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Designs in pharmacometrics

@ Last decades: several methods/software for maximum likelihood
estimation of population parameters from longitudinal data using
nonlinear mixed effect models (NLMEM)

@ Problem beforehand: choice of "population” design

o To obtain precise estimates / adequate power
- number of individuals (N) ?
- number of sampling times/individual (n)?
- allocation of sampling times?
- other design variables (doses, etc.)

o Clinical trial simulation (CTS): time consuming

o Asymptotic theory: expected Fisher Information Matrix ! (FIM)

IMentré et al. Biometrika, 1997.
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Fisher Information Matrix in NLMEM

@ Analytical expression for FIM in NLMEM
o Current approach in PFIM 2 and other design software programs
first order linearisation of model around the expectation of random
effects (FO)
- Only for continuous data

3.

- Performs well but has limitations in case of complex nonlinear
models and/or large variability
@ FIM for discrete longitudinal data:
o Methods based on approximations
@ We propose new approaches for computation of FIM
o Monte Carlo - Adaptive Gaussian Quadrature (MC-AGQ)8
@ Monte Carlo - Hamiltonian Monte Carlo (MC-HMC)?
These approaches:
o Without model linearisation
o Evaluated and compared to CTS and Laplace approx. on 4
longitudinal data types: continuous, binary, count, time to event

4,5

2pRIM group, www.pfim.biostat.fr. 6 Ueckert and Mentré. Comput Stat Data Anal, 2016.

3Nyberg et al. BrJ Clin Pharmacol, 2014. 7 Riviere, Ueckert and Mentré. Biostatistics, 2016.

4Waite and Woods. Biometrika, 2015.

5 Ogungbenro and Aarons. / Pharmacokinet Pharmacodyn, 2011. 2735



Parameter and model uncertainty in designs

@ Optimal design depends on knowledge on model and parameters
o Local planification: given the model m and parameter values ¥},

o Widely used criterion: D-optimality

@ Alternative: Robust designs
o Taking into account uncertainty on parameters

@ Across a set of candidate models
e Example in dose-response study proposed 8,9 and implemented in
MCP-MOD 10

8Blretz, Pinheiro and Branson. Biometrics, 2005.
9Pinheiro et al. Srar Med, 2014.

10Bornkamp et al, cran.r-project.org/web/packages/MCPMod/index.html
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NLMEM: Notations
For continuous data: For discrete data:
Yi=fgUb), &) +e; pUilb) =TI k(i 8k b, &)
with

Vi= (yil,...,ymi)T response for individual i (i=1,...,N)
f, hstructural model
¢; elementary design for subject i
Bi = g(u, b;) individual parameters vector
p vector of fixed effects
b; vector of random effects for individual i, b; ~ A4 (0,Q)
€; vector of residual errors, €; ~ A(0,Z) and X diagonal matrix
V: Population parameters (i, ,0)
pWilb) = N (f,Z)
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MC-HMC method for computation of FIM in NLMEM

Population FIM for one group design: .4 (¥,Z) = N x 4 (¥,¢)
Population design Z = {¢, N} with identical elementary design ¢ in all N subjects

T
Elementary FIM: .4 (y,¢) = Ey, ( 9 loggLu(/J’ﬂ//)) 5108531;/5}41//))
dlog(L(y, y)) dlog(Ly,y) T

oy oy
Dy

MY, k1= Ey

Monte Carlo - MC

After calculation... Dy <

I d(log(plylby WIptbr w)) pyiby.Wply) i (log(pylby W) [¥))) _p(ylbo W) pbaly) dby
by v TpOibw) pbly)db 471 b2 oy T pyiby) p(bly)db
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MC-HMC method for computation of FIM in NLMEM

alog(L(y,y)) dlog(Ly,y) T
Jt(w,é):Ey( og%usyll/]) oggu(/yu/)) )

alog(L(y,y)) dlog(Ly,y) T
oy ay;
Dy

MY, 1= Ey

Monte Carlo - MC

After calculation... Dy <

d(log(p(ylby,y)p(by ly))) pYIby, ¥)p(byly) d(log(p(ylby,y)p(baly)))  PYIb2, ) pbaly)
Iy dby.J dbs

3 . - D:
L Tpiby)pbiyyap b2 L Tpolb,y) pbly)db >
—_— —_—
conditional density conditional density
of bgiven y of bgiven y
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MC-HMC method for computation of FIM in NLMEM

alog(L(y,y)) dlog(Ly,y) T
Jt(w,é):Ey( og%usyll/]) oggu(/yu/)) )

alog(L(y,y)) dlog(Ly,y) T
oy ay;
Dy

MY, 1= Ey

Monte Carlo - MC

After calculation... Dy <
I d(log(p(ylby,y)p(by ly))) pWIby, Y)p(byly) dby.J, d(log(p(ylbp,w)plbo ly)))  PWIbo, ) pbaly)
1

. d
0y T p0ib, ) pblyydb L b2 o) Tpib ) pblyrdb 2
—_— —_—
conditional density conditional density
of bgiven y of bgiven y

d(log(plb,y) p(blw))) ‘ d(log(p(ylb,y) p(bly))) ‘
E( oy Y) 'E( oy Y)

Markov Chains Hamiltonian Monte Carlo - MC-HMC

= Two integrals to compute: w.r.t. y and w.r.t. b

/35
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The (k, ]) term of the FIM estimated as:
1 2
. Dg1= 3 AL A
=1

b1 M 3 (log(pllbi wph)
with Al = Z
kr =1 Oy
2) (2)
o % 3 108(plyrlbi, WP
lr =1 au/l
where

@ (¥r)r=1,..,Ris a R-sample of the marginal distribution of y (MC)

) (bﬁ},?,)mzl,,,,'M and (bfi?,)m:le are 2R M-samples of the conditional
density of b given y, (HMC)

. 7 7 T

To be symmetric = 4 (y,§) = M

Use of MC and Hamiltonian Monte Carlo (HMC) (in Stan 11) 7

7Riviere, Ueckert and Mentré. Biostatistics, 2016.

1stan Development Team. Stan: A C++ Library for Probability and Sampling.
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Example of count response

Poisson model for repeated count response at several dose levels with a full Imax
model describing the relationship between log(1) and dose *

/'lkexp(—]t) . ( d )
_ _ with log(A1) = 1-———
P(y=klb) = . g =p1 d+ ps
Subject i=1 Subject i=2 Subject i=3 Subject i=4 |
8 . | | . bl A ;[ Jo[Joalor
64 o o @ | o o o . .
o Tl L., .. . .
o mes ® @oses mesme o o eem o o ssm| ce s wm % o o8 em cee seee o
26 e @ eSSBS | @ e EE S ¢ N & 00 o san @8 Sseed - semme sesem
ode Ceewaiie  Cutame FUNR T leTTeete O Ceceemen
1 30 60 901 30 60 901 30 60 901 30 60 9(
® fp=ppexp(bp); by~ N (O,w%,) Parameters | ¥*
@ d: dose among 3 levels H1 1
{0,0.4,0.7} M2 0.5
. w1 0.3
@ N =20 subjects, nep =30
) rep P 03

replications/subject/dose

7Riviere, Ueckert and Mentré. Biostatistics, 2016.
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Example of count response: FIM evaluation

We compared 3 approaches:

@ MCMC-based approach (package MIXFIM)

1000 MC / 200 MCMC with 500 burn
1000 MC / 1000 MCMC with 1000 burn

5000 MC / 200 MCMC with 500 burn
5000 MC / 1000 MCMC with 1000 burn

@ Adaptive Gaussian Quadrature (AGQ) implemented in R

@ Laplace approximation (LA) (<= AGQ with 1 node)

with clinical trial simulations (CTS):
@ Simulate 1000 datasets Y with ¥ = ¥ using R

@ For each Y: estimate ¥ using Monolix 4.3

11/35
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Example of count response: RSE/RRMSE ’

CTS RSE

CTS RRMSE
MCMC 10007200
MCMC 1000/1000
MCMC 50007200
MCMC 5000/1000
AGQ

LA

Hq 2% co?

7Riviere, Ueckert and Mentré. Biostatistics, 2016.

|
CEEEEEEDN

RRMSE/RSE (%)
0 10 20 30 40 50 60 70 80 90 100
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Example of count response: convergence of the

normalized determinant of the FIM

350 400
| |

300
I

250
I

200
I

Normalized determinant of the FIM

150
1

T T T T 1
0 2000 4000 6000 8000 10000

Number of MC samples

The number of MCMC samples M is fixed at 200 with 500 burn-in. 1335
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Example of count response: design optimization

l Count example
N 60 subjects
Trep 10 replications
Constraints n 3 doses
choice d; =0 (placebo)
of doses do, d3 from0.1to 1
(step=0.1,
no repetition)
Evaluation of FIM 5000 MC
Combinatorial for all possible designs 200 HMC
optimization
' =) — Dp(E)
D-efficiency D-eff(2) = BpE0)
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D-optimal design for count data: Results

3rd dose

0.2 0.4 0.6 0.8
2nd dose

Optimal doses: ¢p = {0,0.4,0.5}.
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Robustness w.r.t. parameters: method

Robustness w.r.t. parameters of a given model

@ Robust FIM, assuming a distribution p(¥) on the parameters
MR(E) = Ey (M (Y, E))

- two integrals w.r.t. y and w.r.t. b for evaluation of .4 (¥, E)
- one supplementary integral w.r.t. 'V for evaluation of .#r(Z)

@ Evaluation by MC-HMC using Stan (drawing jointly ¥ and y by MC)

17/35
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Robustness w.r.t. parameters: method (2)

Robustness w.r.t. parameters of a given model
@ Using robust FIM (5000 MC - 200 HMC)

@ Using DE-criterion for robust design Epg
@ p(E) = det(pENP

with P, number of population parameters of the model
Implementation
@ in R using Stan : extension of MIXFIM
Application to count data example
@ Comparison between Zp vs Epg in terms of
- Allocation of optimal doses

- Relative efficiencies

D-eff(E) = % and DE-eff(Ep) = —(Dq;gfg(i));)

where

dp@E) =det(uy*,2NVP  and  ¢pp(E) = det( (py), =)V

18/35
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Robustness w.r.t. parameters: count data example

Poisson model for repeated count outcome at several dose levels with a full Imax
model describing the relationship between log(1) and dose

Ak exp(—1) . ( d )
- - th log(A) = B1 |1 - ——
P(y = kib) = a with log(4) = 1 a+ B
® Bp=ppexp(bp); by ~ W(O,wf,)
) @ 90% prediction interval of log(2.) ° Assuming uncertainty on

at each dose computed from p(y)

. parameters pp and wy
© pF p(¥)
M1 1 1
37 U | 05 LN (—0.89,0.63)
3 E(u2) = 0.5; CV(u2)=70%
h w1 0.3 0.3
w2 | 03 LN (-1.50,0.77)
E(wz) = 0.3; CV(w2)= 90%

@ Optimization of 3 doses with
N =60, 11yep = 10
-fixingd; =0
- choosing dy and d3 from 0 to 1

: :
0.0 0.2 04 0.6 0.8
dose =1 1~LN(-0.89,0.63)
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Robustness w.r.t. parameters:

count data example

D-eff(5) = 20&)

Dp(Ep)

3rd dose

0.2 0.8

0.4
2nd dose

0.6

Optimal doses: ¢ p = {0,0.4,0.5}.

Dpp(E)
Dpr(EpE)
1.0
0.9
osz

f=
078
S
o065
054
04
0.3
'0.2

DE-eff(Zp) =

3rd dose

04 06 08
2nd dose

02

Optimal doses: ¢ pr = {0,0.2,0.4}.

Efficiencies
\ Design = | D-eff(E) | DE-eff(Z) |
Ep 100% 94.1%
{N=60,¢ =(0,04,0.5)}
EDE 93.3% 100%
{N=60,¢=(0,0.2,0.4)}

20/35
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Robustness w.r.t. a set of M candidate models: method

@ Using FIM (5000 MC - 200 HMC)

@ Using D-criterion for of optimal design Zp ;;, for each model m
Op,m(2) = det( (¥}, 2) "/ Pm

@ Compound D-criterion 12 » I3 for of common design Z¢p

M M
ocpE = [| Pom@% = [] (et (¥, =) ™ P, with

m=1 m=1

- Py, number of population parameters of model m
- am, weight quantifying the balance between M models, Y ,,am=1

Implementation in R

@ Use of compound optimality criterion to combine several models

12 ptkinson et al. J Stat Plan Inference, 2008.

13Nguyen et al. Pharm Stat, 2016.
51/3r5
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Robustness w.r.t. a set of M candidate models: method

Application to design in a count example

Robust optimal design across M candidate models
@ Using FIM by MC-HMC and compound D-optimality (a;, = 1/M)
@ Comparison between Zp ,; vs Z¢p in terms of
- Allocation of optimal doses

- Relative efficiencies

o _ _®om(E _ =

292/35



00000

Robust design for count data: 5 candidate models

d
Mi: log(2)=ps(1 *rﬁ?) M;: log(%)=p4(1—pd) Mj: log(1)=p4(1 - Bolog(d+ 1))
<« <« 0
a1 S o]
2 2 2
o< > o
O.51 S s O s
| o | ) |
T olb—r——— olb—r——r——
0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8
dose dose dose
Bad
My log(1)=p:(1 -~ )
+B2
«© «©
o o 1. Full Emax
3 o E al 2. L|nea§
5 < | 5« | 3. Log-Linear
= —ie 4. Emax
> < |
oL oLh—
0.0 0.4 0.8 0.0 0.4 08
dose dose

- Fixed effects p1, pp for M2, M3, M4 chosen to have similar
mean value of log(A) as for M1 at dose 0 and at dose 1
- Variability w1 = w2 =0.3 and w3 =0

21/35
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Robust design w.r.t model: application on count data

1.0 . X
08 . . y
06 16
04 . lo.
02|

02 04 06 08 02 02 04 06 08 02 04 06 08 02
2nd dose 2nd dose 2nd dose
Optimal doses: {1 ={0,0.4,0.5}. Optimal doses: {p » ={0,0.9,1}. Optimal doses: {3 ={0,0.9,1}.
10 1.0 10 10
o9 o9 1. Full Emax
08 08 08 08 .
8 078 g 078 2. Linear
208 oeg 06 08¢ 3. Log-Linear
& 058 & 058
04 04 04 0 4. Emax
o2 03 o2 03
02 04 06 08 02 02 04 06 08 02
2nd dose 2nd dose
Optimal doses: {y 4 = {0,0.2, 1}. Optimal doses: {1y 5 = {0,0.5,1}.
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Robust design w.r.t model: application on count data

D-efficiencies

D-effy, (=) = — 2
®p m(ED,m)
Design = D-eff; (2) | D-effy () | D-effs () | D-effy () | D-effs ()
Ep1 100% | 60.8% | 68.9% | 503% | 27.1%
[N =60,¢ = (0,0.4,0.5)
En2 87.0% | 100% | 100% | 308% | 672%
N =60,¢ = (0,09, 1)}
Ens 87.0% | 100% | 100% | 308% | 672%
{N=60,¢ = (0,0.9,1)}
Epa 884% | 857% | 854% | 100% | 856%
N =60,¢ = (0,02,1)}
Ens 94.6% | 89.9% | OL7% | 69.9% | 100%
{N=60,¢ = (0,0.5,1)}

25/35
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Robust design w.r.t model: application on count data

D-efficiencies

D-cffy (=) = — 2=
@p,mEp,m)
Design 2 D-eff] () | D-effy () | D-eff; () | D-effy () | D-effs (E)
ZDp1 100% 60.8% 68.9% 50.3% 27.7%
{N=60,¢=(0,0.4,0.5)}
ZD,2 87.0% 100% 100% 30.8% 67.2%
{N=60,¢=(0,0.9,1)}
Zp3 87.0% 100% 100% 30.8% 67.2%
{N=60,¢=(0,0.9,1)}
ZDa 88.4% 85.7% 85.4% 100% 85.6%
{N=60,¢=1(0,0.2,1)}
ZD,5 94.6% 89.9% 91.7% 69.9% 100%
{N=60,¢ = (0,0.5,1)}

@ Important loss of efficiency in some scenarios where the model is not
correctly pre-specified

25/35
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Robust design w.r.t model: application on count data

Compound D-optimal design: {cp = (0,0.3,1).
Pep(E)

CD-eff(Z) = Dcp(Ean)

| =1.0

1.0 - 0.9
0.8 o g
; 0.7 ¢
g 0.6€
-O 1
° 058

y 0.4
0.3

o 0.2

0.2 0.4 0.6 0.8
2nd dose
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Robust design for count data: 5 candidate models

D-efficiencies

CD-efficiencies

D-effyy (=) = — D E) CD-eff(z) = —CREL
qbl),nl(:lllrn) q@(:[)(::(u))
Design = D-eff; ()| D-effy ()| D-effs (E) |D-effy () | D-effs (2) | CD-eff ()
Zp1 100% | 60.8% | 689% | 503% | 27.7% | 6b.1%
IN =60,¢ = (0,0.4,05)
2 87.0% | 100% | 100% | 30.8% | 67.2% | 823%
IN = 60,¢ = (0,0.9, )}
Zns 87.0% | 100% | 100% | 30.8% | 67.2% | 823%
IN=60,¢ = (0,0.9,1)}
Epa 884% | 85.7% | 854% | 100% | 856% | 98.0%
[N =60,¢ = (0,0.2, 1)}
Ens 94.6% | 89.9% | 9L1.7% | 69.9% | 100% | 98.5%
[N =60,¢ = (0,0.5,1)}
Zcp 941% | 88.1% | 885% | 79.7% | 93.1% | 100.0%
IN = 60,¢ = (0,0.3,1))

@ Good performance of the compound D-optimal design

27/35
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Robustness w.r.t. model and parameters: method

@ Using robust FIM (5000 MC - 200 HMC)
@ Using DE-criterion for robust design for each model My,, Epg,m
©ppm(E) = det(MRE) P

with P;,, number of population parameters of the model M,
@ Compound DE-criterion for common design Zcpg

M M
DeppE) = [[ ®pgm@ % = [] (det(apE)*m!Pm
m=1 m=1

Implementation
@ in R using Stan : extension of MIXFIM
Application to count data example

@ Comparison between =¢p and Ecpg and between = pg ;,; and ZEcpg in
terms of

- Allocation of optimal doses

- Relative efficiencies

=) = _PcpEE)
CDE-llE) = poputEcon

28/35
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Robust design w.r.t model and parameters: application on

count data

r"[

02 04 06 08 § 02 04 06 08
% dose. 2nd dose 2nd dose
Optimal doses: { pg 1 ={0,0.2,0.4}. Optimal doses: { p » ={0,0.9,1}. Optimal doses: { pg 3 ={0,0.9, 1}.

10 ;'g 10 ;Z
: y 1. Full Emax
08 08% 08 08z .
2 078 g 078 2. Linear
So6 06§  Sos 06% i
5 s 3 — ® 3. Log-Linear
& 058 & 058
04 04 04 0 4. Emax
o 03 0 03 5. Quadratic
02 02 04 06 08 02
% nd dose” 2nd dose
Optimal doses: { pf; 4 ={0,0.1,0.7}. Optimal doses: { pg 5 = {0,0.5,1}.
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Robust design w.r.t model and parameters: application on

count data

DE-efficiencies
P pg,m(E)

DE-effm ) DO pEm(EDEm)
Design 2 DE-eff] (£) | DE-eff, (Z) | DE-eff3 (£) | DE-effy (Z) | DE-eff5 (2)
EDE1 100% 49.9% 56.7% 77.5% 23.6%
{N=60,¢=1(0,0.2,0.4)}
EDE2 73.3% 100% 100% 43.5% 87.1%
{N=60,¢=1(0,0.9,1)}
EDE,S 73.3% 100% 100% 43.5% 87.1%
{N=60,¢=1(0,0.9,1)}
EDEa 89.1% 68.1% 73.9% 100% 51.4%
{N=60,¢ =(0,0.1,0.7)}
ZDE5 83.1% 87.8% 89.6% 58.5% 100%
{N=60,¢=1(0,0.5,1)}

20/35
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Robust design w.r.t model and parameters: application on

count data

DE-efficiencies
DpE,m(E)

DE-effm (=)= ®pE,m(EDE m)
Design = DE-eff) (Z) | DE-eff, (Z) | DE-eff3 () | DE-eff; (Z) | DE-effs (Z)
EDE1 100% 49.9% 56.7% 77.5% 23.6%
{N=60,¢=1(0,0.2,0.4)}
EDE,2 73.3% 100% 100% 43.5% 87.1%
{N=60,¢=1(0,0.9,1)}
EDE,3 73.3% 100% 100% 43.5% 87.1%
{N=60,¢=1(0,0.9,1)}
ER 89.1% 68.1% 73.9% 100% 51.4%
{N=60,{=1(0,0.1,0.7)}
EDEs5 83.1% 87.8% 89.6% 58.5% 100%
{N=60,¢=1(0,0.5,1)}

@ Important loss of efficiency in some scenarios where the model is not
correctly pre-specified 20 an
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Robust design w.r.t model and parameters: application on

count data

CDE-eff (E) = % Compound DE-optimal design: {cpg = (0,0.2,1).
: : : m1.0
0.9
0.8 0.8 >
c
% 0.7 g
S06 065
'E L
& 0.5 5
. 0.4
0.3
0.2 r 0.2

0.2 0.4 0.6 0.8
2nd dose
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Robust design w.r.t model and parameters: application on

count data

Design E DE-eff; (Z) | DE-eff, (E) | DE-eff3 () | DE-eff; () | DE-effs ()| CDE-eff ()
ZpE1 100% 16.9% 56.7% 77.5% 23.6% 63.5%
{N=60,¢ = (0,0.2,0.4)}
EpE2 73.3% 100% 100% 435% 87.1% 89.9%
{N=60,¢ = (0,0.9,1)}
EpE3 73.3% 100% 100% 43.5% 87.1% 89.9%
{N=60,¢ = (0,0.9,1)}
EDEa4 89.1% 68.1% 73.9% 100% 51.4% 86.6%
(N =60,¢ = (0,0.1,0.7)}
EpEs 83.1% 87.8% 89.6% 58.5% 100% 95.8%
{N=60,¢ = (0,0.5,1)}
ECDE 90.9% 83.8% 83.9% 84.6% 82.8% 100.0%
{N=60,¢ = (0,0.2,1)}
ZcD 90.0% 83.6% 83.8% 75.9% 94.1% 99.0%
{N=60,¢ = (0,0.3,1)}

@ CDE-optimal design: robust w.r.t model and parameters
292/35
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Discussion

Summary

@ MC-HMC method for computation of FIM / enables applications to design
optimization for discrete data

@ Extension of this method to propose robust optimal designs accounting for
uncertainty w.r.t. parameters and/or models

@ Computationally challenging, much slower than FO approach
Perspectives
@ Replacement of MC by more efficient approach: quasi-random sampling 4

@ Application to continuous data, and to other type of discrete data (binary,
time to event)

@ Use in model-based adaptive design, for instance two-stage designs 1°» 16

@ Implementation of an optimization algorithm

Riviere, Ueckert and Mentré. Biostatistics, 2016.
HMyeckert and Mentré. CM Statistics Conference, London, UK, 2015.
15Dumont, Chenel and Mentré. Commun Stat Simul Comput, 2016.

16Sinha and Xu. J Star Plan Inference, 2011.
24735



Thank you for your attention



	Introduction
	MC-HMC method for computation of FIM and Application
	Methods for Robust designs and Applications
	Discussion

