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Orthogonal spectra

Definition
An orthogonal spectrum X consists of
» based O(V)-spaces X(V), for every inner product space V

» O(V) x O(W)-equivariant structure maps
ovw : X(V)ASY — X(Ve w)
subject to associativity and identity conditions.
Here: SW = W U {oc} one-point compactification

An orthogonal spectrum X has an underlying non-equivariant
spectrum:

» Xp=X[R"), n>0
> opng : ZXp = X(RM) A ST — X(R™) = X, 4
» forget the O(n)-actions
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Let X be an orthogonal spectrum.
» G: compact Lie group } = Gactson X(V)
» V: orthogonal G-representation

[SY,X(V)]¢ : based G-homotopy classes of G-maps
Definition
The G-equivariant stable homotopy group of X is
78(X) = colimy [SY, X(V)]¢.
» colimit by stabilization via — A SW, using structure maps

> 7TOG(X) is an abelian group, natural in X
» similarly: 7&(X) for k € Z
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Global equivalences

Definition
A morphism f: X — Y of orthogonal spectra
is a global equivalence if the map

Te(f) + 7E(X) — 7d(Y)
is an isomorphism for all k € Z and all G.

Definition
The global stable homotopy category is

GH = Sp@[global equivalences™ '],

the localization of orthogonal spectra at the class
of global equivalences.
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Global stable homotopy category

» Model category structures are available
» GH is a tensor triangulated category

» objects in GH represent cohomology theories on stacks
(Gepner-Henriques, Gepner-Nikolaus)

Note: w,ﬁe}(X ) = traditional (non-equivariant) homotopy group
of the underlying spectrum of X, so

global equivalence — stable equivalence
The forgetful functor

/\
GH (stable homotopy category)

has fully faithful adjoints providing a recollement.
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Restriction and transfers

A continuous homomorphism G+— K:a
induces a restriction homomorphism o : 7d(X) — 75(X)

[f: 8 — X(V)] — [o*(f) : S¥V) — X(a*(V))]

A closed subgroup H < G gives rise to
a transfer homomorphism  tr@ : ©f/(X) — 7§(X)
(equivariant Thom-Pontryagin construction)

Relations:

v

restrictions are contravariantly functorial

v

transfers are covariantly functorial

v

inner automorphisms are identity

v

transfers commute with inflation
double coset formula
— ‘global functors’ (‘inflation functors’)

v
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Example
The global sphere spectrum S is given by

S(V) = SV, ov.w SV A SW ~ gveWw

Example

The connective global K-theory spectrum ko:

ko(V) = finite configurations of points in SV
labeled by finite dimensional
orthogonal subspaces of Sym(V)

Example

The Eilenberg-Mac Lane spectrum HZ:
(HZ)(V) = Sp=(SY)

infinite symmetric product
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Some global morphisms

For G finite:
S 78(S) = A(G) Burnside ring (Segal)
ko 7§8(ko) = RO(G) representation ring
dimension rank
HZ. 18(HZ) =7 constant global functor

Global versus non-equivariant equivalence:

The morphisms Sog — HQ and mO — MO are
non-equivariant equivalences, but not global equivalences.

Reference: S. Schwede, Global homotopy theory
www.math.uni-bonn.de/people/schwede/global.pdf



Global Thom spectra

V: inner product space of dimension n
~v: tautological n-plane bundle
over the Grassmannian Gr,(V & R*)



Global Thom spectra

V: inner product space of dimension n
~v: tautological n-plane bundle
over the Grassmannian Gr,(V & R*)
Definition
The global Thom spectrum mO is the orthogonal spectrum with

mO(V) = Thom space of vy .



Global Thom spectra

V: inner product space of dimension n
~v: tautological n-plane bundle
over the Grassmannian Gr,(V & R*)

Definition

The global Thom spectrum mO is the orthogonal spectrum with
mO(V) = Thom space of vy .

The action of O(V) and structure maps only affect V, not R*.



Global Thom spectra

V: inner product space of dimension n
~v: tautological n-plane bundle
over the Grassmannian Gr,(V & R*)

Definition
The global Thom spectrum mO is the orthogonal spectrum with

mO(V) = Thom space of vy .
The action of O(V) and structure maps only affect V, not R*.

Small changes can make a big difference:



Global Thom spectra

V: inner product space of dimension n
~v: tautological n-plane bundle
over the Grassmannian Gr,(V & R*)
Definition
The global Thom spectrum mO is the orthogonal spectrum with
mO(V) = Thom space of yy .
The action of O(V) and structure maps only affect V, not R*.

Small changes can make a big difference:
» replacing Gry(V @ R*) by Grp(V @ V) yields
an orthogonal Thom spectrum MO
with different equivariant homotopy types.



Global Thom spectra

V: inner product space of dimension n
~v: tautological n-plane bundle
over the Grassmannian Gr,(V & R*)
Definition
The global Thom spectrum mO is the orthogonal spectrum with
mO(V) = Thom space of yy .
The action of O(V) and structure maps only affect V, not R*.

Small changes can make a big difference:
» replacing Gry(V @ R*) by Grp(V @ V) yields
an orthogonal Thom spectrum MO
with different equivariant homotopy types.

» mO is equivariantly connective; MO is equivariantly
oriented
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Why we may care about mO

NE(X) = bordism group of n-dim’l smooth G-manifolds over X

Smooth compact G-manifolds embed into G-representations,
so the equivariant Thom-Pontryagin construction makes sense:

NE(X) — colimy [SVER" mO(V) A X,] = mOY%(X)

Theorem (Wasserman ‘69)

Let G be isomorphic to the product of a finite group and a torus.
Then the equivariant Thom-Pontryagin construction is an
isomorphism of equivariant homology theories.

The equivariant Thom-Pontryagin construction
NZY® 5 moSY® s not surjective.

Why finite xtorus?  That would make another talk . ..
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Inverse Thom classes

Let V be an n-dimensional G-representation.
The inverse Thom class

rgv € mO¢(SY) = =& ,(mO)
is the class of the G-map

S" — Th(yy | Gra(V @ R*)) = mO(V)
X — (0 R",(0,x)) .

Remarks

v

The classes 7g, v are not invertible in 7&(mO).

The morphism mO —; MO sends 74 v to the inverse of
the Thom class.

The morphism mO —: MO is localization at {7 v} v
in the category of E..-global ring spectra.

MO is ultra-commutative, mO is not.

v

v

v
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The rank filtration of mO

mO, is the orthogonal subspectrum of mO with
MmO, (V) = Th(yv | Gra(V & R™)) € mO(V) .

Then mO is a global homotopy colimit
mO = hocolimp MO, .
Definition
Let My T(m) be the free orthogonal spectrum that represents
the functor

Sp° — (sets), X — X(vm)OM

where vy, is the tautological O(m)-representation on R™.
» My T(m) is a global Thom spectrum of the virtual global
vector bundle —vyn, over By O(m); it refines
MT(m) = BO(m)~m.
» in GH, the spectrum My T(m) represents the functor
E—s EXM(gmm).



Global homotopy type of mO

Theorem
There is a global equivalence

mO(m) | ZmMg| T(m) .

[Skip proof]
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Global homotopy type of mO

Theorem
There is a global equivalence

mO(m) | ZmMg| T(m) .

Proof.
mO (V) = Th(Gry (V& R™))
orth. complement ThJ_(Grm( Ve R™)
= (MyT(m))(VaR™)
= (sh™My T(m))(V).
So

mO(,y = sh"MyT(m) ~g X"MyT(m). O



Global morphisms out of mO

Corollary
The orthogonal spectrum mO,) represents the functor

GH — (sets), E — ESUM(Svm) = 79 ) (E).



Global morphisms out of mO

Corollary
The orthogonal spectrum mO,) represents the functor

GH — (sets), E —s EQM(S") = 7™ (E).
The following sequence is short exact:
0 — lim' EQP(8"m) — [mO,E] = lim E5™(8"m) — 0



Global morphisms out of mO

Corollary
The orthogonal spectrum mO,) represents the functor

GH — (sets), E —s EQM(S") = 7™ (E).
The following sequence is short exact:
0 — lim' EQP(8"m) — [mO,E] = lim E5™(8"m) — 0

The inverse limit and derived limit are formed along

res (™
Eg(m)(sym) Oo(m—1) Eg(mf1)(sym_1 /\ S1) o~ m 1)(Sym 1)

and ‘ev’ is evaluation at the inverse Thom classes TO(m) vm-
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Multiplicative inverse Thom classes

Let E be a global ring spectrum, i.e., a commutative monoid in
GH under globally derived smash product. Subject to
vanishing lim'-terms, ring spectrum morphisms mO — E
correspond to collections of inverse Thom classes

tn € ES™(S™™), m>0,

that are multiplicative, i.e., such that

=1 and resgg';;mo)(m)(tmm) =t xty.
Example
The classes

tm = Bu(m).cm/Bymy g 1N KUéJ,g,m)(S”%)

correspond to a global ring spectrum morphism mU — KU.
Since mU is connective, this lifts to a morphism mU — ku€ to
global connective K-theory.
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Example

Since mO is globally connective and 7§(mO) = o, there is a
unique morphism of global ring spectra mO — HF, to the
Eilenberg-MacLane ring spectrum of the constant global Green
functor. Similarly for mSO — HZ.

Example

Let R be a non-equivariant ring spectrum and let bR be the
associated global Borel theory. Any (non-equivariant) ring
spectrum morphism MO — R is adjoint to a morphism of
global ring spectra mO — bR. Under the isomorphism

1

(bR)S™(8"™) = MOy, bA]

[S™ A BO™ R] = R~™(BO~™)

12

the inverse Thom class t,, corresponds to the Thom class of
the virtual bundle —v,, over BO(m).
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Subqotients of the rank filtration

Theorem
There is a global equivalence
mO(m)/mO(,,H) el ST A ZioBg/O(m) .
Proof.
Applying Freepm) .., to the cofiber sequence of O(m)-spaces
o(m)/O(m—1), — S® — 8™ — S' A O(m)/O(m—1),

yields a distinguished triangle in GH
Freeo(m—1)u,_er — Freeo(m) v, — Freeom)y,S™ —

which is isomorphic to
S™' A MygO(m —1) — MgO(m) — £ ByO(m) —

Applying S™ A — gives the distinguished triangle

mO(_1) 2% MOy — S ATFBO(m) — O



Building mO by killing transfers

Corollary
mO is built from S by killing Tr(™

o(m—1) form>1.



Building mO by killing transfers

Corollary

mO is built from S by killing Tr(™

O(m—1) form> 1.

» The rank filtration starts with S = mO(o) — mO, the unit
map.



Building mO

Corollary

by killing transfers

mO s built from S by killing Tro{™ y form > 1.

O(m—1

» The rank filtration starts with S = mO(o) — mO, the unit

map.
» Form>

1 there is a distinguished triangle

in the global stable homotopy category:

(m)s -2 MO(y_1y 2% MOy —+ S™AByO(m)



Building mO by killing transfers

Corollary

mO is built from S by killing Trggg gy form>1.

» The rank filtration starts with S = mO(o) — mO, the unit
map.

» For m > 1 there is a distinguished triangle
in the global stable homotopy category:

8™ AByO(m) 4 L mO(y_1y 2% MOy — S"AByO(m).

» The morphism 0 is classified by
o .0
Trogm-1) (TO(m—1),um_1) in 7 (MO 1)),

the ‘dimension shifting’ transfer.
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Global description of ,(mO)

Since By G represents 7§ (—), the composite

TBuO(m+1) L §MAMO(, L £2B,0(m)

represents a natural operation of equivariant homotopy groups,
namely the ‘degree zero’ transfer

(0] O (@] 1
troum gy & T (X)) — me (X))

Since all mO,,/mO,,,_4) are globally connective, so is mO.
Moreover, there is a short exact sequence of global functors
mo(E3BgO(1)) 2% mo(8) — mo(mO) — 0

Corollary

The action of the Burnside ring global functor on the unit
element 1 € =5(mO) induces an isomorphism of global functors

A/(rdM) 2= mo(mO) .
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The fundamental relation trg(1)(1) = 0 implies the more familiar
2 = resdVrd™M (1)) = 0 inxg(MO).

Corollary
Let G be a compact Lie group. An Fo-basis of wg (mO) is given

by the classes trﬁ(1 ), indexed by conjugacy classes of closed
subgroups H of G whose Weyl group is finite and of odd order.

Summary:
» The global stable homotopy category is the home of all
equivariant phenomena with ‘maximal symmetry’
» Orthogonal spectra and global equivalences provide a
convenient model
» The global perspective reveals universal properties
of equivariant Thom spectra
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Induction versus transfer

Question:
Why is the TP-construction bijective only for G =finite xtorus?

A closer look at the functoriality for closed subgroups H < G:

Geometry: Homotopy theory:
induction isomorphism: ‘Wirthmdiller isomorphism’:
G G
N0 D AG(GxpyX)  mOM(SEAXL) TP mOS(GxpX,)
[M,h] — [Gxy M, G xy h]
where d = dim(G/H) where L = Ty(G/H)
— shift by dimension — twist by an H-representation
Answer:

Different formal behaviour of induction / transfer.
So no chance for an isomorphism in general.
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Why finite xtorus’ !

However:
G is isomorphic to the product of a finite group and a torus
<= for every closed subgroup H of G

the tangent H-representation Ty (G/H) is trivial
< all transfers ‘up to G’ are untwisted

In fact, this suggests a homotopy theoretic proof
(induction over the size of G, isotropy separation)

More refined statement: let V be a G-representation
p:S(VaR) — SY stereographic projection
represents a tautological equivariant bordism class

dgv € NG |(SY)



Correction by tautological class

Recall: L = Ty(G/H) tangent H-representation,
of dimension d = dim(G/H)



Correction by tautological class

Recall: L = Ty(G/H) tangent H-representation,
of dimension d = dim(G/H)
Proposition

For every closed subgroup H of a compact Lie group G and
every H-space X the following diagram commutes:

Nﬁ—d(x) s morl;l—d(XJr)
\LdH,LX_
Indg | mOY (St A X,)
%LTrﬁ

NE(G xp X) mOS((G xpy X)4)




Correction by tautological class

Recall: L = Ty(G/H) tangent H-representation,
of dimension d = dim(G/H)
Proposition

For every closed subgroup H of a compact Lie group G and
every H-space X the following diagram commutes:

Nﬁ—d(x) L morl;l—d(XJr)
\LdH}LX—
Indg | mOY (St A X,)
%LTrﬁ
NE(G xp X) mOS (G xu X)+)

» the tautological class dy,; measures the failure of
Thom-Pontryagin map to commute with induction/transfer.
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Stable equivariant bordism and MO

» The classes dg v are not invertible in N.%(—) nor mO¢&(-).
» Formally inverting them forces
‘geometric induction = homotopical transfer’.

Corollary (Brocker-Hook ‘72)

After formally inverting all tautological classes in N¢(—) and in
mO¢(—), the Thom-Pontryagin construction becomes an
isomorphism for all compact Lie groups G and all G-spaces X.

Formally inverting the classes dg v yields:
» stable equivariant bordism:

» tom Dieck’s homotopical equivariant bordism:
MO (X) = colimy mOS,,,,(SY A X;)
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Open questions:
» Does mOf(—) describe any geometric G-bordism theory?
We need to twist induction by the tangent representation...
» Are there generalizations to equivariant bordism theories
with more structure (mSOE, mSpiné, mug,...)?
Induction needs extra structure on G/H ...

[back to main story]



