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Designs in pharmacometrics

Last decades: several methods/software for maximum likelihood
estimation of population parameters from longitudinal data using
nonlinear mixed effect models (NLMEM)

Problem beforehand: choice of "population" design

To obtain precise estimates / adequate power
- number of individuals (N) ?
- number of sampling times/individual (n)?
- allocation of sampling times?
- other design variables (doses, etc.)

Clinical trial simulation (CTS): time consuming

Asymptotic theory: expected Fisher Information Matrix 1(FIM)

1Mentré et al. Biometrika, 1997.
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Fisher Information Matrix in NLMEM

Analytical expression for FIM in NLMEM
Current approach in PFIM 2 and other design software programs 3:
first order linearisation of model around the expectation of random
effects (FO)
- Only for continuous data

- Performs well but has limitations in case of complex nonlinear

models and/or large variability

FIM for discrete longitudinal data:

Methods based on approximations 4 , 5

We propose new approaches for computation of FIM
Monte Carlo - Adaptive Gaussian Quadrature (MC-AGQ)6

Monte Carlo - Hamiltonian Monte Carlo (MC-HMC)7

These approaches:
Without model linearisation
Evaluated and compared to CTS and Laplace approx. on 4
longitudinal data types: continuous, binary, count, time to event

2PFIM group, www.pfim.biostat.fr. 6 Ueckert and Mentré. Comput Stat Data Anal, 2016.
3Nyberg et al. Br J Clin Pharmacol, 2014. 7 Riviere, Ueckert and Mentré. Biostatistics, 2016.
4Waite and Woods. Biometrika, 2015.
5Ogungbenro and Aarons. J Pharmacokinet Pharmacodyn, 2011.
6Ueckert and Mentré. Comput Stat Data Anal, 2016.
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Parameter and model uncertainty in designs

Optimal design depends on knowledge on model and parameters

Local planification: given the model m and parameter valuesΨ∗
m

Widely used criterion: D-optimality

Alternative: Robust designs

Taking into account uncertainty on parameters

Across a set of candidate models

Example in dose-response study proposed 8, 9 and implemented in

MCP-MOD 10

8Bretz, Pinheiro and Branson. Biometrics, 2005.
9Pinheiro et al. Stat Med, 2014.

10Bornkamp et al, cran.r-project.org/web/packages/MCPMod/index.html
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NLMEM: Notations

For continuous data: For discrete data:
yi = f (g(µ,bi),ξi)+εi p(yi|bi) =∏ni

j=1 h(yij,g(µ,bi),ξi)

with

yi = (yi1, . . . ,yini )T response for individual i (i = 1, . . . ,N)

f , h structural model

ξi elementary design for subject i

βi = g(µ,bi) individual parameters vector

µ vector of fixed effects

bi vector of random effects for individual i, bi ∼N (0,Ω)

εi vector of residual errors, εi ∼N (0,Σ) and Σ diagonal matrix

Ψ: Population parameters (µ,ω,σ)

p(yi|bi) =N (f ,Σ)
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MC-HMC method for computation of FIM in NLMEM

Population FIM for one group design: M (Ψ,Ξ) = N ×M (Ψ,ξ)
Population design Ξ= {ξ,N} with identical elementary design ξ in all N subjects

Elementary FIM: M (ψ,ξ) = Ey

(
∂ log(L(y,ψ))

∂ψ
∂ log(L(y,ψ))

∂ψ

T
)

M (ψ,ξ)k,l = Ey


∂ log(L(y,ψ))

∂ψk

∂ log(L(y,ψ))

∂ψl

T

︸ ︷︷ ︸
Dy


Monte Carlo - MC

After calculation... Dy ⇐⇒

∫
b1

∂
(
log(p(y|b1,ψ)p(b1 |ψ))

)
∂ψk

p(y|b1,ψ)p(b1 |ψ)∫
p(y|b,ψ)p(b|ψ)db

db1.
∫

b2
∂
(
log(p(y|b2,ψ)p(b2 |ψ))

)
∂ψl

p(y|b2,ψ)p(b2 |ψ)∫
p(y|b,ψ)p(b|ψ)db

db2
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8/35



Introduction MC-HMC method for comp of FIM Methods for Robust designs and Applications Discussion

The (k, l) term of the FIM estimated as:

M̃ (ψ,ξ)k,l =
1

R

R∑
r=1

A(1)
k,r .A(2)

l,r

with A(1)
k,r =

1

M

M∑
m=1

∂
(
log(p(yr |b(1)

m,r ,ψ)p(b(1)
m,r))

)
∂ψk

A(2)
l,r = 1

M

M∑
m=1

∂
(
log(p(yr |b(2)

m,r ,ψ)p(b(2)
m,r))

)
∂ψl

where

(yr)r=1,...,R is a R-sample of the marginal distribution of y (MC)

(b(1)
m,r)m=1,...,M and (b(2)

m,r)m=1,...,M are 2R M-samples of the conditional
density of b given yr (HMC)

To be symmetric ⇒ M̂ (ψ,ξ) = M̃ (ψ,ξ)+M̃ (ψ,ξ)T

2

Use of MC and Hamiltonian Monte Carlo (HMC) (in Stan 11) 7

7Riviere, Ueckert and Mentré. Biostatistics, 2016.
11Stan Development Team. Stan: A C++ Library for Probability and Sampling.
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Example of count response

Poisson model for repeated count response at several dose levels with a full Imax
model describing the relationship between log(λ) and dose 7

P(y = k|b) = λkexp(−λ)

k!
with log(λ) =β1

(
1− d

d+β2

)

βp =µpexp(bp); bp ∼N (0,ω2
p)

d: dose among 3 levels
{0,0.4,0.7}

N = 20 subjects, nrep = 30
replications/subject/dose

Parameters Ψ∗
µ1 1
µ2 0.5
ω1 0.3
ω2 0.3

7Riviere, Ueckert and Mentré. Biostatistics, 2016.
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Example of count response: FIM evaluation

We compared 3 approaches:

MCMC-based approach (package MIXFIM)

1000 MC / 200 MCMC with 500 burn
1000 MC / 1000 MCMC with 1000 burn
5000 MC / 200 MCMC with 500 burn
5000 MC / 1000 MCMC with 1000 burn

Adaptive Gaussian Quadrature (AGQ) implemented in R

Laplace approximation (LA) (⇐⇒ AGQ with 1 node)

with clinical trial simulations (CTS):

Simulate 1000 datasets Y withΨ=ΨT using R

For each Y : estimate Ψ̂ using Monolix 4.3
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Example of count response: RSE/RRMSE 7

7Riviere, Ueckert and Mentré. Biostatistics, 2016.
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Example of count response: convergence of the
normalized determinant of the FIM

The number of MCMC samples M is fixed at 200 with 500 burn-in. 13/35
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Example of count response: design optimization

Count example

N 60 subjects
nrep 10 replications

Constraints n 3 doses

choice d1 = 0 (placebo)
of doses d2, d3 from 0.1 to 1

(step = 0.1,
no repetition)

Evaluation of FIM 5000 MC
Combinatorial for all possible designs 200 HMC
optimization

D-efficiency D-eff(Ξ) = ΦD(Ξ)
ΦD(ΞD)
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D-optimal design for count data: Results

Optimal doses: ξD = {0,0.4,0.5}.
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Robustness w.r.t. parameters: method

Robustness w.r.t. parameters of a given model

Robust FIM, assuming a distribution p(Ψ) on the parameters

MR(Ξ) = EΨ(M (Ψ,Ξ))

- two integrals w.r.t. y and w.r.t. b for evaluation of M (Ψ,Ξ)
- one supplementary integral w.r.t. Ψ for evaluation of MR(Ξ)

Evaluation by MC-HMC using Stan (drawing jointlyΨ and y by MC)
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Robustness w.r.t. parameters: method (2)

Robustness w.r.t. parameters of a given model

Using robust FIM (5000 MC - 200 HMC)

Using DE-criterion for robust design ΞDE

ΦDE (Ξ) = det(MR(Ξ))1/P

with P, number of population parameters of the model

Implementation

in R using Stan : extension of MIXFIM

Application to count data example

Comparison between ΞD vs ΞDE in terms of

- Allocation of optimal doses

- Relative efficiencies

D-eff(Ξ) = ΦD(Ξ)
ΦD(ΞD) and DE-eff(ΞD) = ΦDE (Ξ)

ΦDE (ΞDE )

where

φD(Ξ) = det(M (ψ∗,Ξ))1/P and φDE (Ξ) = det(M (p(ψ),Ξ))1/P
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Robustness w.r.t. parameters: count data example

Poisson model for repeated count outcome at several dose levels with a full Imax
model describing the relationship between log(λ) and dose

P(y = k|b) = λkexp(−λ)

k!
with log(λ) =β1

(
1− d

d+β2

)

βp =µpexp(bp); bp ∼N (0,ω2
p)

Assuming uncertainty on
parameters µ2 and ω2

Ψ∗ p(Ψ)
µ1 1 1
µ2 0.5 L N (−0.89,0.63)

E(µ2) = 0.5; CV(µ2)= 70%
ω1 0.3 0.3
ω2 0.3 L N (−1.50,0.77)

E(ω2) = 0.3; CV(ω2)= 90%

Optimization of 3 doses with
N = 60, nrep = 10
- fixing d1 = 0
- choosing d2 and d3 from 0 to 1
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Robustness w.r.t. parameters: count data example

D-eff(Ξ) = ΦD(Ξ)
ΦD(ΞD)

Optimal doses: ξD = {0,0.4,0.5}.

DE-eff(ΞD) = ΦDE (Ξ)
ΦDE (ΞDE )

Optimal doses: ξDE = {0,0.2,0.4}.

Efficiencies
Design Ξ D-eff(Ξ) DE-eff(Ξ)

ΞD 100% 94.1%
{N = 60,ξ= (0,0.4,0.5)}

ΞDE 93.3% 100%
{N = 60,ξ= (0,0.2,0.4)}

20/35



Introduction MC-HMC method for comp of FIM Methods for Robust designs and Applications Discussion

Robustness w.r.t. a set of M candidate models: method

Using FIM (5000 MC - 200 HMC)

Using D-criterion for of optimal design ΞD,m for each model m

ΦD,m(Ξ) = det(M (Ψ∗
m,Ξ))1/Pm

Compound D-criterion 12 , 13 for of common design ΞCD

ΦCD(Ξ) =
M∏

m=1
ΦD,m(Ξ)αm =

M∏
m=1

(
det(M (Ψ∗

m,Ξ))
)αm/Pm , with

- Pm, number of population parameters of model m

- αm, weight quantifying the balance between M models,
∑

mαm = 1

Implementation in R

Use of compound optimality criterion to combine several models

12Atkinson et al. J Stat Plan Inference, 2008.
13Nguyen et al. Pharm Stat, 2016.
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Robustness w.r.t. a set of M candidate models: method

Application to design in a count example

Robust optimal design across M candidate models

Using FIM by MC-HMC and compound D-optimality (αm = 1/M)

Comparison between ΞD,m vs ΞCD in terms of

- Allocation of optimal doses

- Relative efficiencies

D-effm (Ξ) = ΦD,m(Ξ)
ΦD,m(ΞD,m) and CD-eff(Ξ) = ΦCD(Ξ)

ΦCD(ΞCD)
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Robust design for count data: 5 candidate models

- Fixed effects µ1, µ2 for M2, M3, M4 chosen to have similar
mean value of log(λ) as for M1 at dose 0 and at dose 1

- Variability ω1 =ω2 = 0.3 and ω3 = 0
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Robust design w.r.t model: application on count data

Optimal doses: ξD,1 = {0,0.4,0.5}. Optimal doses: ξD,2 = {0,0.9,1}. Optimal doses: ξD,3 = {0,0.9,1}.

Optimal doses: ξD,4 = {0,0.2,1}. Optimal doses: ξD,5 = {0,0.5,1}.
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Robust design w.r.t model: application on count data

D-efficiencies

D-effm (Ξ) = ΦD,m(Ξ)

ΦD,m(ΞD,m)

DesignΞ D-eff1 (Ξ) D-eff2 (Ξ) D-eff3 (Ξ) D-eff4 (Ξ) D-eff5 (Ξ)

ΞD,1 100% 60.8% 68.9% 50.3% 27.7%
{N = 60,ξ= (0,0.4,0.5)}

ΞD,2 87.0% 100% 100% 30.8% 67.2%
{N = 60,ξ= (0,0.9,1)}

ΞD,3 87.0% 100% 100% 30.8% 67.2%
{N = 60,ξ= (0,0.9,1)}

ΞD,4 88.4% 85.7% 85.4% 100% 85.6%
{N = 60,ξ= (0,0.2,1)}

ΞD,5 94.6% 89.9% 91.7% 69.9% 100%
{N = 60,ξ= (0,0.5,1)}

Important loss of efficiency in some scenarios where the model is not
correctly pre-specified
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Robust design w.r.t model: application on count data

Compound D-optimal design: ξCD = (0,0.3,1).

CD-eff(Ξ) = ΦCD(Ξ)
ΦCD(ΞCD)
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Robust design for count data: 5 candidate models

D-efficiencies

D-effm (Ξ) = ΦD,m(Ξ)

ΦD,m(ΞD,m)

CD-efficiencies

CD-eff(Ξ) = ΦCD(Ξ)

ΦCD(ΞCD)

DesignΞ D-eff1 (Ξ) D-eff2 (Ξ) D-eff3 (Ξ) D-eff4 (Ξ) D-eff5 (Ξ) CD-eff(Ξ)

ΞD,1 100% 60.8% 68.9% 50.3% 27.7% 65.1%
{N = 60,ξ= (0,0.4,0.5)}

ΞD,2 87.0% 100% 100% 30.8% 67.2% 82.3%
{N = 60,ξ= (0,0.9,1)}

ΞD,3 87.0% 100% 100% 30.8% 67.2% 82.3%
{N = 60,ξ= (0,0.9,1)}

ΞD,4 88.4% 85.7% 85.4% 100% 85.6% 98.0%
{N = 60,ξ= (0,0.2,1)}

ΞD,5 94.6% 89.9% 91.7% 69.9% 100% 98.5%
{N = 60,ξ= (0,0.5,1)}

ΞCD 94.1% 88.1% 88.5% 79.7% 93.1% 100.0%
{N = 60,ξ= (0,0.3,1)}

Good performance of the compound D-optimal design
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Robustness w.r.t. model and parameters: method

Using robust FIM (5000 MC - 200 HMC)

Using DE-criterion for robust design for each model Mm, ΞDE,m

ΦDE,m(Ξ) = det(MR(Ξ))1/Pm

with Pm, number of population parameters of the model Mm

Compound DE-criterion for common design ΞCDE

ΦCDE (Ξ) =
M∏

m=1
ΦDE,m(Ξ)αm =

M∏
m=1

(det(MR(Ξ))αm/Pm

Implementation

in R using Stan : extension of MIXFIM

Application to count data example

Comparison between ΞCD and ΞCDE and between ΞDE,m and ΞCDE in
terms of

- Allocation of optimal doses

- Relative efficiencies

CDE-eff(Ξ) = ΦCDE (Ξ)
ΦCDE (ΞCDE )
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Robust design w.r.t model and parameters: application on
count data

Optimal doses: ξDE,1 = {0,0.2,0.4}. Optimal doses: ξDE,2 = {0,0.9,1}. Optimal doses: ξDE,3 = {0,0.9,1}.

Optimal doses: ξDE,4 = {0,0.1,0.7}. Optimal doses: ξDE,5 = {0,0.5,1}.
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Robust design w.r.t model and parameters: application on
count data

DE-efficiencies

DE-effm (Ξ) = ΦDE,m(Ξ)

ΦDE,m(ΞDE,m)

DesignΞ DE-eff1 (Ξ) DE-eff2 (Ξ) DE-eff3 (Ξ) DE-eff4 (Ξ) DE-eff5 (Ξ)

ΞDE,1 100% 49.9% 56.7% 77.5% 23.6%
{N = 60,ξ= (0,0.2,0.4)}

ΞDE,2 73.3% 100% 100% 43.5% 87.1%
{N = 60,ξ= (0,0.9,1)}

ΞDE,3 73.3% 100% 100% 43.5% 87.1%
{N = 60,ξ= (0,0.9,1)}

ΞDE,4 89.1% 68.1% 73.9% 100% 51.4%
{N = 60,ξ= (0,0.1,0.7)}

ΞDE,5 83.1% 87.8% 89.6% 58.5% 100%
{N = 60,ξ= (0,0.5,1)}

Important loss of efficiency in some scenarios where the model is not
correctly pre-specified
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Important loss of efficiency in some scenarios where the model is not
correctly pre-specified
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Robust design w.r.t model and parameters: application on
count data

CDE-eff(Ξ) = ΦCDE (Ξ)
ΦCDE (ΞCDE ) Compound DE-optimal design: ξCDE = (0,0.2,1).
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Robust design w.r.t model and parameters: application on
count data

DesignΞ DE-eff1 (Ξ) DE-eff2 (Ξ) DE-eff3 (Ξ) DE-eff4 (Ξ) DE-eff5 (Ξ) CDE-eff(Ξ)

ΞDE,1 100% 46.9% 56.7% 77.5% 23.6% 63.5%
{N = 60,ξ= (0,0.2,0.4)}

ΞDE,2 73.3% 100% 100% 43.5% 87.1% 89.9%
{N = 60,ξ= (0,0.9,1)}

ΞDE,3 73.3% 100% 100% 43.5% 87.1% 89.9%
{N = 60,ξ= (0,0.9,1)}

ΞDE,4 89.1% 68.1% 73.9% 100% 51.4% 86.6%
{N = 60,ξ= (0,0.1,0.7)}

ΞDE,5 83.1% 87.8% 89.6% 58.5% 100% 95.8%
{N = 60,ξ= (0,0.5,1)}

ΞCDE 90.9% 83.8% 83.9% 84.6% 82.8% 100.0%
{N = 60,ξ= (0,0.2,1)}

ΞCD 90.0% 83.6% 83.8% 75.9% 94.1% 99.0%
{N = 60,ξ= (0,0.3,1)}

CDE-optimal design: robust w.r.t model and parameters
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Discussion

Summary

MC-HMC method for computation of FIM 7 enables applications to design
optimization for discrete data

Extension of this method to propose robust optimal designs accounting for
uncertainty w.r.t. parameters and/or models

Computationally challenging, much slower than FO approach

Perspectives

Replacement of MC by more efficient approach: quasi-random sampling 14

Application to continuous data, and to other type of discrete data (binary,
time to event)

Use in model-based adaptive design, for instance two-stage designs 15 , 16

Implementation of an optimization algorithm

7Riviere, Ueckert and Mentré. Biostatistics, 2016.
14Ueckert and Mentré. CM Statistics Conference, London, UK, 2015.
15Dumont, Chenel and Mentré. Commun Stat Simul Comput, 2016.
16Sinha and Xu. J Stat Plan Inference, 2011.
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Thank you for your attention
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