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Motivating Example

@ Situation: A new drug is developed.
@ Two typical questions might be:

1. What is the minimally effective dose?
2. Should the drug be taken daily or weekly?

@ We use a dose finding study to answer these questions.

Idea: Describe the dose response curve of the daily dosage for instance by

(1)
fd00) = o0 4 20
05 +d

Describe the dose response curve of the weekly dosage for instance by

f(d,0?) =
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Motivating Example
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Motivating Example

f(d,0M) =0l + 27 £(d,0?) =07 4

response

Figure:
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Two Emax curves where the placebo effect is the same.
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Motivating Example

f(d, 00y =0p") 4 22

response
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Figure: Two Emax curves where the placebo effect and the Emax effect is the same.
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Model formulation

@ 2 dose response curves (from 2 samples)
i=1,2

,Jg— f(d() 91,9( ))—f-&‘u( j=1,...k
{=1,.
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Model formulation

@ 2 dose response curves (from 2 samples)
i=1,2

,Jg— f(d() 01,9( ))+€Uf j=1,...k
{=1,.

01 € RP same parameter in each group

° Hg) € RY different parameter in each group
d" e X; = [0, i)

n,-:ZJk ynjfori=1,2and N =n;+ n
gjje ~ N(0,0?) independent
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Model formulation

@ 2 dose response curves (from 2 samples)
=12
Yie=f(d,0,60) ey j=1,....k
{= 1, <., N

01 € RP same parameter in each group

° Gg) € RY different parameter in each group

d" € x; =10, df
n,-zzjiln,-j fori=1,2and N=n;+nm
gjje ~ N(0,0?) independent

Complete parameter in the two models

0= (01,05, 60) € RPT2
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Example: Two Emax models

What does this notation look like for the Emax models?
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Example: Two Emax models

f(d,01,65)
/

Common Placebo

/

ﬂ(’)d
0 ya )

i

0 = (01,91, 9D 9P 9T e RS
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Example: Two Emax models

£(d,01,0)
/ \»
Common Placebo Common Placebo and Emax
90d Uad
91—1—@ 191+9£i)+d
6 = (01,0, 0), 9P, 9P)T € RS 0 = (1. 0,,68", 6T e RS
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Task

Find optimal designs for estimating the parameter

0= (0:,05,67)) € RPH24

most precisely!

ulm university um\/@ sitat |

K. Schorning Optimal designs for dose response curves with common parameters 8 /28



Maximum Likelihood Estimator (MLE)

The designs for two samples (of sizes ny and ny)

FORNS PO C) )
dv:(”lll ”lkl 6 = m "é(_k22 ’)\N:(,,_A}

ny n ny ny

=23
N———
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Maximum Likelihood Estimator (MLE)

The designs for two samples (of sizes n; and n»)

4O . g O Re) )
np o n no N

Further assumption:

=23
N———

lm Ti—X€(0,1) and  lim 20 —¢;e(0,1)

N—oo nj—oo n
Then the MLE 6 = (51, égl), égz)) satisfies as N — oo

VN —0) B N (0, M7L(£,6)),

where § = (1,82, 7).
U aulm
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The structure of the information matrix

The information matrix of the design £ = (£1,&2, )

M(E,0) = )\1/\/](1)(51’ 0) + )\2/\/](2)(52,,9) c R(P+29)x(p+2q)
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The structure of the information matrix

The information matrix of the design £ = (£1,&2, )
M(E,0) = )\1/\/](1)(51’ 0) + /\2/\/](2)(52,9) c R(P+29)x(p+2q)

where the matrices M()(¢&;, ) are defined by

MO)(&;,0) = /X hi(d)h] (d)d&i(d)

i

and h(d) is the gradient of f(d, 01,9£i)) w.r.t. 6

BT(d) = - (70,0, oi).07)

b (d) = —(aif(d s )),ho, i f(do 01,05 )))
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The Emax cases

@ The same placebo effect: 6 = (91,199),19&1),1952),ﬁgz))T

1 o\d
T _ = d o 1
hl (d) - o1 (17 19gl)+da (1921)+d)2,0,0>

1 (2)
h;—(d) = (1, (L7 07 07 _M>

oo\ 9% +d (98 +d)?
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The Emax cases

@ The same placebo effect: 6 = (ﬁl,ﬁgl),ﬁgl),ﬂgz), 19&2))7—
1 FIOF
T _ = d o 1
hl (d) - o1 (17 1921)+d, (1951)+d)2,0,0>

1 9@y
T - _d __vu'd
hy (d) = o9 (1’ 1952)+d’0’0’ (19(22)+d)2>

@ The same placebo effect 6; and the Eqax value:
0 = (1. 05,089, 08NT

1 p
T _ - d __ vod
hl (d) - o1 (17 921)+d7 (9£1)+d)2,0>
1

il (1 d 0. — Jod )
oo ) 0£2)+d7 ’ (0§2)+d)2
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Now: Locally D-optimal designs for dose response curves with common
parameters, i.e.
& =arg mEaxdet(M(f,G))
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Now: Locally D-optimal designs for dose response curves with common
parameters, i.e.
& =arg mEaxdet(M(ﬁ,G))

Upcoming questions:

@ Can we derive upper bounds for the number of support points of the
(D)-optimal design?
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(D)-optimal design?
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designs in the separate models for the model with common
parameters?
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Now: Locally D-optimal designs for dose response curves with common
parameters, i.e.
& =arg mEaxdet(M(f,G))

Upcoming questions:
@ Can we derive upper bounds for the number of support points of the
(D)-optimal design?
@ Can we somehow use the knowledge we have about the D-optimal

designs in the separate models for the model with common
parameters?

Remark:

We will restrict ourselves to the two Emax models. The results are also
available for a wider class of models.
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Once again: the Emax cases

f(d,01,05)
/ \
Common Placebo Common Placebo and Emax
9 q , 9>d
"t s R
0 = (01,91, 9 9P 97T e R 0= (V1. 05,0,0@0)T c R4
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Upper bound for the Emax model

Theorem

Let (w.lo.g.) r= Z—i < 1. If the regression model is given by one of the
2

cases of the Emax model, then there exists a design ¢+ = (¢7,65,AT)
with at most 2 X 24+ 1 =5 support points such that for all designs
& = (&1,&2,A) (with more than 5 support points) it holds

M(ET,0) > M(E,0).

&1 can be chosen such that

supp(61)] = 3 with 0, dik € supp(éf)
Isupp(&5)] = 2 with d,(,i)xesupp(f;).
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The Emax cases: The same placebo effect

£(d,01,6)
/ \»
Common Placebo Common Placebo and Emax
01+ 24¢ 91+
1+ m )+d
0 = (01,0, 0, 9P, 9P)T € RS 0 = (1. 0,,6", 6T e RS
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The Emax cases: The same placebo effect

f(d,01,65)
Common Placebo g
ﬂ()d 2+
01 + o0 N

0.0 0.2 0.4 0.6 08 10
dose

0 = (9 qg(l) ,192 719(2) 19(2))T
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D-optimal design for models with the same placebo

Theorem

Let (w.lo.g) r= %; < 1. The locally D-optimal design for the Emax
2
model with common placebo effect is of the form £* = (&7,&5, A*), where

. 0 x,(1) d(l)x . *,(2) d(2)x . 1
51:(1 SRR &=y Y, F=la
3 3 3 2 2 5

and the point x*() is given by

_ (1) 40)
o) — % (i=1,2).
dios + 205

)

ain N
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The Emax cases: The same placebo and Emax

f(d,01,05)

Common Placebo and Emax

KR U1 + -2
P D+d
0.0 0.2 04 0.6 0.8 1.0 ) 1 2
0 = (91, 0,,65, 6N T
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Locally D-optimal design for models with the same placebo
and the same E .«

@ For that case the calculation is more difficult.
@ We first calculate the saturated D-optimal design, i.e.
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Locally D-optimal design for models with the same placebo
and the same E .«

@ For that case the calculation is more difficult.
@ We first calculate the saturated D-optimal design, i.e.

@ we fix the number of support points of the design £ to 4

@ we calculate the saturated D-optimal design under that constraint

© we check under which circumstances the saturated D-optimal design is
also the D-optimal design

niversit niversitat
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Locally D-optimal design for models with the same placebo
and the same E .«

Theorem

() _ —
Letr—al <1, 9()—7,,_1 2 and 0 < 95 < 8 < 1. The locally

D- optlma/ design £ = (fl &5, \*) for the Emax model with the same
placebo and Eq.x parameter in the class of all saturated designs is given by

§ 0 x* dr(nla)x . 9(2) . 1 2
£1=<1X1 g =2 ) y=(3 1) @
3 3 3 4 1
oM 41
Moreover, x*() s defined by x*(1) = %
D +26¢

uulm
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Locally D-optimal design for models with the same placebo
and the same E .«

Theorem

Let r=2% I <1 Let0() dL,),i—l2andassume0<§(1)<0_(2)<1
The des:gn &* defined in (1) is locally D-optimal if the condition
(1) 7(1 (1
g0 5 1600 + DRI +17) — (1= 1)
- (6 + 2ra) (1 + 208Y))

is satisfied.
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D-optimal design for models with the same placebo and
the same E, .«

e
0s
1
il
05
L
e
0s
L

[ i [
i3 [id i3

Figure: The domain where the saturated D-optimal design is also D-optimal for
r = 1 (left panel), for r = % (middle panel) and r = 1 (right panel).
70, e

OO
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The Emax case: Explicite parameter values |

We now consider three possible values for the Emax parameter:
04 =(0.2,0.7,0.2,0.5), 0 = (0.2,0.7,0.2,0.3) 7, O¢c = (0.2,0.7,0.2,0.25) "

Moreover, we consider X1 = X» = [0, 1] and we set

lLr=15, 2r=3% 3.r=1L
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The Emax case: Explicite parameter values |

We now consider three possible values for the Emax parameter:

04 =(0.2,0.7,0.2,0.5), 0 = (0.2,0.7,0.2,0.3) 7, O¢c = (0.2,0.7,0.2,0.25) "

Moreover, we consider X1 = X» = [0, 1] and we set

lLr=15, 2r=3% 3.r=1L
Parameter Saturated locally D-optimal designs
& & A"
0, 0.00 0.14 1.00 | 0.50 1 2
33.3 333 33.3 (1000|750 25.0
0s 0.00 0.14 1.00 | 0.30 1 2
33.3 33.3 33.3|100.0 | 75.0 25.0
oc 0.00 0.14 1.00 | 0.25
33.3 333 33.3|100.0

K. Schorning
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The Emax case: Explicite parameter values |l

0a = (0.2,0.7,0.2,0.5)7, g = (0.2,0.7,0.2,0.3) T, ¢ = (0.2,0.7,0.2,0.25) .

For r = % and r = 1 inequality (2) holds:
The saturated D-optimal designs are also D-optimal among all designs.
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The Emax case: Explicite parameter values |l

0a = (0.2,0.7,0.2,0.5)7, g = (0.2,0.7,0.2,0.3) T, ¢ = (0.2,0.7,0.2,0.25) .

For r = {5 and r = 3 inequality (2) holds:
The saturated D-optimal designs are also D-optimal among all designs.
For the case r = 1 we get:

Locally D-optimal designs for r =1

Parameter R, D o)
1 2 A
o 0.0(_) 0.11_1 1.0(_) 0.50 1 2
33.3 33.3 33.3]100.0 75.0 25.0
05 0.00 0.15 1.00| 0.26 1.00 1 2
352 339 309 | 765 235 |71.0 29.0
oc 0.00 0.15 1.00| 0.21 1.00 1 2

369 347 284 | 686 314 |67.7 323

& niversit niversitat
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The efficiencies

The efficiencies for the saturated D-optimal designs are:

Parameter I Eff|C|enfy
r=1s r= r=
04 =(0.2,0.7,0.2,0.5)7 | 100 % | 100 % 100%
0g = (0.2,0.7,0.2,0.3)7 | 100 % | 100 % | 86 %
Oc =(0.2,0.7,0.2,0.25)T | 100 % | 100 % | 83 %
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The efficiencies

The efficiencies for the saturated D-optimal designs are:

Parameter 1 Eff|C|enfy

r=+i5| r=5|r=1
04 =(0.2,0.7,0.2,0.5)T 100 % | 100 % | 100%
0 = (0.2,0.7,0.2,0.3)" [ 100 % | 100 % | 86 %

Oc =(0.2,0.7,0.2,0.25)7 [ 100 % | 100 % | 83 %

Conclusion:

@ The saturated D-optimal designs are not always the D-optimal ones,
but nevertheless quite efficient.
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Further results and outlook

@ We also derived results for:

» M > 2 groups (i.e. twice daily, daily, weekly, monthly, ...).
» models of the form

F(d,601,6087) = 61 +95) fo(d, 9%))

» the loglinear and the exponential model.
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Further results and outlook

@ We also derived results for:

» M > 2 groups (i.e. twice daily, daily, weekly, monthly, ...).
» models of the form

F(d,601,6087) = 61 +95) fo(d, 9%))

» the loglinear and the exponential model.

@ We applied our results to a dose finding study where we also
calculated robust designs.

@ We are currently working on the analytical determination of bayesian
designs.

niversit niversitat
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@ The functions contained in the information matrices for the separate
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K. Schorning Optimal designs for dose response curves with common parameters 29 /28



A rough idea of the proof

@ The functions contained in the information matrices for the separate
models are a Chebychev system

= the number of support points of the design (in the separate model) can
be bounded

@ The information matrix of our model is a convex combination of the
information matrices in the separated model

= the number of support points of the design in our model can be
bounded

e For instance the bound for the Emax model (separate) is 3 with the
additional information to measure in 0 and dmyay.

@ Prove: All weights for the support point 0 can be put to the design of
the group whose variance is smaller.
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