Tight lower bounds for the complexity of multicoloring

Marthe Bonamy

October 18th, 2016

Joint work with Łukasz Kowalik, Michał Pilipczuk, Arkadiusz Socała, Marcin Wrochna

LaBRI

Uniwersytet Warszawski
χ: Minimum number of colors to ensure that:

$$\chi : \begin{cases}
|C| = b \\
|D| = b \\
C \cap D = \emptyset
\end{cases}$$

$$\lim_{b \to \infty} \chi_b = \chi_f$$
\[c \neq d \]

\[\chi: \text{Minimum number of colors to ensure that:} \]

\[|C| = b \quad |D| = b \quad C \cap D = \emptyset \]

\[\lim_{b \to \infty} \chi_b = \chi_f \]
χ: Minimum number of colors to ensure that:

\[C_x \subseteq D_y \implies c \neq d \]

where x and y are vertices, and c and d are colors.
\(\chi \): Minimum number of colors to ensure that:

\[\chi \] : Minimum number of colors to ensure that:

\[\frac{c}{d} \quad \Rightarrow \quad c \neq d \]

\(x \quad y \)
\(\chi \): Minimum number of colors to ensure that:

\[
\begin{aligned}
C_x \stackrel{c}{\longrightarrow} D_y & \Rightarrow c \neq d \\
C_x \cap D_y & = \emptyset
\end{aligned}
\]

\[
\begin{aligned}
|C| & = b \\
|D| & = b \\
C \cap D & = \emptyset
\end{aligned}
\]
\(\chi \): Minimum number of colors to ensure that:

\[
\begin{align*}
\chi \colon & \Rightarrow c \neq d \\
C \cup D \Rightarrow & \begin{cases}
|C| = b \\
|D| = b \\
C \cap D = \emptyset
\end{cases}
\end{align*}
\]
χ: Minimum number of colors to ensure that:

\[
\begin{align*}
\circ C \quad \& \quad \circ D \quad \Rightarrow \quad c \neq d \\
\times x \quad \& \quad \times y
\end{align*}
\]

χ_b: Minimum number of colors to ensure that:

\[
\begin{align*}
\circ C \quad \& \quad \circ D \quad \Rightarrow \quad \begin{cases}
|C| = b \\
|D| = b \\
C \cap D = \emptyset
\end{cases}
\end{align*}
\]

\[
\lim_{b \to \infty} \frac{\chi_b}{b} = \chi_f
\]
”Is G k-colorable?”
"Is G k-colorable?"

- $k \leq 1$: Easy ✓
- $k = 2$: Easy ✓
- $k \geq 3$: NP-hard

"Is G $a:b$-colorable?"

- $a < 2$: Easy ✓
- $a = 2$: Easy ✓
- $a \geq 2b + 1$: NP-hard (Hell, Nešetřil '90)
"Is G k-colorable?"

- $k \leq 1$: Easy ✓
- $k = 2$: Easy ✓
- $k \geq 3$: NP-hard

"Is G $a:b$-colorable?"

- $a < 2b$: Easy ✓
- $a = 2b$: Easy ✓
- $a \geq 2b + 1$: NP-hard (Hell, Nešetril '90)
"Is G k-colorable?"

- $k \leq 1$: Easy ✓
- $k = 2$: Easy ✓
- $k \geq 3$: NP-hard
"Is G k-colorable?"
- $k \leq 1$: Easy ✓
- $k = 2$: Easy ✓
- $k \geq 3$: NP-hard

"Is G $a:b$-colorable?"
"Is G k-colorable?"

- $k \leq 1$: Easy ✓
- $k = 2$: Easy ✓
- $k \geq 3$: NP-hard

"Is G $a:b$-colorable?"

- $a < 2b$: Easy ✓
Complexity

"Is G k-colorable?"
- $k \leq 1$: Easy ✓
- $k = 2$: Easy ✓
- $k \geq 3$: NP-hard

"Is G $a:b$-colorable?"
- $a < 2b$: Easy ✓
- $a = 2b$: Easy ✓
"Is G k-colorable?"

- $k \leq 1$: Easy ✓
- $k = 2$: Easy ✓
- $k \geq 3$: NP-hard

"Is G $a:b$-colorable?"

- $a < 2b$: Easy ✓
- $a = 2b$: Easy ✓
- $a \geq 2b + 1$: NP-hard (Hell, Nešetril ’90)
NP-hard? :(

Exponential Time Hypothesis (Impagliazzo, Paturi '99)
There is $\epsilon > 0$ such that 3-SAT cannot be solved in $O^*(2^{\epsilon \cdot n})$ time.

Theorem (Dell, Husfeldt, Wahlén '10)
For any $k \geq 3$, there is $\alpha > 0$ such that k-Coloring cannot be solved in $O^*(2^{\alpha \cdot n})$ time unless ETH fails.

Theorem (Björklund, Husfeldt '06)
k-Coloring can be solved in $O^*(2^n)$ time.
Exponential Time Hypothesis (Impagliazzo, Paturi ’99)

There is $\epsilon > 0$ such that 3-SAT cannot be solved in $O^*(2^{\epsilon n})$ time.
Exponential Time Hypothesis (Impagliazzo, Paturi '99)

There is $\epsilon > 0$ such that 3-SAT cannot be solved in $O^*(2^{\epsilon \cdot n})$ time.

Theorem (Dell, Husfeldt, Wahlén '10)

For any $k \geq 3$, there is $\alpha > 0$ such that k-Coloring cannot be solved in $O^*(2^{\alpha \cdot n})$ time unless ETH fails.
Exponential Time Hypothesis (Impagliazzo, Paturi ’99)

There is $\epsilon > 0$ such that 3-SAT cannot be solved in $O^*(2^{\epsilon \cdot n})$ time.

Theorem (Dell, Husfeldt, Wahlén ’10)

For any $k \geq 3$, there is $\alpha > 0$ such that k-Coloring cannot be solved in $O^*(2^{\alpha \cdot n})$ time unless ETH fails.

Theorem (Björklund, Husfeldt ’06)

k-Coloring can be solved in $O^*(2^n)$ time.
Our result

Theorem (Nederlof '08)

\textit{\textbf{a:b-Coloring}} \textit{can be solved in} $\mathcal{O}^*((b + 1)^n)$ \textit{time}.
Our result

Theorem (Nederlof '08)

\[a:b\text{-Coloring} \text{ can be solved in } \mathcal{O}^*((b + 1)^n) \text{ time.}\]

Theorem (B., Kowalik, Pilipczuk, Socała, Wrochna '16)

There is \(\alpha > 0\) such that, for appropriate ranges of values, \(a:b\text{-Coloring} \text{ cannot be solved in } \mathcal{O}^*((b + 1)^{\alpha \cdot n}) \text{ time unless ETH fails.}\)
The reduction

Fix a, b.
The reduction

Fix a, b. Main idea: **compress** an instance ϕ of 3-SAT on n variables and m clauses into the $a:b$-coloring of a graph G on $O\left(\frac{m+n}{\log b}\right)$ vertices.
Fix a, b. Main idea: **compress** an instance ϕ of 3-SAT on n variables and m clauses into the $a:b$-coloring of a graph G on $O\left(\frac{m+n}{\log b}\right)$ vertices.

Sparsification Lemma (Tovey '84)

We can assume that in ϕ, every variable belongs to at most 4 clauses.
The reduction

Fix a, b. Main idea: **compress** an instance ϕ of 3-SAT on n variables and m clauses into the $a:b$-coloring of a graph G on $O(\frac{m+n}{\log b})$ vertices.

Sparsification Lemma (Tovey ’84)

We can assume that in ϕ, every variable belongs to at most 4 clauses.

We can also relax $a:b$-coloring: every vertex is assigned

- an integer $\in \{1, \ldots, b\}$ (**number of colors to receive**) and
- a subset of $\{1, \ldots, a\}$ (**colors it’s allowed to take**).
The reduction (2)

\(v_1, \ldots, v_n: \) variables of \(\phi \).
\(c_1, \ldots, c_m: \) clauses of \(\phi \).
The reduction (2)

v_1, \ldots, v_n: variables of ϕ.

c_1, \ldots, c_m: clauses of ϕ.

- **Groups** of variables of size $\log b$: $V_1, \ldots, V_{\frac{n}{\log b}}$
- **Groups** of clauses of size b: $C_1, \ldots, C_{\frac{m}{b}}$
The reduction (2)

\(v_1, \ldots, v_n\): variables of \(\phi\).
\(c_1, \ldots, c_m\): clauses of \(\phi\).

- **Groups** of variables of size \(\log b\): \(V_1, \ldots, V_{\frac{n}{\log b}}\)
- **Groups** of clauses of size \(b\): \(C_1, \ldots, C_{\frac{m}{b}}\)

To each group of variables, associate \(b\) colors corresponding to all possible assignments.
The reduction (2)

\(v_1, \ldots, v_n\): variables of \(\phi\).
\(c_1, \ldots, c_m\): clauses of \(\phi\).

- **Groups** of variables of size \(\log b\): \(V_1, \ldots, V_{n/\log b}\)
- **Groups** of clauses of size \(b\): \(C_1, \ldots, C_{m/b}\)

To each group of variables, associate \(b\) colors corresponding to all possible assignments.

\[
\begin{array}{ccc}
V_1 & V_i & V_{n/\log b} \\
\bigcirc & \bigcirc & \bigcirc \\
C_1 & C_j & C_{m/b}
\end{array}
\]
The reduction (2)

\(v_1, \ldots, v_n \): variables of \(\phi \).

\(c_1, \ldots, c_m \): clauses of \(\phi \).

- **Groups** of variables of size \(\log b \): \(V_1, \ldots, V_{\frac{n}{\log b}} \)
- **Groups** of clauses of size \(b \): \(C_1, \ldots, C_{\frac{m}{b}} \)

To each group of variables, associate \(b \) colors corresponding to all possible assignments.

\[
\begin{align*}
V_1 & \quad V_i & \quad V_{\frac{n}{\log b}} \\
C_1 & \quad C_j & \quad C_{\frac{m}{b}}
\end{align*}
\]

\(\iff \) if a variable of \(V_i \) belongs to a clause of \(C_j \)
The reduction (2)

\(v_1, \ldots, v_n\): variables of \(\phi\).
\(c_1, \ldots, c_m\): clauses of \(\phi\).

- Groups of variables of size \(\log b\): \(V_1, \ldots, V_{\frac{n}{\log b}}\)
- Groups of clauses of size \(b\): \(C_1, \ldots, C_{\frac{m}{b}}\)

To each group of variables, associate \(b\) colors corresponding to all possible assignments.

\[b - 1 \text{ colours out of the associated } b \]

\(\rightarrow\) if a variable of \(V_i\) belongs to a clause of \(C_j\)
The reduction (2)

\[v_1, \ldots, v_n: \text{variables of } \phi. \]
\[c_1, \ldots, c_m: \text{clauses of } \phi. \]

- Groups of variables of size \(\log b \): \(V_1, \ldots, V_{\frac{n}{\log b}} \)
- Groups of clauses of size \(b \): \(C_1, \ldots, C_{\frac{m}{b}} \)

To each group of variables, associate \(b \) colors corresponding to all possible assignments.

\[\rightarrow \text{if a variable of } V_i \text{ belongs to a clause of } C_j \]

\[b - 1 \text{ colours out of the associated } b \]

\(b \) colours out of all that satisfy one of the clauses
d-detecting sets

Given a set X and a (mysterious) weight function $\omega : X \rightarrow \{-d, -d + 1, \ldots, d - 1, d\}$,

Minimum size of a collection (S_1, \ldots, S_p) s.t.
if $\sum_{a \in S_i} \omega(a) = 0$ for every i then $\omega \equiv 0$?
Given a set X and a (mysterious) weight function $\omega : X \rightarrow \{-d, -d + 1, \ldots, d - 1, d\}$,

Minimum size of a collection (S_1, \ldots, S_p) s.t.
if $\sum_{a \in S_i} \omega(a) = 0$ for every i then $\omega \equiv 0$?

\Rightarrow encodes all subsets of X
Given a set \(X \) and a (mysterious) weight function \(\omega : X \to \{-d, -d+1, \ldots, d-1, d\} \),

Minimum size of a collection \((S_1, \ldots, S_p) \) s.t.
if \(\sum_{a \in S_i} \omega(a) = 0 \) for every \(i \) then \(\omega \equiv 0 \)?

\(\Rightarrow \) encodes all subsets of \(X \) \(\Rightarrow \) \(p \geq \frac{|X|}{\log |X|} \).
Given a set X and a (mysterious) weight function $\omega : X \to \{-d, -d + 1, \ldots, d - 1, d\}$,

Minimum size of a collection (S_1, \ldots, S_p) s.t.
if $\sum_{a \in S_i} \omega(a) = 0$ for every i then $\omega \equiv 0$?

\leq encodes all subsets of $X \Rightarrow p \geq \frac{|X|}{\log |X|}$.

$O\left(\frac{|X|}{\log |X|}\right)$ is **enough**! (Lindström ’65)
Conclusion
Thanks!
Homomorphism

Definition

A graph G is homomorphic to a graph H if there is a function $f : V(G) \rightarrow V(H)$ that preserves adjacency.
Homomorphism

Definition

A graph G is **homomorphic** to a graph H if there is a function $f : V(G) \rightarrow V(H)$ that preserves adjacency.

k-coloring: homomorphism to K_k.

Theorem (Hell, Neˇ setril '90)

For fixed H, “is G homomorphic to H?” is NP-hard unless H is bipartite.

Theorem (Cygan et al '16)

“is G homomorphic to H?” cannot be solved in $O^{*}(|V(H)|^{\alpha} \cdot |V(G)|)$ time unless ETH fails.
Definition

A graph G is **homomorphic** to a graph H if there is a function $f : V(G) \to V(H)$ that **preserves adjacency**.

k-coloring: homomorphism to K_k.
$a:b$-coloring: homomorphism to $KG_{a,b}$.

(graph on vertex set $\{\{1, \ldots, a\}^b\}$ with edges between disjoint sets).
A graph G is **homomorphic** to a graph H if there is a function $f : V(G) \rightarrow V(H)$ that preserves adjacency.

k-coloring: homomorphism to K_k.

$a:b$-coloring: homomorphism to $KG_{a,b}$.

(graph on vertex set $\{1, \ldots, a\}_b$ with edges between disjoint sets).

Theorem (Hell, Nešetril ’90)

For fixed H, "is G homomorphic to $H"$: NP-hard unless H is bipartite.
Homomorphism

Definition

A graph G is homomorphic to a graph H if there is a function $f : V(G) \rightarrow V(H)$ that preserves adjacency.

k-coloring: homomorphism to K_k.

$a:b$-coloring: homomorphism to $K_{Ga,b}$.

(graph on vertex set $\left\{ 1, \ldots, a \right\} b$ with edges between disjoint sets).

Theorem (Hell, Neˇ setril '90)

For fixed H, "is G homomorphic to H?" is NP-hard unless H is bipartite.

Theorem (Cygan et al '16)

"is G homomorphic to H?" cannot be solved in $O^*(|V(H)|^{\alpha} |V(G)|)$ time unless ETH fails.