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Complexity

"lIs G k-colorable?”
@ k< 1: Easy v
@ k—2: Easy v
@ k > 3: NP-hard

"ls G a:b-colorable?”
@ 2 < 2b: Easy v
@ 2 — 2b: Easy v
@ a2 > 2b+ 1: NP-hard (Hell, NeZetril '90)
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NP-hard? :(

Exponential Time Hypothesis (Impagliazzo, Paturi '99)
There is € > 0 such that 3-SAT cannot be solved in O (2°") time.
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Theorem (DeII, Husfeldt, Wahlén '10)

For any k > 3, there is « > 0 such that k-Coloring cannot be
solved in O (2%") time unless ETH fails.
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NP-hard? :(

Exponential Time Hypothesis (Impagliazzo, Paturi '99)

There is € > 0 such that 3-SAT cannot be solved in time.

Theorem (DeII, Husfeldt, Wahlén '10)

For any k > 3, there is « > 0 such that k-Coloring cannot be
solved in time unless ETH fails.

Theorem (Bjorklund, Husfeldt '06)

k-Coloring can be solved in time.
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Our result

Theorem (Nederlof '08)
a:b-Coloring can be solved in O"((b -+ 1)") time.
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Our result

Theorem (Nederlof '08)
a:b-Coloring can be solved in O"((b -+ 1)") time.

Theorem (B., Kowalik, Pilipczuk, Socata, Wrochna '16)

There is o > 0 such that, for appropriate ranges of values,

a:b-Coloring cannot be solved in O"((b -+ 1)) time unless ETH
fails.
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The reduction

Fix a, b.
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Fix a, b. Main idea: compress an instance ¢ of 3-SAT on n
variables and m clauses into the a:h-coloring of a graph G on
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i=}
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Fix a, b. Main idea: compress an instance ¢ of 3-SAT on n
variables and m clauses into the a:h-coloring of a graph G on

O('ELR) vertices.
i=}

Sparsification Lemma (Tovey '84)

We can assume that in ¢, every variable belongs to at most 4
clauses.

We can also relax a:b-coloring: every vertex is assigned

@ an integer € {1,..., b} (number of colors to receive) and

@ asubset of {1,...,a} (colors it's allowed to take).

Marthe Bonamy Tight lower bounds for the complexity of multicoloring 6/10



The reduction (2)

Vi,...,Vp: variables of ¢.
Ci,...,Cm: clauses of ¢.
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The reduction (2)

Vi,...,Vp: variables of ¢.
Ci,...,Cm: clauses of ¢.
@ Groups of variables of size log b: Vi, ..., VI n
og
@ Groups of clauses of size b: Ci,..., C%

To each group of variables, associate b colors corresponding to all
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The reduction (2)

Vi,...,Vp: variables of ¢.

Ci,...,Cm: clauses of ¢.
@ Groups of variables of size log b: Vi, ..., Vﬁ
og
@ Groups of clauses of size b: Ci,..., C%

To each group of variables, associate b colors corresponding to all
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The reduction (2)

Vi,...,Vp: variables of ¢.

Ci,...,Cm: clauses of ¢.
@ Groups of variables of size log b: Vi, ..., Vﬁ
og
@ Groups of clauses of size b: Ci,..., C%

To each group of variables, associate b colors corresponding to all
possible assignments.

b — 1 colours out of the associated b

Vi Vi Ve
o Q o

< if a variable of V; belongs to a clause of (;

O IS o
G G C%

b colours out of all that satisfy one of the clauses
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d-detecting sets

Given a set X and a (mysterious) weight function
w:X > {-d,—~d+1,....d—1,d},

Minimum size of a collection (Sq,...,Sp) s.t.
if Zaesi w(a) = 0 for every i then w = 07
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d-detecting sets

Given a set X and a (mysterious) weight function
w:X > {-d,—~d+1,....d—1,d},

Minimum size of a collection (Sq,...,Sp) s.t.

if Zaesi w(a) = 0 for every i then w = 07

IX]
log| X"

~> encodes all subsets of X= p >

O(; 1X] ) is enough! (Lindstrém '65)
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Conclusion
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Conclusion

Thanks!
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Homomorphism

A graph G is homomorphic to a graph H if there is a function
f: V(G) — V(H) that preserves adjacency.
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Homomorphism

Definition

A graph G is homomorphic to a graph H if there is a function
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k-coloring: homomorphism to K.
a:b-coloring: homomorphism to KG, .

(graph on vertex set ({1"1')""}) with edges between disjoint sets).
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A graph G is homomorphic to a graph H if there is a function
f: V(G) — V(H) that preserves adjacency.

k-coloring: homomorphism to K.
a:b-coloring: homomorphism to KG, .

raph on vertex set {131 \yith edges between disjoint sets).
g b

Theorem (Hell, Ne3etril '90)

For fixed H, "is G homomorphic to H?": NP-hard unless H is
bipartite.

Marthe Bonamy Tight lower bounds for the complexity of multicoloring 10/10



A graph G is homomorphic to a graph H if there is a function
f:V(G) — V(H) that

: homomorphism to Kj.
: homomorphism to KG, p.
(graph on vertex set ({1"5’3}) with edges between disjoint sets).

Theorem (Hell, Ne3etril '90)

For fixed H, "is G to H?”: NP-hard unless H is

Theorem (Cygan et al '16)

"is G to H?" cannot be solved in
time unless ETH fails.
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