)

Every \((k + 1)\)-critical true hypergraph with \(n\) vertices has at least \((k − 3k^2/3)n\) edges.
Question

What is the minimum number of edges in a \((k + 1)\)-critical true hypergraph on \(n\) vertices?

Theorem (Abbott–Hare 1989)

For every \(\varepsilon > 0\), there exists a \((k + 1)\)-critical true hypergraph with \(n\) vertices and at most \((k - 1 + \varepsilon)n\) edges.

Theorem (Kostochka–Stiebitz 2000)

Every \((k + 1)\)-critical true hypergraph with \(n\) vertices has at least \((k - 3k^{2/3})n\) edges.
I will show how to use the LCL to improve the Kostochka–Stiebitz result as follows:

Theorem

Every \((k + 1)\)-critical true hypergraph with \(n\) vertices has at least \((k - 4\sqrt{k})n\) edges.
I will show how to use the LCL to improve the Kostochka–Stiebitz result as follows:

Theorem

Every \((k + 1)\)-critical true hypergraph with \(n\) vertices has at least \((k - 4\sqrt{k})n\) edges.

The proof is almost the same as the proof of the Kostochka–Stiebitz theorem, with the LLL replaced by the LCL.
Say a vertex is “heavy” if it belongs to many edges (and the smaller the edge, the more weight it contributes).
Proof idea

Say a vertex is “heavy” if it belongs to many edges (and the smaller the edge, the more weight it contributes).

We iteratively remove “heavy” vertices from \mathcal{H}.

Case 1: If at the end all the vertices have been removed, then we obtain a lower bound on $|E(\mathcal{H})|$.

Case 2: If at the end we are left with a nonempty set U of “light” vertices, then we can first colour $\mathcal{H} - U$ and then extend this colouring to U.

Anton Bernshteyn

The Local Cut Lemma and Critical Hypergraphs
Proof idea

Say a vertex is “heavy” if it belongs to many edges (and the smaller the edge, the more weight it contributes).

We iteratively remove “heavy” vertices from \mathcal{H}.

Case 1: If at the end all the vertices have been removed, then we obtain a lower bound on $|E(\mathcal{H})|$.
Say a vertex is “heavy” if it belongs to many edges (and the smaller the edge, the more weight it contributes).

We iteratively remove “heavy” vertices from \mathcal{H}.

Case 1: If at the end all the vertices have been removed, then we obtain a lower bound on $|E(\mathcal{H})|$.

Case 2: If at the end we are left with a nonempty set U of “light” vertices, then we can first colour $\mathcal{H} - U$.

Anton Bernshteyn

The Local Cut Lemma and Critical Hypergraphs
Proof idea

Say a vertex is “heavy” if it belongs to many edges (and the smaller the edge, the more weight it contributes).

We iteratively remove “heavy” vertices from \mathcal{H}.

Case 1: If at the end all the vertices have been removed, then we obtain a lower bound on $|E(\mathcal{H})|$.

Case 2: If at the end we are left with a nonempty set U of “light” vertices, then we can first colour $\mathcal{H} - U$ and then extend this colouring to U.

Anton Bernshteyn
The Local Cut Lemma and Critical Hypergraphs
Let \mathcal{H} be a $(k + 1)$-critical true hypergraph on n. We want to show that $|E(\mathcal{H})| \geq (k - 4\sqrt{k})n$.
Let \mathcal{H} be a $(k + 1)$-critical true hypergraph on n. We want to show that $|E(\mathcal{H})| \geq (k - 4\sqrt{k})n$.

Let $v \in U \subseteq V(\mathcal{H})$. We say that a vertex v is heavy in U if

$$\sum_{H \ni v} w(|H \cap U|) \geq k - 4\sqrt{k},$$

where $w: \mathbb{N}_{\geq 1} \to \mathbb{R}_{> 0}$ is a weight function satisfying

$$\sum_{t=1}^{\infty} w(t) = 1.$$
Let \mathcal{H} be a $(k + 1)$-critical true hypergraph on n. We want to show that $|E(\mathcal{H})| \geq (k - 4\sqrt{k})n$.

Let $v \in U \subseteq V(\mathcal{H})$. We say that a vertex v is heavy in U if

$$\sum_{H \ni v} w(|H \cap U|) \geq k - 4\sqrt{k},$$

where $w : \mathbb{N}_{\geq 1} \rightarrow \mathbb{R}_{>0}$ is a weight function satisfying

$$\sum_{t=1}^{\infty} w(t) = 1.$$

Algorithm

Set $U_0 := V(\mathcal{H})$.
Construction

Let \mathcal{H} be a $(k + 1)$-critical true hypergraph on n. We want to show that $|E(\mathcal{H})| \geq (k - 4\sqrt{k})n$.

Let $v \in U \subseteq V(\mathcal{H})$. We say that a vertex v is heavy in U if

$$\sum_{H \ni v} w(|H \cap U|) \geq k - 4\sqrt{k},$$

where $w : \mathbb{N}_{\geq 1} \rightarrow \mathbb{R}_{>0}$ is a weight function satisfying

$$\sum_{t=1}^{\infty} w(t) = 1.$$

Algorithm

Set $U_0 := V(\mathcal{H})$.

If U_i contains a heavy vertex v_i, then set $U_{i+1} := U_i \setminus \{v_i\}$.
First case: nothing is left

Case 1: This process ends with $U_n = \emptyset$.
Case 1: This process ends with $U_n = \emptyset$. Then it is easy to show that $|E(\mathcal{H})| \geq (k - 4\sqrt{k})n$ (we’ll come back to this if there’s time left).
Case 2: We obtain a nonempty subset $U \subseteq V(\mathcal{H})$ such that all vertices in U are light.
Case 2: We obtain a nonempty subset $U \subseteq V(\mathcal{H})$ such that all vertices in U are light.

Fix a proper k-colouring of $\mathcal{H} - U$ and extend it to a k-colouring of \mathcal{H} by choosing a colour for each vertex in U uniformly at random.
Case 2: We obtain a nonempty subset $U \subseteq V(\mathcal{H})$ such that all vertices in U are light.

Fix a proper k-colouring of $\mathcal{H} - U$ and extend it to a k-colouring of \mathcal{H} by choosing a colour for each vertex in U uniformly at random.

Need to show that with positive probability, the resulting colouring is proper.
In (a simplified version of) the LCL, one is given a finite set X and a random collection \mathcal{A} of subsets of X that is closed downwards. The goal is to show that $\Pr[X \in \mathcal{A}] > 0$.

In our application, X is U and a subset $S \subseteq U$ belongs to \mathcal{A} if and only if there is no monochromatic edge $H \subseteq S \cup U^c$. To apply the LCL, for every $S \subseteq X$ and $v \not\in S$, we have to specify a collection of “bad” random events $B(S, v)$ with the following property: If $S \{v\} \in \mathcal{A}$, but $S \not\in \mathcal{A}$, then at least one event in $B(S, v)$ has happened. In our case, set $B_H := \{H \text{ is monochromatic}\}$ and define $B(S, v) := \{B_H : v \in H \subseteq S \cup U^c\}$.

Anton Bernshteyn

The Local Cut Lemma and Critical Hypergraphs
In (a simplified version of) the LCL, one is given a finite set X and a random collection \mathcal{A} of subsets of X that is closed downwards. The goal is to show that $\Pr[X \in \mathcal{A}] > 0$.

In our application, X is U and a subset $S \subseteq U$ belongs to \mathcal{A} if and only if there is no monochromatic edge $H \subseteq S \cup U^c$.
Setting up the Local Cut Lemma

In (a simplified version of) the LCL, one is given a finite set X and a random collection A of subsets of X that is closed downwards. The goal is to show that $\Pr[X \in A] > 0$.

In our application, X is U and a subset $S \subseteq U$ belongs to A if and only if there is no monochromatic edge $H \subseteq S \cup U^c$.

To apply the LCL, for every $S \subseteq X$ and $v \notin S$, we have to specify a collection of “bad” random events $B(S, v)$ with the following property:
In (a simplified version of) the LCL, one is given a finite set X and a random collection \mathcal{A} of subsets of X that is closed downwards. The goal is to show that $\Pr[X \in \mathcal{A}] > 0$.

In our application, X is U and a subset $S \subseteq U$ belongs to \mathcal{A} if and only if there is no monochromatic edge $H \subseteq S \cup U^c$.

To apply the LCL, for every $S \subseteq X$ and $v \not\in S$, we have to specify a collection of "bad" random events $\mathcal{B}(S, v)$ with the following property: If $S \setminus \{v\} \in \mathcal{A}$, but $S \not\in \mathcal{A}$, then at least one event in $\mathcal{B}(S, v)$ has happened.
In (a simplified version of) the LCL, one is given a finite set X and a random collection \mathcal{A} of subsets of X that is closed downwards. The goal is to show that $\Pr[X \in \mathcal{A}] > 0$.

In our application, X is U and a subset $S \subseteq U$ belongs to \mathcal{A} if and only if there is no monochromatic edge $H \subseteq S \cup U^c$.

To apply the LCL, for every $S \subseteq X$ and $v \not\in S$, we have to specify a collection of “bad” random events $\mathcal{B}(S, v)$ with the following property: If $S \setminus \{v\} \in \mathcal{A}$, but $S \not\in \mathcal{A}$, then at least one event in $\mathcal{B}(S, v)$ has happened.

In our case, set $B_H := \{H \text{ is monochromatic}\}$ and define

$$\mathcal{B}(S, v) := \{B_H : v \in H \subseteq S \cup U^c\}.$$
Fix a parameter $\omega \in [1; +\infty)$. For each $B \in B(S, v)$, we require an upper bound on the following quantity:

$$\rho_\omega(B) := \min_{v \notin S' \subseteq S} \Pr[B | S' \in A] \cdot \omega^{|S \setminus S'|}.$$
Fix a parameter $\omega \in [1; +\infty)$. For each $B \in \mathcal{B}(S, \nu)$, we require an upper bound on the following quantity:

$$\rho_\omega(B) := \min_{\nu \not\in S' \subseteq S} \Pr[B \mid S' \in \mathcal{A}] \cdot \omega^{|S \setminus S'|}.$$

Case 1: $H \not\subseteq U$.

Case 2: $H \subseteq U$.

Actually, we can do a little better. Fix some $u \in H \setminus \{\nu\}$. Then

$$\rho_\omega(B) \leq \Pr[B \mid (S \setminus H) \cup \{u\} \in \mathcal{A}] \cdot \omega^{|H| - 1}.$$
Fix a parameter $\omega \in [1; +\infty)$. For each $B \in \mathcal{B}(S, \nu)$, we require an upper bound on the following quantity:

$$\rho_\omega(B) := \min_{\nu \not\in S'} \Pr[B \mid S' \in \mathcal{A}] \cdot \omega^{\lfloor S \setminus S' \rfloor}.$$

Case 1: $H \not\subseteq U$. Then

$$\rho_\omega(B_H)$$
Fix a parameter $\omega \in [1; +\infty)$. For each $B \in \mathcal{B}(S, v)$, we require an upper bound on the following quantity:

$$\rho_\omega(B) := \min_{v \notin S' \subseteq S} \Pr[B \mid S' \in \mathcal{A}] \cdot \omega^{|S \setminus S'|}.$$

Case 1: $H \not\subseteq U$. Then

$$\rho_\omega(B_H) \leq \Pr[B_H \mid S \setminus H \in \mathcal{A}] \cdot \omega^{|H \cap U|}$$
Fix a parameter $\omega \in [1; +\infty)$. For each $B \in \mathcal{B}(S, v)$, we require an upper bound on the following quantity:

$$\rho_\omega(B) := \min_{v \notin S' \subseteq S} \Pr[B \mid S' \in \mathcal{A}] \cdot \omega^{\mid S \setminus S' \mid}.$$

Case 1: $H \not\subseteq U$. Then

$$\rho_\omega(B_H) \leq \Pr[B_H \mid S \setminus H \in \mathcal{A}] \cdot \omega^{\mid H \cap U \mid} \leq \frac{\omega^{\mid H \cap U \mid}}{k^{\mid H \cap U \mid}}.$$
Fix a parameter \(\omega \in [1; +\infty) \). For each \(B \in \mathcal{B}(S, \nu) \), we require an upper bound on the following quantity:

\[
\rho_\omega(B) := \min_{v \not\in S' \subseteq S} \Pr[B \mid S' \in \mathcal{A}] \cdot \omega^{|S \setminus S'|}.
\]

Case 1: \(H \not\subseteq U \). Then

\[
\rho_\omega(B_H) \leq \Pr[B_H \mid S \setminus H \in \mathcal{A}] \cdot \omega^{|H \cap U|} \leq \frac{\omega^{|H \cap U|}}{k^{|H \cap U|}}.
\]

Case 2: \(H \subseteq U \).
Fix a parameter $\omega \in [1; +\infty)$. For each $B \in \mathcal{B}(S, \nu)$, we require an upper bound on the following quantity:

$$ \rho_\omega(B) := \min_{\nu \notin S' \subseteq S} \Pr[B \mid S' \in \mathcal{A}] \cdot \omega^{|S \setminus S'|}. $$

Case 1: $H \not\subseteq U$. Then

$$ \rho_\omega(B_H) \leq \Pr[B_H \mid S \setminus H \in \mathcal{A}] \cdot \omega^{|H \cap U|} \leq \frac{\omega^{|H \cap U|}}{k^{|H \cap U|}}. $$

Case 2: $H \subseteq U$. Then

$$ \rho_\omega(B_H) $$
Setting up the Local Cut Lemma

Fix a parameter $\omega \in [1; +\infty)$. For each $B \in \mathcal{B}(S, \nu)$, we require an upper bound on the following quantity:

$$\rho_\omega(B) := \min_{v \notin S' \subseteq S} \Pr[B | S' \in \mathcal{A}] \cdot \omega^{|S \setminus S'|}.$$

Case 1: $H \nsubseteq U$. Then

$$\rho_\omega(B_H) \leq \Pr[B_H | S \setminus H \in \mathcal{A}] \cdot \omega^{|H \cap U|} \leq \frac{\omega^{|H \cap U|}}{k|H \cap U|}.$$

Case 2: $H \subseteq U$. Then

$$\rho_\omega(B_H) \leq \Pr[B_H | S \setminus H \in \mathcal{A}] \cdot \omega^{|H|}.$$
Fix a parameter $\omega \in [1; +\infty)$. For each $B \in \mathcal{B}(S, \nu)$, we require an upper bound on the following quantity:

$$\rho_\omega(B) := \min_{v \notin S' \subseteq S} \Pr[B \mid S' \in \mathcal{A}] \cdot \omega^{|S\setminus S'|}.$$

Case 1: $H \not\subseteq U$. Then

$$\rho_\omega(B_H) \leq \Pr[B_H \mid S \setminus H \in \mathcal{A}] \cdot \omega^{|H\cap U|} \leq \frac{\omega^{|H\cap U|}}{k^{|H\cap U|}}.$$

Case 2: $H \subseteq U$. Then

$$\rho_\omega(B_H) \leq \Pr[B_H \mid S \setminus H \in \mathcal{A}] \cdot \omega^{|H|} = \frac{\omega^{|H|}}{k^{|H| - 1}}.$$
Fix a parameter \(\omega \in [1; +\infty) \). For each \(B \in \mathcal{B}(S, \nu) \), we require an upper bound on the following quantity:

\[
\rho_\omega(B) := \min_{\nu \notin S' \subseteq S} \Pr[B \mid S' \in \mathcal{A}] \cdot \omega^{|S\backslash S'|}.
\]

Case 1: \(H \not\subseteq U \). Then

\[
\rho_\omega(B_H) \leq \Pr[B_H \mid S \setminus H \in \mathcal{A}] \cdot \omega^{|H \cap U|} \leq \frac{\omega^{|H \cap U|}}{k^{|H \cap U|}}.
\]

Case 2: \(H \subseteq U \). Then

\[
\rho_\omega(B_H) \leq \Pr[B_H \mid S \setminus H \in \mathcal{A}] \cdot \omega^{|H|} = \frac{\omega^{|H|}}{k^{|H| - 1}}.
\]

Actually, we can do a little better. Fix some \(u \in H \setminus \{v\} \).
Setting up the Local Cut Lemma

Fix a parameter $\omega \in [1; +\infty)$. For each $B \in \mathcal{B}(S, \nu)$, we require an upper bound on the following quantity:

$$\rho_\omega(B) := \min_{\nu \notin S' \subseteq S} \Pr[B \mid S' \in \mathcal{A}] \cdot \omega^{\left| S \setminus S' \right|}.$$

Case 1: $H \not\subseteq U$. Then

$$\rho_\omega(B_H) \leq \Pr[B_H \mid S \setminus H \in \mathcal{A}] \cdot \omega^{\left| H \cap U \right|} \leq \frac{\omega^{\left| H \cap U \right|}}{k^{\left| H \cap U \right|}}.$$

Case 2: $H \subseteq U$. Then

$$\rho_\omega(B_H) \leq \Pr[B_H \mid S \setminus H \in \mathcal{A}] \cdot \omega^{\left| H \right|} = \frac{\omega^{\left| H \right|}}{k^{\left| H \right| - 1}}.$$

Actually, we can do a little better. Fix some $u \in H \setminus \{\nu\}$. Then

$$\rho_\omega(B_H) \leq \Pr[B_H \mid (S \setminus H) \cup \{u\} \in \mathcal{A}] \cdot \omega^{\left| H \right| - 1}.$$
Fixing a parameter $\omega \in [1; +\infty)$. For each $B \in \mathcal{B}(S, \nu)$, we require an upper bound on the following quantity:

$$\rho_\omega(B) := \min_{\nu \notin S' \subseteq S} \Pr[B \mid S' \in \mathcal{A}] \cdot \omega^{|S\setminus S'|}.$$

Case 1: $H \not\subseteq U$. Then

$$\rho_\omega(B_H) \leq \Pr[B_H \mid S \setminus H \in \mathcal{A}] \cdot \omega^{|H \cap U|} \leq \frac{\omega^{|H \cap U|}}{k^{|H \cap U|}}.$$

Case 2: $H \subseteq U$. Then

$$\rho_\omega(B_H) \leq \Pr[B_H \mid S \setminus H \in \mathcal{A}] \cdot \omega^{|H|} = \frac{\omega^{|H|}}{k^{|H| - 1}}.$$

Actually, we can do a little better. Fix some $u \in H \setminus \{\nu\}$. Then

$$\rho_\omega(B_H) \leq \Pr[B_H \mid (S \setminus H) \cup \{u\} \in \mathcal{A}] \cdot \omega^{|H| - 1} = \frac{\omega^{|H| - 1}}{k^{|H| - 1}}.$$
Applying the Local Cut Lemma

Theorem (The Local Cut Lemma)

If there is \(\omega \in [1; +\infty) \) such that for every \(v \in S \subseteq X \) we have

\[
\omega \geq 1 + \sum_{B \in B(S, v)} \rho_{\omega}(B),
\]

then \(\text{Pr}[X \in A] > 0. \)
Applying the Local Cut Lemma

Theorem (The Local Cut Lemma)

If there is \(\omega \in [1; +\infty) \) such that for every \(v \in S \subseteq X \) we have

\[
\omega \geq 1 + \sum_{B \in B(S, v)} \rho(\omega(B)),
\]

then \(\Pr[X \in A] > 0 \).

In our case, we need

\[
\omega \geq 1 + \sum_{v \in H \not\subseteq U} \frac{\omega|H \cap U|}{k|H \cap U|} + \sum_{v \in H \subseteq U} \frac{\omega|H|^{-1}}{k|H|^{-1}}.
\]
Applying the Local Cut Lemma

Theorem (The Local Cut Lemma)

If there is $\omega \in [1; +\infty)$ such that for every $v \in S \subseteq X$ we have

$$\omega \geq 1 + \sum_{B \in B(S, v)} \rho \omega(B),$$

then $\Pr[X \in A] > 0$.

In our case, we need

$$\omega \geq 1 + \sum_{v \in H \not\subseteq U} \frac{\omega |H \cap U|}{k |H \cap U|} + \sum_{v \in H \subseteq U} \frac{\omega |H|^{-1}}{k |H|^{-1}}.$$

The rest is just a straightforward computation.
Thank you!
Case 1: This process ends with $U_n = \emptyset$.

First case: nothing is left
Case 1: This process ends with $U_n = \emptyset$. Then

$$|E(H)|$$
Case 1: This process ends with $U_n = \emptyset$. Then

$$|E(\mathcal{H})| = \sum_{H \in E(\mathcal{H})} 1$$
Case 1: This process ends with $U_n = \emptyset$. Then

$$|E(\mathcal{H})| = \sum_{H \in E(\mathcal{H})} 1 = \sum_{H \in E(\mathcal{H})} \sum_{t=1}^{\infty} w(t)$$
Case 1: This process ends with $U_n = \emptyset$. Then

$$|E(\mathcal{H})| = \sum_{H \in E(\mathcal{H})} 1 = \sum_{H \in E(\mathcal{H})} \sum_{t=1}^{\infty} w(t) > \sum_{H \in E(\mathcal{H})} \sum_{t=1}^{\infty} w(t)$$
First case: nothing is left

Case 1: This process ends with $U_n = \emptyset$. Then

$$|E(\mathcal{H})| = \sum_{H \in E(\mathcal{H})} 1 = \sum_{H \in E(\mathcal{H})} \sum_{t=1}^{\infty} w(t) > \sum_{H \in E(\mathcal{H})} \sum_{t=1}^{\infty} w(t)$$

$$= \sum_{H \in E(\mathcal{H})} \sum_{v_i \in H} w(|H \cap U_i|)$$
Case 1: This process ends with $U_n = \emptyset$. Then

$$|E(H)| = \sum_{H \in E(\mathcal{H})} 1 = \sum_{H \in E(\mathcal{H})} \sum_{t=1}^{\infty} w(t) > \sum_{H \in E(\mathcal{H})} \sum_{t=1}^{\infty} w(t)$$

$$= \sum_{H \in E(\mathcal{H})} \sum_{v_i \in H} w(|H \cap U_i|) = \sum_{i=0}^{n-1} \sum_{H \ni v_i} w(|H \cap U_i|)$$

As desired.
First case: nothing is left

Case 1: *This process ends with $U_n = \emptyset$. Then*

$$|E(H)| = \sum_{H \in E(\mathcal{H})} 1 = \sum_{H \in E(\mathcal{H})} \sum_{t=1}^{\infty} w(t) > \sum_{H \in E(\mathcal{H})} \sum_{t=1}^{\infty} w(t)$$

$$= \sum_{H \in E(\mathcal{H})} \sum_{v_i \in H} w(|H \cap U_i|) = \sum_{i=0}^{n-1} \sum_{H \ni v_i} w(|H \cap U_i|)$$

$$\geq (k - 4\sqrt{k})n,$$

as desired.