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What is the Local Cut Lemma?

In 1975, Erdsős and Lovász proved the Lovász Local Lemma (or
the LLL), an immensely useful probabilistic tool.

In 2010, Moser and Tardos found an effective proof of the LLL.

In 2013, Grytczuk, Kozik, and Micek noticed that the ideas of
Moser and Tardos can be used to improve some combinatorial
consequences of the LLL. This technique became known as the
entropy compression method.

Since then, the entropy compression method found many
applications.

The Local Cut Lemma is a strengthening of the LLL that implies
the combinatorial results obtained using the entropy compression
method.
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Critical hypergraphs

A hypergraph H is a pair (V (H),E (H)), where V (H) is a finite
set (whose elements are the vertices of H) and E (H) is a
collection of nonempty subsets of V (H) (called the edges of H).

A hypergraph H is true if all its edges have size at least 3.

A proper k-colouring of H is a function f : V (H)→ {1, . . . , k}
such that |f (H)| ≥ 2 for all H ∈ E (H) (i.e., there are no
monochromatic edges).

A hypergraph H is (k + 1)-critical if it is not k-colourable, but all
its proper subhypergraphs are.
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Critical hypergraphs

Question

What is the minimum number of edges in a (k + 1)-critical true
hypergraph on n vertices?

Theorem (Abbott–Hare 1989)

For every ε > 0, there exists a (k + 1)-critical true hypergraph
with n vertices and at most (k − 1 + ε)n edges.

Theorem (Kostochka–Stiebitz 2000)

Every (k + 1)-critical true hypergraph with n vertices has at least
(k − 3k2/3)n edges.
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Critical hypergraphs

I will show how to use the LCL to improve the Kostochka–Stiebitz
result as follows:

Theorem

Every (k + 1)-critical true hypergraph with n vertices has at least
(k − 4

√
k)n edges.

The proof is almost the same as the proof of the
Kostochka–Stiebitz theorem, with the LLL replaced by the LCL.
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Proof idea

Say a vertex is “heavy” if it belongs to many edges (and the
smaller the edge, the more weight it contributes).

We iteratively remove “heavy” vertices from H.

Case 1: If at the end all the vertices have been removed, then we
obtain a lower bound on |E (H)|.

Case 2: If at the end we are left with a nonempty set U of “light”
vertices, then we can first colour H− U and then extend this
colouring to U.
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Construction

Let H be a (k + 1)-critical true hypergraph on n. We want to
show that |E (H)| ≥ (k − 4

√
k)n.

Let v ∈ U ⊆ V (H). We say that a vertex v is heavy in U if∑
H3v

w(|H ∩ U|) ≥ k − 4
√
k ,

where w : N≥1 → R>0 is a weight function satisfying

∞∑
t=1

w(t) = 1.

Algorithm

Set U0 := V (H).

If Ui contains a heavy vertex vi , then set Ui+1 := Ui \ {vi}.
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First case: nothing is left

Case 1: This process ends with Un = ∅.

Then it is easy to show
that |E (H)| ≥ (k − 4

√
k)n (we’ll come back to this if there’s time

left).
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Second case: something is left

Case 2: We obtain a nonempty subset U ⊆ V (H) such that all
vertices in U are light.

Fix a proper k-colouring of H− U and extend it to a k-colouring
of H by choosing a colour for each vertex in U uniformly at
random.

Need to show that with positive probability, the resulting colouring
is proper.

Anton Bernshteyn The Local Cut Lemma and Critical Hypergraphs



Second case: something is left

Case 2: We obtain a nonempty subset U ⊆ V (H) such that all
vertices in U are light.

Fix a proper k-colouring of H− U and extend it to a k-colouring
of H by choosing a colour for each vertex in U uniformly at
random.

Need to show that with positive probability, the resulting colouring
is proper.

Anton Bernshteyn The Local Cut Lemma and Critical Hypergraphs



Second case: something is left

Case 2: We obtain a nonempty subset U ⊆ V (H) such that all
vertices in U are light.

Fix a proper k-colouring of H− U and extend it to a k-colouring
of H by choosing a colour for each vertex in U uniformly at
random.

Need to show that with positive probability, the resulting colouring
is proper.

Anton Bernshteyn The Local Cut Lemma and Critical Hypergraphs



Setting up the Local Cut Lemma

In (a simplified version of) the LCL, one is given a finite set X and
a random collection A of subsets of X that is closed downwards.
The goal is to show that Pr[X ∈ A] > 0.

In our application, X is U and a subset S ⊆ U belongs to A if and
only if there is no monochromatic edge H ⊆ S ∪ Uc .

To apply the LCL, for every S ⊆ X and v 6∈ S , we have to specify
a collection of “bad” random events B(S , v) with the following
property:

If S \ {v} ∈ A, but S 6∈ A, then at least one event in
B(S , v) has happened.

In our case, set BH := {H is monochromatic} and define

B(S , v) := {BH : v ∈ H ⊆ S ∪ Uc}.
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Setting up the Local Cut Lemma

Fix a parameter ω ∈ [1; +∞). For each B ∈ B(S , v), we require an
upper bound on the following quantity:

ρω(B) := min
v 6∈S ′⊆S

Pr[B | S ′ ∈ A] · ω|S\S ′|.

Case 1: H 6⊆ U.

Then

ρω(BH) ≤ Pr[BH |S \ H ∈ A] · ω|H∩U| ≤ ω|H∩U|

k |H∩U|
.

Case 2: H ⊆ U.

Then

ρω(BH) ≤ Pr[BH |S \ H ∈ A] · ω|H| =
ω|H|

k |H|−1
.

Actually, we can do a little better. Fix some u ∈ H \ {v}. Then

ρω(BH) ≤ Pr[BH | (S \ H) ∪ {u} ∈ A] · ω|H|−1 =
ω|H|−1

k |H|−1
.
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Applying the Local Cut Lemma

Theorem (The Local Cut Lemma)

If there is ω ∈ [1; +∞) such that for every v ∈ S ⊆ X we have

ω ≥ 1 +
∑

B∈B(S,v)

ρω(B),

then Pr[X ∈ A] > 0.

In our case, we need

ω ≥ 1 +
∑

v∈H 6⊆U

ω|H∩U|

k |H∩U|
+

∑
v∈H⊆U

ω|H|−1

k |H|−1
.

The rest is just a straightforward computation.
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Thank you!
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First case: nothing is left

Case 1: This process ends with Un = ∅.

Then

|E (H)| =
∑

H∈E(H)

1 =
∑

H∈E(H)

∞∑
t=1

w(t) >
∑

H∈E(H)

|H|∑
t=1

w(t)

=
∑

H∈E(H)

∑
vi∈H

w(|H ∩ Ui |) =
n−1∑
i=0

∑
H3vi

w(|H ∩ Ui |)

≥ (k − 4
√
k)n,

as desired.
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