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LINEAR REGRESSION MODEL

Yi = f T (xi)β + εi , i = 1, . . . ,n, εi
iid∼ N (0, σ2)

where
Yi is the i th response
xi ∈ X is the experimental condition under which Yi is observed
β is a column vector consisting of q unknown parameters
f (x) is a q-vector of linearly independent regression functions
εi is ‘experimental error’ or natural variation
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EXACT DESIGNS

Exact design ξn for sample size n:

ξn =

{
x1 x2 . . . xm

n1/n n2/n . . . nm/n

}
; ni integers,

m∑
i=1

ni = n

Here, x1, . . . , xm (where m ≤ n) are the m different values among
the n experimental conditions in the design
n1, . . . ,nm are the corresponding replications
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APPROXIMATE DESIGNS

Approximate design ξ:
A probability measure on X , of the form

ξ =

{
x1 x2 . . . xm
w1 w2 . . . wm

}
, 0 < wi ≤ 1,

m∑
i=1

wi = 1

xi ∈ X , i = 1, . . . ,m: support points of ξ.

wi , i = 1, . . . ,m: weights (proportions) corresponding to xis.
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INFORMATION MATRIX

For completely observed data, the information matrix of the linear
model for design

ξ =

{
x1 · · · xm
w1 · · · wm

}
is

M(ξ) =
m∑

i=1

f (xi)f T (xi)wi
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OPTIMALITY CRITERIA

Aim: Estimate the model parameters in β with ‘high precision’

A D-optimal design maximises the determinant, |M(ξ)|, of the
information matrix

↪→ minimises the volume of a confidence ellipsoid for β

An A-optimal design minimises the trace of the inverse
information matrix, trace(M(ξ)−1)

↪→ minimises the sum of the variances of the elements of β̂
A c-optimal design (with respect to a vector c) minimises
cT M(ξ)−1c, the variance of a linear combination of the elements
of β̂

↪→ for estimating cTβ most precisely
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MISSING DATA MECHANISMS

Let

Mi =

{
1, if Yi is missing,
0, otherwise, for i = 1, ..,n.

Rubin (1976) classifies missing data mechanisms into
missing completely at random (MCAR): P(Mi = 1) = P
missing at random (MAR): the probability that a response is
missing depends only on observed quantities, e.g. on the design
(P(Mi = 1) = P(xi))
not missing at random (NMAR): the probability that a response is
missing depends on unobserved quantities, e.g. on the value of
the missing response (P(Mi = 1|yi) = P(xi , yi))
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ESTIMATION

There are various methods to analyse incomplete data sets
Under MCAR and MAR, complete case analysis is a valid
method, and leads to unbiased estimates (Little, 1992)
Complete case analysis is popular with data analysts due to its
simplicity

↪→ In what follows, we will assume the data will be analysed
using only the complete cases
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ESTIMATION

Under NMAR, all methods of analysis will result in biased
estimates

Problem: NMAR is untestable
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MISSING DATA MECHANISMS AND DESIGN

Imhof, Song and Wong (2002) propose to use the expected
information matrix, E [M(ξ,M)], for finding optimal designs,
whereM = (M1, . . . ,Mn) and

E [M(ξ,M)] =
m∑

i=1

wi f (xi)f T (xi)[1− E [Mi ]]

=
m∑

i=1

wi f (xi)f T (xi)[1− P(Mi = 1)].
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MISSING DATA MECHANISMS AND DESIGN

Under MCAR, P(Mi = 1) = P, a constant, so optimal designs
found assuming all responses will be observed, will still be
optimal in this scenario:

E [M(ξ,M)] =
m∑

i=1

wi f (xi)f T (xi)[1− P]
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MISSING DATA MECHANISMS AND DESIGN

Under MAR, P(Mi = 1) = P(xi) is a function of xi , so this
approach simply introduces a weighting into the information
matrix

E [M(ξ,M)] =
m∑

i=1

wi f (xi)f T (xi)[1− P(xi)]

This scenario is equivalent to design for heteroscedastic linear
regression
While the optimal designs will change, the entire optimal design
theory still holds
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MISSING DATA MECHANISMS AND DESIGN

However, there is no guidance available on how to deal with
NMAR scenarios
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OPEN PROBLEMS

Two lines of investigation:

Optimal design of experiments for NMAR scenarios?
Is (E [M(ξ,M)])−1 a sufficiently close approximation to the
covariance matrix?
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APPROXIMATION

If all responses are available,

M(ξ)−1 ∝ var(β̂)

If responses may be missing, var(β̂) does not exist
What are we trying to approximate/optimise, and how does
E [M(ξ,M)] fit in?
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APPROXIMATION

For an exact design ξ, let Cξ be the set of values ofM such that
M(ξ,M) is non-singular
Assume that ξ is such that the probability vξ = P(M /∈ Cξ) is
“sufficiently small”
We can write the ‘observed’ covariance matrix as var(β̂|M = µ)
where µ is the observed outcome of the vector of missingness
indicatorsM
Note that this expression will exist if and only if µ ∈ Cξ
Since vξ is close to zero, we will consider only those values
where µ ∈ Cξ to approximate the ‘observed’ covariance matrix
(when it exists) in what follows
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APPROXIMATION

At the planning stage of the experiment, the observed value of µ
is not known, and var(β̂|M) (whereM∈ Cξ) is a random
variable
To approximate the ‘observed’ covariance matrix we take the
expectation of var(β̂|M) with respect to the distribution ofM,
constrained toM∈ Cξ,

EM|M∈Cξ(var(β̂|M)) = EM|M∈Cξ{[M(ξ,M)−1]}

The expectation EM|M∈Cξ{[M(ξ,M)−1]} is not normally
available in closed form
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APPROXIMATION

We propose to apply a second order Taylor expansion to the
respective elements of M(ξ,M)−1, and then to take the
expectation (whereM∈ Cξ) of these
In this context, the Imhof et al (2002) approach corresponds to a
Taylor expansion of order zero/one, where the expectation is
taken over the original distribution ofM

↪→Will there be any differences between the two approaches in
practice?
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ILLUSTRATION

Consider the simple linear regression model:

Yi = β0 + β1xi + εi , i = 1, . . . ,n, εi
iid∼ N (0, σ2)

and a two-point design {x∗1 , x∗2 ;n1,n2} where n1 + n2 = n. Then,

M(ξ,M)−1 =
1(

x∗1 − x∗2
)2 Z1Z2

(
x∗21 Z1 + x∗22 Z2 −x∗1 Z1 − x∗2 Z2
−x∗1 Z1 − x∗2 Z2 Z1 + Z2

)
,

where Z1 =
∑n1

i=1(1−Mi) and Z2 =
∑n

i=n1+1(1−Mi)
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ILLUSTRATION

Zj ∼ Bin(nj , 1− P(x∗j )), j = 1,2
Cξ = {M ∈ {0,1}n;Z1 > 0,Z2 > 0}
vξ = P(x∗1 )

n1 + P(x∗2 )
n2 − P(x∗1 )

n1P(x∗2 )
n2

Hence we will consider the corresponding zero truncated
binomial distributions for Z1 and Z2, respectively
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ILLUSTRATION

Taking expectation (with respect to the zero truncated binomial
random variables) of a second order Taylor series expansion about
E{Zj} yields

E
(

1
Zj

)
≈ 1

E{Zj}
+

Var(Zj)

(E{Zj})3 =
(1− P(x∗j )

nwj )2{P(x∗j ) + nwj(1− P(x∗j ))}
(nwj)2(1− P(x∗j ))2

for j = 1,2, and we can substitute this expression into the respective
optimality criterion
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SIMULATION

Setup:

Simple linear regression model:

Yi = 1 + xi + εi , i = 1, . . . ,n, εi
iid∼ N (0, σ2)

Logistic missing data indicator:

P(x) =
exp(γ0 + γ1x)

1 + exp(γ0 + γ1x)

200,000 simulation runs
n = 30, γ0 = −4.572, γ1 = 3.191, X = [0,∞)
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SIMULATION

Simulated ‘observed’ covariance matrix for two different arbitrary
designs with n1 = n2 = 15 and P(x1) = 0.01.

{x1, x2} {0, 1} {0, 1.5}
[1, 1] element of covariance matrix 0.06740 0.06740

First order Taylor series approximation 0.06736 0.06736
Second order Taylor series approximation 0.06740 0.06740

[2, 2] element of covariance matrix 0.15242 0.10375
First order Taylor series approximation 0.15078 0.09628

Second order Taylor series approximation 0.15222 0.10177
[1, 2] element of covariance matrix -0.06740 -0.04494

First order Taylor series approximation -0.06736 -0.04490
Second order Taylor series approximation -0.06740 -0.04493

Determinant of covariance matrix 0.00573 0.00497
First order Taylor series approximation 0.00562 0.00447

Second order Taylor series approximation 0.00572 0.00484
No. of cases failed 0 23

P(x2) 0.20085 0.55342
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SIMULATION

Optimal designs found using the two approximations, respectively.
The other support point is x∗1 = 0 and P(x∗1 ) = 0.01.

ξ∗A 2nd ξ∗A 1st ξ∗c 2nd ξ∗c 1st ξ∗D 2nd ξ∗D 1st
x∗

2 1.4630 1.51466 1.5497 1.60059 1.3360 1.37660
w2 0.4664 0.4539 0.6257 0.6208 0.5110 0.5

P(x∗
2 ) 0.5241 0.5650 0.5922 0.6308 0.4234 0.4553
vξ 1.186 e-04 3.378 e-04 5.359 e-05 1.577 e-04 1.897 e-06 7.4897 e-06

The larger support point is smaller for the second order designs, but
has higher weight

Stefanie Biedermann Optimal design when outcome values may be missing 26/46



Introduction
Results (Approximation, MAR scenarios)

Results (NMAR)

Approximation
Simulation

SIMULATION

Simulated criterion values for different designs. The numbers in the
last row indicate the frequency of the cases where M(ξ,M) becomes
singular

sample var(β̂1) tr(sample var(β̂)) |sample var(β̂)| Failures
ξ∗A 2nd 1.0690e-01 1.6992e-01 4.8805e-03 19
ξ∗A 1st 1.0823e-01 1.7123e-01 5.0880e-03 67
ξ∗c 2nd 9.7359e-02 1.8894e-01 5.4195e-03 16
ξ∗c 1st 9.8102e-02 1.8968e-01 5.7121e-03 35
ξ∗D 2nd 1.0400e-01 1.7590e-01 4.5807e-03 0
ξ∗D 1st 1.0486e-01 1.7197e-01 4.6526e-03 2
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FINDINGS

We used several further values for the parameters γ0 and γ1, and
different sample sizes
For smaller sample sizes, e.g. n = 30, the second order
approximations were slightly closer, and the corresponding
optimal designs tended to generate fewer failures
If we use the second order expansion, convexity of the criterion
function is no longer guaranteed
For sample sizes ≥ 60, there was hardly any difference between
the two approximation methods

In the next section on NMAR scenarios we will assume large
enough sample sizes to use the simpler approximation
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PROBLEM 1:

How well will designs found under MAR assumption perform if the
true missing data mechanism is NMAR?
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SIMULATION

Consider the simple linear regression model

Yi = β0 + β1xi + εi , i = 1, . . . ,n, εi
iid∼ N(0, σ2)

For finding A- and D-optimal designs, assume

P(xi) =
exp(γ0 + γ1xi)

1 + exp(γ0 + γ1xi)

For generating the missing data indicators, use

P(xi , yi) =
exp(γ̃0 + γ̃1xi + yi)

1 + exp(γ̃0 + γ̃1xi + yi)

where γ̃j + βj = γj , j = 0,1
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SIMULATION

For the choices (γ̃0, γ̃1, β0, β1) = (−5.572,2.191,1,1) (and hence
(γ0, γ1) = (−4.572,3.191)), we find the A- and the D-optimal design
under MAR, then generate data under NMAR and analyse these
using complete case analysis (100,000 simulation runs)
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SIMULATION
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SIMULATION

As σ2 increases, i.e. the further away we get from the MAR scenario,
the larger the absolute value of the bias, and the MSE

↪→ The optimal MAR designs do not perform well under NMAR
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PROBLEM 2:

How do we approximate the covariance matrix under NMAR?

Assume large sample size (n ≥ 60) and use the Imhof, Song and
Wong (2002) approach
We have the expression P(Mi = 1) in the information matrix
Recall: P(Mi = 1|yi) = P(xi , yi) depends on the unobserved
value of yi

↪→ Use the expected value of P(xi ,Yi)
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PROBLEM 2:

If Yi ∼ N(f T (xi)β, σ
2), then

P(xi ,Yi) =
exp(γ̃0 + γ̃1xi + Yi)

1 + exp(γ̃0 + γ̃1xi + Yi)

follows a logit-normal distribution

There is no closed form for the expectation of a logit-normal
distribution, so we used the integral function in Matlab to
evaluate it

We tried several simpler approximations, e.g. the median, but
neither of these performed well
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PROBLEM 3:

What can we do about the bias under NMAR?

Consider the mean squared error matrix rather than the covariance
matrix in the optimality criterion

m.s.e.(β̂) = E [(β̂ − β)(β̂ − β)T ]

= var(β̂) +
[
E(β̂)− β

] [
E(β̂)− β

]T

How to approximate the bias E(β̂)− β?
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APPROXIMATING THE BIAS

The bias is likely to depend on σ2 (see simulations) and on the
design
For a given sample size n, define a grid for values of σ2 and the
design variables x1, . . . , xm, n1, . . . ,nm where

∑m
i=1 ni = n

For some selected values from the grid, simulate data using the
NMAR model, and estimate the parameters via complete case
analysis
Repeat a large number of times, and use the average empirical
bias for each grid value as an ‘observation’ from the unknown
bias function
Fit a model to these ‘data’, e.g. a Gaussian process model, and
use this predicted response surface to approximate the bias in
the MSE
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OPTIMAL NMAR DESIGNS

A- and D-optimal designs for the example, for n = 60, X = [0,∞),
and different values of σ2. The lower support point is 0 in all cases.

MAR σ =1 σ =1.5 σ =2
D-optimal x∗

2 1.3766 0.9793 1.0202 1.1210
design w2(n2) 0.5000(30) 0.3811 (23) 0.3194 (19) 0.2879 (17)

A-optimal x∗
2 1.5147 1.0871 1.0617 1.0671

design w2(n2) 0.4539(27) 0.4462 (27) 0.4508 (27) 0.4534 (27)

The choice of the parameter values makes 0 the point with the
lowest probability of missingness
Incorporating the NMAR mechanism results in smaller values of
the larger support point - reduces the probability of Yi missing
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COMPARISON OF DESIGNS UNDER NMAR
σ2 = 1 in generating yi and in the NMAR mechanism

D-optimal design that assumes
MAR σ =1 σ =1.5 σ =2

bias of β̂0 -0.015710 -0.015657 -0.015559 -0.015525
bias of β̂1 -0.26664 -0.18472 -0.19344 -0.21511

m.s.e. (β̂0) 0.033581 0.027279 0.024665 0.023522
m.s.e. (β̂1) 0.11689 0.11449 0.12077 0.12403

tr(m.s.e. (β̂)) 0.15047 0.14176 0.14544 0.14756
|m.s.e. (β̂)| 0.0035232 0.0025149 0.0025445 0.0026165

A-optimal design that assumes
MAR σ =1 σ =1.5 σ =2

bias of β̂0 -0.015717 -0.015717 -0.015717 -0.015717
bias of β̂1 -0.29240 -0.20739 -0.20208 -0.20313

m.s.e. (β̂0) 0.030604 0.030604 0.030604 0.030604
m.s.e. (β̂1) 0.13022 0.10697 0.10728 0.10713

tr(m.s.e. (β̂)) 0.16083 0.13758 0.13788 0.13774
|m.s.e. (β̂)| 0.0037448 0.0026704 0.0026408 0.0026451
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COMPARISON OF DESIGNS UNDER NMAR

σ2 = 1.52 in generating yi and in the NMAR mechanism
D-optimal design that assumes

MAR σ =1 σ =1.5 σ =2
bias of β̂0 -0.054443 -0.054393 -0.054202 -0.054178
bias of β̂1 -0.50182 -0.38675 -0.39934 -0.42936

m.s.e. (β̂0) 0.076555 0.062639 0.056827 0.054331
m.s.e. (β̂1) 0.34630 0.32185 0.33703 0.34929

tr(m.s.e. (β̂)) 0.42285 0.38449 0.39386 0.40362
|m.s.e. (β̂)| 0.025828 0.018580 0.018181 0.018456

A-optimal design that assumes
MAR σ =1 σ =1.5 σ =2

bias of β̂0 -0.054465 -0.054465 -0.054465 -0.054465
bias of β̂1 -0.53864 -0.41838 -0.41095 -0.41264

m.s.e. (β̂0) 0.070012 0.070012 0.070012 0.070012
m.s.e. (β̂1) 0.37910 0.31198 0.31145 0.31162

tr(m.s.e. (β̂)) 0.44912 0.38199 0.38146 0.38163
|m.s.e. (β̂)| 0.026319 0.020325 0.020139 0.020183
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CASE STUDY: ALZHEIMER’S TRIAL

Howard et al. (2012) describe a trial with originally 72 patients in
each of two groups (active treatment/placebo)
They fit a simple linear regression model to the response
‘change of SMMSE score from baseline (after 52 weeks)’
After 52 weeks, only 26 patients in the placebo group and 49
patients in the treatment group come back for their tests
We fit an NMAR model to the data and use the estimates to
redesign the trial for n = 144
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CASE STUDY: ALZHEIMER’S TRIAL

We find the A-optimal design to be: 95 patients in the placebo
group and 49 in the treatment group. (The support points are
fixed here, x1 = 0 and x2 = 1, as there are only two groups.)
Simulations show:

n2 52 51 50 49 72
tr(m.s.e. (β̂))(×10−4) 3.2950 3.2927 3.2934 3.2919 3.6155

There is about a 9% [(1− 3.2919/3.6155)× 100%] efficiency
loss if we use the equal sample size design instead of the
optimal design.
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CONCLUSION AND FUTURE WORK:

This is the first approach to mitigate the problems caused by
NMAR missingness through designed experiments
The designs are locally optimal, so robustness with respect to
parameter values and the form of the NMAR mechanism needs
to be assessed
We could try to make the designs more robust to parameter
misspecifications by using prior distributions
Better approximations for the bias function should be
investigated. (Here we used second order response surfaces, but
consider Gaussian processes for future work)
Choice of grid values for simulating the bias function?
Extensions to nonlinear and generalised linear models
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Thank you!
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