The DNC and Blup constructions 00000000

If enough time 00 0000

Blowup and deformation groupoids constructions related to index problem

D. & Skandalis - Blowup constructions for Lie groupoids and a Boutet de Monvel type calculus (In preparation)

Claire Debord

UCA

Banff 2017

The DNC and Blup constructions 00000000

If enough time 00 0000

Some historical Groupoid successes in index theory

Smooth compact manifold M:

Some historical Groupoid successes in index theory

<u>Smooth compact manifold $M : M \times M \Rightarrow M$ the pair groupoid.</u> The tangent groupoid of A. Connes :

 $\mathcal{G}_M^t = TM \times \{0\} \cup M \times M \times]0,1] \rightrightarrows M \times [0,1]$

Some historical Groupoid successes in index theory

<u>Smooth compact manifold $M : M \times M \Rightarrow M$ the pair groupoid.</u> The tangent groupoid of A. Connes :

$$\mathcal{G}_M^t = TM \times \{0\} \cup M \times M \times]0,1] \rightrightarrows M \times [0,1]$$

It defines :
$$0 \to C^*(\mathcal{G}_M^t|_{M \times]0,1]}) \to C^*(\mathcal{G}_M^t) \xrightarrow{e_0} C^*(\mathcal{G}_M^t|_{M \times \{0\}}) \to 0$$

 $\simeq \mathcal{K} \otimes C_0(]0,1]) = C^*(TM)$

 $[e_0] \in KK(C^*(\mathcal{G}_M^t), C^*(TM))$ is invertible.

Some historical Groupoid successes in index theory

<u>Smooth compact manifold $M : M \times M \Rightarrow M$ the pair groupoid.</u> The tangent groupoid of A. Connes :

$$\mathcal{G}_M^t = TM \times \{0\} \cup M \times M \times]0,1] \rightrightarrows M \times [0,1]$$

It defines :
$$0 \to C^*(\mathcal{G}_M^t|_{M \times]0,1]}) \to C^*(\mathcal{G}_M^t) \xrightarrow{e_0} C^*(\mathcal{G}_M^t|_{M \times \{0\}}) \to 0$$

 $\simeq \mathcal{K} \otimes C_0(]0,1]) = C^*(TM)$

 $[e_0] \in KK(C^*(\mathcal{G}_M^t), C^*(TM)) \text{ is invertible.}$ Let $e_1: C^*(\mathcal{G}_M^t) \to C^*(\mathcal{G}_M^t|_{M \times \{1\}}) = C^*(M \times M) \simeq \mathcal{K}.$

The index element

$$\operatorname{Ind}_{M \times M} := [e_0]^{-1} \otimes [e_1] \in KK(C^*(TM), \mathcal{K}) \simeq K^0(C^*(TM)) .$$

 $\underset{0 \bullet 00}{\operatorname{Motivations}}$

The algebra $\Psi^*(G) = \Psi^*(M \times M)$ identifies with the C*-algebra of order 0 pseudodifferential operators on M and

$$0 \longrightarrow C^*(M \times M) \longrightarrow \Psi^*(M \times M) \longrightarrow C(\mathbb{S}^*TM) \longrightarrow 0$$
$$\simeq \mathcal{K}$$

which gives a connecting element $\widetilde{Ind}_{M \times M} \in KK^1(C(\mathbb{S}^*TM), \mathcal{K}).$

The algebra $\Psi^*(G) = \Psi^*(M \times M)$ identifies with the C*-algebra of order 0 pseudodifferential operators on M and

$$0 \longrightarrow C^*(M \times M) \longrightarrow \Psi^*(M \times M) \longrightarrow C(\mathbb{S}^*TM) \longrightarrow 0$$
$$\simeq \mathcal{K}$$

which gives a connecting element $\widetilde{Ind}_{M\times M} \in KK^1(C(\mathbb{S}^*TM), \mathcal{K})$. Let *i* be the inclusion of $\mathbb{S}^*TM \times \mathbb{R}^*_+$ as the open subset $T^*M \setminus M$ of T^*M then

$$Ind_{M\times M} = Ind_{M\times M} \otimes [i]$$

The algebra $\Psi^*(G) = \Psi^*(M \times M)$ identifies with the C^{*}-algebra of order 0 pseudodifferential operators on M and

$$0 \longrightarrow C^*(M \times M) \longrightarrow \Psi^*(M \times M) \longrightarrow C(\mathbb{S}^*TM) \longrightarrow 0$$
$$\simeq \mathcal{K}$$

which gives a connecting element $\widetilde{Ind}_{M\times M} \in KK^1(C(\mathbb{S}^*TM), \mathcal{K})$. Let *i* be the inclusion of $\mathbb{S}^*TM \times \mathbb{R}^*_+$ as the open subset $T^*M \setminus M$ of T^*M then

$$Ind_{M\times M} = Ind_{M\times M} \otimes [i]$$

Proposition [Connes]

The morphism $\cdot \otimes Ind_{M \times M} : K^0(T^*M) \simeq KK(\mathbb{C}, C^*(TM)) \longrightarrow \mathbb{Z}$ is the analytic index map of A-S.

The algebra $\Psi^*(G) = \Psi^*(M \times M)$ identifies with the C*-algebra of order 0 pseudodifferential operators on M and

$$0 \longrightarrow C^*(M \times M) \longrightarrow \Psi^*(M \times M) \longrightarrow C(\mathbb{S}^*TM) \longrightarrow 0$$
$$\simeq \mathcal{K}$$

which gives a connecting element $\widetilde{Ind}_{M\times M} \in KK^1(C(\mathbb{S}^*TM), \mathcal{K})$. Let *i* be the inclusion of $\mathbb{S}^*TM \times \mathbb{R}^*_+$ as the open subset $T^*M \setminus M$ of T^*M then

$$\widetilde{Ind}_{M\times M} = Ind_{M\times M} \otimes [i]$$

Proposition [Connes]

The morphism $\cdot \otimes Ind_{M \times M} : K^0(T^*M) \simeq KK(\mathbb{C}, C^*(TM)) \longrightarrow \mathbb{Z}$ is the analytic index map of A-S.

Foliation \mathcal{F} on M: Replace in the picture the groupoid $M \times M$ by the holonomy groupoid $Hol(M, \mathcal{F})$ (i.e. the "smallest" Lie groupoid over M whose orbits are the leaves of the foliation) [Connes].

 $\begin{array}{c} {\rm Motivations} \\ {\rm OO} {\bullet} {\rm O} \end{array}$

The DNC and Blup constructions 00000000

If enough time 00 0000

 $\begin{array}{l} \hline \text{General Lie groupoid } G \rightrightarrows M \\ \hline \text{The adiabatic groupoid } : \mathcal{G}_M^t = \mathfrak{A}G \times \{0\} \cup G \times]0,1] \rightrightarrows M \times [0,1] \\ \text{gives Ind}_G := [e_0]^{-1} \otimes [e_1] \in KK(C^*(\mathfrak{A}G), C^*(G)). \end{array}$

Pseudodifferential exact sequence :

$$0 \longrightarrow C^*(G) \longrightarrow \Psi^*(G) \longrightarrow C(\mathbb{S}^*\mathfrak{A} G) \longrightarrow 0$$

which defines $\widetilde{Ind}_G \in KK^1(C(\mathbb{S}^*\mathfrak{A}G), C^*(G))$

Pseudodifferential exact sequence :

$$0 \longrightarrow C^*(G) \longrightarrow \Psi^*(G) \longrightarrow C(\mathbb{S}^*\mathfrak{A} G) \longrightarrow 0$$

which defines $\widetilde{Ind}_G \in KK^1(C(\mathbb{S}^*\mathfrak{A}G), C^*(G))$ with $\widetilde{Ind}_G = Ind_G \otimes [i]$ where *i* is the inclusion of $\mathbb{S}^*\mathfrak{A}G \times \mathbb{R}^*_+$ as the open subset $\mathfrak{A}^*G \setminus M$ of \mathfrak{A}^*G .

Pseudodifferential exact sequence :

$$0 \longrightarrow C^*(G) \longrightarrow \Psi^*(G) \longrightarrow C(\mathbb{S}^*\mathfrak{A} G) \longrightarrow 0$$

which defines $\widetilde{Ind}_G \in KK^1(C(\mathbb{S}^*\mathfrak{A}G), C^*(G))$ with $\widetilde{Ind}_G = Ind_G \otimes [i]$ where *i* is the inclusion of $\mathbb{S}^*\mathfrak{A}G \times \mathbb{R}^*_+$ as the open subset $\mathfrak{A}^*G \setminus M$ of \mathfrak{A}^*G .

Manifold with boundary - $V \subset M$ a hypersurface [Melrose & co.]

Pseudodifferential exact sequence :

$$0 \longrightarrow C^*(G) \longrightarrow \Psi^*(G) \longrightarrow C(\mathbb{S}^*\mathfrak{A} G) \longrightarrow 0$$

which defines $\widetilde{Ind}_G \in KK^1(C(\mathbb{S}^*\mathfrak{A}G), C^*(G))$ with $\widetilde{Ind}_G = Ind_G \otimes [i]$ where *i* is the inclusion of $\mathbb{S}^*\mathfrak{A}G \times \mathbb{R}^*_+$ as the open subset $\mathfrak{A}^*G \setminus M$ of \mathfrak{A}^*G .

Manifold with boundary - $V \subset M$ a hypersurface [Melrose & co.]

• 0-calculus, (pseudodifferential) operators vanishing on V: replace $M \times M$ by $G_0 \rightrightarrows M$ equal to the pair groupoid on $M \setminus V$ outside V and isomorphic to $\mathcal{G}_V^t \rtimes \mathbb{R}^*_+$ around V.

Pseudodifferential exact sequence :

$$0 \longrightarrow C^*(G) \longrightarrow \Psi^*(G) \longrightarrow C(\mathbb{S}^*\mathfrak{A} G) \longrightarrow 0$$

which defines $\widetilde{Ind}_G \in KK^1(C(\mathbb{S}^*\mathfrak{A}G), C^*(G))$ with $\widetilde{Ind}_G = Ind_G \otimes [i]$ where *i* is the inclusion of $\mathbb{S}^*\mathfrak{A}G \times \mathbb{R}^*_+$ as the open subset $\mathfrak{A}^*G \setminus M$ of \mathfrak{A}^*G .

Manifold with boundary - $V \subset M$ a hypersurface [Melrose & co.]

- 0-calculus, (pseudodifferential) operators vanishing on V: replace $M \times M$ by $G_0 \rightrightarrows M$ equal to the pair groupoid on $M \setminus V$ outside V and isomorphic to $\mathcal{G}_V^t \rtimes \mathbb{R}^*_+$ around V.
- *b*-calculus, (pseudodifferential) operators vanishing on the normal direction of V: replace $M \times M$ by $G_b \rightrightarrows M$ equal to $M \setminus V \times M \setminus V$ outside V and isomorphic to $V \times V \times \mathbb{R} \rtimes \mathbb{R}^*_+$ around V.

The DNC and Blup constructions 00000000

If enough time 00 0000

What about more general situations ...

Can we mix situation analogous to foliation and hypersurface ?

What about more general situations ...

Can we mix situation analogous to foliation and hypersurface ? There is no reason to restrict to :

- V being a hypersurface,
- Operators which are usual operators outside V.

What about more general situations ...

Can we mix situation analogous to foliation and hypersurface ? There is no reason to restrict to :

- V being a hypersurface,
- Operators which are usual operators outside V.

Framework : $G \rightrightarrows M$ a Lie groupoid, $V \subset M$ a submanifold, $\Gamma \rightrightarrows V$ a sub-groupoid of G and operators that "slow down" near Vin the normal direction and "propagate" along Γ inside V.

What about more general situations ...

Can we mix situation analogous to foliation and hypersurface ? There is no reason to restrict to :

- V being a hypersurface,
- Operators which are usual operators outside V.

Framework : $G \rightrightarrows M$ a Lie groupoid, $V \subset M$ a submanifold, $\Gamma \rightrightarrows V$ a sub-groupoid of G and operators that "slow down" near Vin the normal direction and "propagate" along Γ inside V.

Today, in this talk :

• Present the general groupoid constructions involved in such situations.

The Deformation to the Normal Cone construction

Let V be a closed submanifold of a smooth manifold M with normal bundle N_V^M . The deformation to the normal cone is

 $DNC(M,V) = M \times \mathbb{R}^* \cup N_V^M \times \{0\}$

If enough time 00 0000

The Deformation to the Normal Cone construction

Let V be a closed submanifold of a smooth manifold M with normal bundle N_V^M . The deformation to the normal cone is

$$DNC(M,V) = M \times \mathbb{R}^* \cup N_V^M \times \{0\}$$

It is endowed with a smooth structure thanks to the choice of an exponential map $\theta: U' \subset N_V^M \to U \subset M$ by asking the map

$$\Theta: (x, X, t) \mapsto \begin{cases} (\theta(x, tX), t) \text{ for } t \neq 0\\ (x, X, 0) \text{ for } t = 0 \end{cases}$$

to be a diffeomorphism from the open neighborhood $W' = \{(x, X, t) \in N_V^M \times \mathbb{R} \mid (x, tX) \in U'\}$ of $N_V^M \times \{0\}$ in $N_V^M \times \mathbb{R}$ on its image.

If enough time 00 0000

The Deformation to the Normal Cone construction

Let V be a closed submanifold of a smooth manifold M with normal bundle N_V^M . The deformation to the normal cone is

$$DNC(M,V) = M \times \mathbb{R}^* \cup N_V^M \times \{0\}$$

It is endowed with a smooth structure thanks to the choice of an exponential map $\theta: U' \subset N_V^M \to U \subset M$ by asking the map

$$\Theta: (x, X, t) \mapsto \begin{cases} (\theta(x, tX), t) \text{ for } t \neq 0\\ (x, X, 0) \text{ for } t = 0 \end{cases}$$

to be a diffeomorphism from the open neighborhood $W' = \{(x, X, t) \in N_V^M \times \mathbb{R} \mid (x, tX) \in U'\}$ of $N_V^M \times \{0\}$ in $N_V^M \times \mathbb{R}$ on its image.

We define similarly

$$DNC_{+}(M,V) = M \times \mathbb{R}^{*}_{+} \cup N_{V}^{M} \times \{0\}$$

The DNC and Blup constructions $0{\textcircled{\bullet}}000000$

If enough time 00 0000

Functoriality of DNC

Consider a commutative diagram of smooth maps

Where the horizontal arrows are inclusions of submanifolds. Let

$$\begin{cases} DNC(f)(x,\lambda) = (f_M(x),\lambda) & \text{for } x \in M, \ \lambda \in \mathbb{R}_* \\ DNC(f)(x,\xi,0) = (f_V(x), \overline{(df_M)_x(\xi)}, 0) & \text{for } x \in V, \ \bar{\xi} \in T_x M/T_x V \end{cases}$$

We get a smooth map $DNC(f) : DNC(M, V) \to DNC(M', V')$.

The DNC and Blup constructions $00{\textcircled{\bullet}}00000$

If enough time 00 0000

Deformation groupoid

Let Γ be a closed Lie subgroupoid of a Lie groupoid $G \stackrel{t,s}{\rightrightarrows} G^{(0)}.$

The DNC and Blup constructions $00{\textcircled{\bullet}}00000$

If enough time 00 0000

Deformation groupoid

Let Γ be a closed Lie subgroupoid of a Lie groupoid $G \stackrel{t,s}{\rightrightarrows} G^{(0)}.$ Functoriality implies :

$$DNC(G,\Gamma) \rightrightarrows DNC(G^{(0)},\Gamma^{(0)})$$

is naturally a Lie groupoid;

The DNC and Blup constructions $00{\textcircled{\bullet}}00000$

If enough time 00 0000

Deformation groupoid

Let Γ be a closed Lie subgroupoid of a Lie groupoid $G \stackrel{t,s}{\rightrightarrows} G^{(0)}$. Functoriality implies :

$$DNC(G,\Gamma) \rightrightarrows DNC(G^{(0)},\Gamma^{(0)})$$

is naturally a Lie groupoid; its source and range maps are DNC(s)and DNC(t); $DNC(G, \Gamma)^{(2)}$ identifies with $DNC(G^{(2)}, \Gamma^{(2)})$ and its product with DNC(m) where $m: G_i^{(2)} \to G_i$ is the product.

Deformation groupoid

Let Γ be a closed Lie subgroupoid of a Lie groupoid $G \stackrel{t,s}{\rightrightarrows} G^{(0)}$. Functoriality implies :

$$DNC(G,\Gamma) \rightrightarrows DNC(G^{(0)},\Gamma^{(0)})$$

is naturally a Lie groupoid; its source and range maps are DNC(s)and DNC(t); $DNC(G, \Gamma)^{(2)}$ identifies with $DNC(G^{(2)}, \Gamma^{(2)})$ and its product with DNC(m) where $m: G_i^{(2)} \to G_i$ is the product.

Remarks

• No transversality asumption !

Deformation groupoid

Let Γ be a closed Lie subgroupoid of a Lie groupoid $G \stackrel{t,s}{\rightrightarrows} G^{(0)}$. Functoriality implies :

$$DNC(G,\Gamma) \rightrightarrows DNC(G^{(0)},\Gamma^{(0)})$$

is naturally a Lie groupoid; its source and range maps are DNC(s)and DNC(t); $DNC(G, \Gamma)^{(2)}$ identifies with $DNC(G^{(2)}, \Gamma^{(2)})$ and its product with DNC(m) where $m: G_i^{(2)} \to G_i$ is the product.

Remarks

- No transversality asumption !
- N_{Γ}^G is a \mathcal{VB} -groupoid over $N_{\Gamma^{(0)}}^{G^{(0)}}$ denoted $\mathcal{N}_{\Gamma}^G \rightrightarrows N_{\Gamma^{(0)}}^{G^{(0)}}$.

Deformation groupoid

Let Γ be a closed Lie subgroupoid of a Lie groupoid $G \stackrel{t,s}{\rightrightarrows} G^{(0)}$. Functoriality implies :

$$DNC(G,\Gamma) \rightrightarrows DNC(G^{(0)},\Gamma^{(0)})$$

is naturally a Lie groupoid; its source and range maps are DNC(s)and DNC(t); $DNC(G, \Gamma)^{(2)}$ identifies with $DNC(G^{(2)}, \Gamma^{(2)})$ and its product with DNC(m) where $m: G_i^{(2)} \to G_i$ is the product.

Remarks

- No transversality asumption !
- N_{Γ}^G is a \mathcal{VB} -groupoid over $N_{\Gamma^{(0)}}^{G^{(0)}}$ denoted $\mathcal{N}_{\Gamma}^G \rightrightarrows N_{\Gamma^{(0)}}^{G^{(0)}}$.

 $DNC(G,\Gamma) = G \times \mathbb{R}^* \cup \mathcal{N}_{\Gamma}^G \times \{0\} \rightrightarrows G^{(0)} \times \mathbb{R}^* \cup \mathcal{N}_{\Gamma^{(0)}}^{G^{(0)}} \times \{0\}$

The DNC and Blup constructions $000{\bullet}0000$

If enough time 00 0000

Examples

1. The adiabatic groupoid is the restriction of $DNC(G,G^{(0)})$ over $G^{(0)}\times[0,1].$

The DNC and Blup constructions $000{\bullet}0000$

If enough time 00 0000

Examples

- 1. The adiabatic groupoid is the restriction of $DNC(G,G^{(0)})$ over $G^{(0)}\times[0,1].$
- 2. If V is a saturated submanifold of $G^{(0)}$ for G, $DNC(G, G_V^V)$ is the normal groupoid of the immersion $G_V^V \hookrightarrow G$ which gives the shriek map [M. Hilsum, G. Skandalis].

The DNC and Blup constructions $000{\bullet}0000$

If enough time 00 0000

Examples

- 1. The adiabatic groupoid is the restriction of $DNC(G,G^{(0)})$ over $G^{(0)}\times[0,1].$
- 2. If V is a saturated submanifold of $G^{(0)}$ for G, $DNC(G, G_V^V)$ is the normal groupoid of the immersion $G_V^V \hookrightarrow G$ which gives the shriek map [M. Hilsum, G. Skandalis].
- 3. $\pi: E \to M$ a vector bundle; consider $\Delta E \subset E \underset{M}{\times} E \subset E \times E$:

The DNC and Blup constructions $000{\bullet}0000$

If enough time 00 0000

Examples

- 1. The adiabatic groupoid is the restriction of $DNC(G, G^{(0)})$ over $G^{(0)} \times [0, 1]$.
- 2. If V is a saturated submanifold of $G^{(0)}$ for G, $DNC(G, G_V^V)$ is the normal groupoid of the immersion $G_V^V \hookrightarrow G$ which gives the shriek map [M. Hilsum, G. Skandalis].
- 3. $\pi: E \to M$ a vector bundle; consider $\Delta E \subset E \underset{M}{\times} E \subset E \times E$:

$$\mathcal{T} = DNC(DNC(E \times E, E \underset{M}{\times} E), \Delta E \times \{0\}) \rightrightarrows E \times \mathbb{R} \times \mathbb{R}$$

Let $\mathcal{T}^{\square} = \mathcal{T}|_{E \times [0,1] \times [0,1]}$ and $\mathcal{T}hom = \mathcal{T}|_{E \times \{0\} \times [0,1]}$.

Examples

3. $\pi: E \to M$ a vector bundle; consider $\Delta E \subset E \underset{M}{\times} E \subset E \times E$:

 $\mathcal{T} = DNC(DNC(E \times E, E \underset{M}{\times} E), \Delta E \times \{0\}) \rightrightarrows E \times \mathbb{R} \times \mathbb{R}$

Let $\mathcal{T}^{\square} = \mathcal{T}|_{E \times [0,1] \times [0,1]}$ and $\mathcal{T}hom = \mathcal{T}|_{E \times \{0\} \times [0,1]}$.

Examples

3. $\pi: E \to M$ a vector bundle; consider $\Delta E \subset E \underset{M}{\times} E \subset E \times E$:

 $\mathcal{T} = DNC(DNC(E \times E, E \underset{M}{\times} E), \Delta E \times \{0\}) \rightrightarrows E \times \mathbb{R} \times \mathbb{R}$

Let $\mathcal{T}^{\square} = \mathcal{T}|_{E \times [0,1] \times [0,1]}$ and $\mathcal{T}hom = \mathcal{T}|_{E \times \{0\} \times [0,1]}$.

The DNC and Blup constructions $0000{\bullet}000$

If enough time 00 0000

The Blowup construction

The scaling action of \mathbb{R}^* on $M \times \mathbb{R}^*$ extends to the gauge action on $DNC(M,V) = M \times \mathbb{R}^* \cup N_V^M \times \{0\}$:

$$\begin{array}{rcl} DNC(M,V) \times \mathbb{R}^* & \longrightarrow & DNC(M,V) \\ (z,t,\lambda) & \mapsto & (z,\lambda t) \ for \ t \neq 0 \\ (x,X,0,\lambda) & \mapsto & (x,\frac{1}{\lambda}X,0) \ for \ t = 0 \end{array}$$

The DNC and Blup constructions $0000{\bullet}000$

If enough time 00 0000

The Blowup construction

The scaling action of \mathbb{R}^* on $M \times \mathbb{R}^*$ extends to the gauge action on $DNC(M, V) = M \times \mathbb{R}^* \cup N_V^M \times \{0\}$:

$DNC(M,V) \times \mathbb{R}^*$	\longrightarrow	DNC(M,V)
(z,t,λ)	\mapsto	$(z, \lambda t)$ for $t \neq 0$
$(x, X, 0, \lambda)$	\mapsto	$(x, \frac{1}{\lambda}X, 0)$ for $t = 0$

The manifold $V \times \mathbb{R}$ embeds in DNC(M, V): $V \longrightarrow V$ \downarrow \downarrow \downarrow $V \longrightarrow M$

The DNC and Blup constructions $0000{\bullet}000$

If enough time 00 0000

The Blowup construction

The scaling action of \mathbb{R}^* on $M \times \mathbb{R}^*$ extends to the gauge action on $DNC(M, V) = M \times \mathbb{R}^* \cup N_V^M \times \{0\}$:

$DNC(M,V) \times \mathbb{R}^*$	\longrightarrow	DNC(M,V)
(z,t,λ)	\mapsto	$(z, \lambda t)$ for $t \neq 0$
$(x, X, 0, \lambda)$	\mapsto	$(x, \frac{1}{\lambda}X, 0)$ for $t = 0$

The manifold $V \times \mathbb{R}$ embeds in DNC(M, V) : $V \xrightarrow{} V$ \downarrow $V \xrightarrow{} M$

The gauge action is free and proper on the open subset $DNC(M, V) \setminus V \times \mathbb{R}$ of DNC(M, V).

The DNC and Blup constructions $0000{\bullet}000$

If enough time 00 0000

The Blowup construction

The scaling action of \mathbb{R}^* on $M \times \mathbb{R}^*$ extends to the gauge action on $DNC(M, V) = M \times \mathbb{R}^* \cup N_V^M \times \{0\}$:

$DNC(M,V) \times \mathbb{R}^*$	\longrightarrow	DNC(M, V)
(z,t,λ)	\mapsto	$(z, \lambda t)$ for $t \neq 0$
$(x, X, 0, \lambda)$	\mapsto	$(x, \frac{1}{\lambda}X, 0)$ for $t = 0$

The manifold $V\times \mathbb{R}$ embeds in $DNC(M,V): \begin{array}{c}V & \searrow & V\\ & \downarrow & & \downarrow\\ & & \downarrow & \\ & & V \\ & & & V \end{array}$

The gauge action is free and proper on the open subset $DNC(M, V) \setminus V \times \mathbb{R}$ of DNC(M, V). We let :

 $Blup(M,V) = \left(DNC(M,V) \setminus V \times \mathbb{R}\right)/\mathbb{R}^* = M \setminus V \cup \mathbb{P}(N_V^M)$

The Blowup construction

The scaling action of \mathbb{R}^* on $M \times \mathbb{R}^*$ extends to the gauge action on $DNC(M, V) = M \times \mathbb{R}^* \cup N_V^M \times \{0\}$:

$DNC(M,V) \times \mathbb{R}^*$	\longrightarrow	DNC(M, V)
(z,t,λ)	\mapsto	$(z, \lambda t)$ for $t \neq 0$
$(x, X, 0, \lambda)$	\mapsto	$(x, \frac{1}{\lambda}X, 0)$ for $t = 0$

The manifold $V \times \mathbb{R}$ embeds in DNC(M, V) : $V \xrightarrow{} V$ \downarrow $V \xrightarrow{} M$

The gauge action is free and proper on the open subset $DNC(M, V) \setminus V \times \mathbb{R}$ of DNC(M, V). We let :

 $Blup(M,V) = \left(DNC(M,V) \setminus V \times \mathbb{R}\right)/\mathbb{R}^* = M \setminus V \cup \mathbb{P}(N_V^M) \text{ and }$

 $SBlup(M,V) = \left(DNC_+(M,V) \setminus V \times \mathbb{R}_+\right)/\mathbb{R}_+^* = M \setminus V \cup \mathbb{S}(N_V^M) \ .$

The DNC and Blup constructions 00000000

If enough time 00 0000

Functoriality of *Blup*

 $\begin{array}{cccc} V & \longrightarrow M & \text{gives } DNC(f) : DNC(M,V) \to DNC(M',V') \\ f_V & & & & & \\ f_V & & & & & \\ V' & & & & M' \\ \text{which is equivariant under the gauge action} \end{array}$

The DNC and Blup constructions $00000{\bullet}00$

If enough time 00 0000

Functoriality of Blup

which is equivariant under the gauge action : it passes to the quotient Blup as soon as it is defined.

The DNC and Blup constructions $00000{\bullet}00$

If enough time 00 0000

Functoriality of *Blup*

 $\begin{array}{ccc} V & \longrightarrow & M & \text{gives } DNC(f) : DNC(M,V) \to DNC(M',V') \\ f_V & & & & & \\ f_V & & & & & \\ V' & & & & M' \end{array}$

which is equivariant under the gauge action : it passes to the quotient Blup as soon as it is defined.

Let $U_f(M, V) = DNC(M, V) \setminus DNC(f)^{-1}(V' \times \mathbb{R})$ and define

$$Blup_f(M,V) = U_f/\mathbb{R}^* \subset Blup(M,V)$$

The DNC and Blup constructions $00000{\bullet}00$

If enough time 00 0000

Functoriality of *Blup*

which is equivariant under the gauge action : it passes to the quotient Blup as soon as it is defined.

Let $U_f(M, V) = DNC(M, V) \setminus DNC(f)^{-1}(V' \times \mathbb{R})$ and define

$$Blup_f(M,V) = U_f/\mathbb{R}^* \subset Blup(M,V)$$

Then DNC(f) passes to the quotient :

$$Blup(f): Blup_f(M, V) \to Blup(M', V')$$

Analogous constructions hold for *SBlup*.

The DNC and Blup constructions 00000000

If enough time 00 0000

Blowup groupoid

Let Γ be a closed Lie subgroupoid of a Lie groupoid $G \stackrel{t,s}{\rightrightarrows} G^{(0)}$. Define

 $\widetilde{DNC(G,\Gamma)} = U_t(G,\Gamma) \cap U_s(G,\Gamma)$

elements whose image by DNC(s) and DNC(t) are not in $\Gamma^{(0)} \times \mathbb{R}$.

If enough time 00 0000

Blowup groupoid

Let Γ be a closed Lie subgroupoid of a Lie groupoid $G \stackrel{t,s}{\rightrightarrows} G^{(0)}$. Define

 $\widetilde{DNC(G,\Gamma)} = U_t(G,\Gamma) \cap U_s(G,\Gamma)$

elements whose image by DNC(s) and DNC(t) are not in $\Gamma^{(0)} \times \mathbb{R}$. Functoriality implies :

$$Blup_{t,s}(G,\Gamma) = \widetilde{DNC(G,\Gamma)}/\mathbb{R}^* \rightrightarrows Blup(G^{(0)},\Gamma^{(0)})$$

is naturally a Lie groupoid; its source and range maps are Blup(s) and Blup(t) and its product is Blup(m).

If enough time 00 0000

Blowup groupoid

Let Γ be a closed Lie subgroupoid of a Lie groupoid $G \stackrel{t,s}{\rightrightarrows} G^{(0)}.$ Define

 $\widetilde{DNC(G,\Gamma)} = U_t(G,\Gamma) \cap U_s(G,\Gamma)$

elements whose image by DNC(s) and DNC(t) are not in $\Gamma^{(0)} \times \mathbb{R}$. Functoriality implies :

$$Blup_{t,s}(G,\Gamma) = \widetilde{DNC(G,\Gamma)}/\mathbb{R}^* \rightrightarrows Blup(G^{(0)},\Gamma^{(0)})$$

is naturally a Lie groupoid; its source and range maps are Blup(s) and Blup(t) and its product is Blup(m).

Analogous constructions hold for *SBlup*.

If enough time 00 0000

Blowup groupoid

Let Γ be a closed Lie subgroupoid of a Lie groupoid $G \stackrel{t,s}{\rightrightarrows} G^{(0)}.$ Define

 $\widetilde{DNC(G,\Gamma)} = U_t(G,\Gamma) \cap U_s(G,\Gamma)$

elements whose image by DNC(s) and DNC(t) are not in $\Gamma^{(0)} \times \mathbb{R}$. Functoriality implies :

$$Blup_{t,s}(G,\Gamma) = \widetilde{DNC(G,\Gamma)}/\mathbb{R}^* \rightrightarrows Blup(G^{(0)},\Gamma^{(0)})$$

is naturally a Lie groupoid; its source and range maps are Blup(s) and Blup(t) and its product is Blup(m).

Analogous constructions hold for SBlup.

Remark

Let $\mathring{\mathcal{N}}_{\Gamma}^{G}$ be the restriction of $\mathcal{N}_{\Gamma}^{G} \rightrightarrows \mathcal{N}_{\Gamma^{(0)}}^{G^{(0)}}$ to $\mathcal{N}_{\Gamma^{(0)}}^{G^{(0)}} \setminus \Gamma^{(0)}$. $\mathring{\mathcal{N}}_{\Gamma}^{G} / \mathbb{R}^{*}$ inherits a structure of Lie groupoid : $\mathcal{P}\mathcal{N}_{\Gamma}^{G} \rightrightarrows \mathbb{P}\mathcal{N}_{\Gamma^{(0)}}^{G^{(0)}}$.

$$Blup_{r,s}(G,\Gamma) = G \setminus \Gamma \cup \mathcal{PN}_{\Gamma}^G \rightrightarrows G^{(0)} \setminus \Gamma^{(0)} \cup \mathbb{PN}_{\Gamma^{(0)}}^{G^{(0)}}.$$

The DNC and Blup constructions $\texttt{OOOOOOO} \bullet$

If enough time 00 0000

Examples of blowup groupoids

1. Take $G\rightrightarrows G^{(0)}$ a Lie groupoid ans $\mathbb{G}=G\times\mathbb{R}\times\mathbb{R}\rightrightarrows G^{(0)}\times\mathbb{R}$.

The DNC and Blup constructions $\texttt{0000000} \bullet$

If enough time 00 0000

Examples of blowup groupoids

1. Take $G \rightrightarrows G^{(0)}$ a Lie groupoid ans $\mathbb{G} = G \times \mathbb{R} \times \mathbb{R} \rightrightarrows G^{(0)} \times \mathbb{R}$. Recall that $DNC(G, G^{(0)}) = G \times \mathbb{R}^* \cup \mathfrak{A}G \times \{0\} \rightrightarrows G^{(0)} \times \mathbb{R}$.

Examples of blowup groupoids

1. Take $G \rightrightarrows G^{(0)}$ a Lie groupoid ans $\mathbb{G} = G \times \mathbb{R} \times \mathbb{R} \rightrightarrows G^{(0)} \times \mathbb{R}$. Recall that $DNC(G, G^{(0)}) = G \times \mathbb{R}^* \cup \mathfrak{A}G \times \{0\} \rightrightarrows G^{(0)} \times \mathbb{R}$.

$$Blup_{r,s}(\mathbb{G},\mathbb{G}^{(0)}\times\{(0,0)\})=DNC(G,G^{(0)})\rtimes\mathbb{R}^*\rightrightarrows G^{(0)}\times\mathbb{R}$$

Gauge adiabatic groupoid [D.-Skandalis]

Examples of blowup groupoids

1. Take $G \rightrightarrows G^{(0)}$ a Lie groupoid ans $\mathbb{G} = G \times \mathbb{R} \times \mathbb{R} \rightrightarrows G^{(0)} \times \mathbb{R}$. Recall that $DNC(G, G^{(0)}) = G \times \mathbb{R}^* \cup \mathfrak{A}G \times \{0\} \rightrightarrows G^{(0)} \times \mathbb{R}$.

 $Blup_{r,s}(\mathbb{G},\mathbb{G}^{(0)}\times\{(0,0)\})=DNC(G,G^{(0)})\rtimes\mathbb{R}^*\rightrightarrows G^{(0)}\times\mathbb{R}$

Gauge adiabatic groupoid [D.-Skandalis] 2. Let $V \subset M$ be a hypersurface.

$$\underbrace{G_b = SBlup_{r,s}(M \times M, V \times V)}_{\text{Homoson}} \subset \underbrace{SBlup(M \times M, V \times V)}_{\text{Homoson}}$$

The b-calculus groupoid

Melrose's b-space

Examples of blowup groupoids

1. Take $G \rightrightarrows G^{(0)}$ a Lie groupoid ans $\mathbb{G} = G \times \mathbb{R} \times \mathbb{R} \rightrightarrows G^{(0)} \times \mathbb{R}$. Recall that $DNC(G, G^{(0)}) = G \times \mathbb{R}^* \cup \mathfrak{A}G \times \{0\} \rightrightarrows G^{(0)} \times \mathbb{R}$.

 $Blup_{r,s}(\mathbb{G},\mathbb{G}^{(0)}\times\{(0,0)\})=DNC(G,G^{(0)})\rtimes\mathbb{R}^*\rightrightarrows G^{(0)}\times\mathbb{R}$

Gauge adiabatic groupoid [D.-Skandalis] 2. Let $V \subset M$ be a hypersurface.

$$\underbrace{G_b = SBlup_{r,s}(M \times M, V \times V)}_{\text{The b-calculus groupoid}} \subset \underbrace{SBlup(M \times M, V \times V)}_{\text{Melrose's b-space}}$$
$$\underbrace{G_0 = SBlup_{r,s}(M \times M, \Delta(V))}_{\text{The 0-calculus groupoid}} \subset \underbrace{SBlup(M \times M, \Delta(V))}_{\text{Mazzeo-Melrose's 0-space}}$$

Examples of blowup groupoids

1. Take $G \rightrightarrows G^{(0)}$ a Lie groupoid ans $\mathbb{G} = G \times \mathbb{R} \times \mathbb{R} \rightrightarrows G^{(0)} \times \mathbb{R}$. Recall that $DNC(G, G^{(0)}) = G \times \mathbb{R}^* \cup \mathfrak{A}G \times \{0\} \rightrightarrows G^{(0)} \times \mathbb{R}$.

$$Blup_{r,s}(\mathbb{G},\mathbb{G}^{(0)}\times\{(0,0)\}) = DNC(G,G^{(0)}) \rtimes \mathbb{R}^* \rightrightarrows G^{(0)} \times \mathbb{R}$$

Gauge adiabatic groupoid [D.-Skandalis] 2. Let $V \subset M$ be a hypersurface.

$$\underbrace{G_b = SBlup_{r,s}(M \times M, V \times V)}_{\text{The b-calculus groupoid}} \subset \underbrace{SBlup(M \times M, V \times V)}_{\text{Melrose's b-space}}$$
$$\underbrace{G_0 = SBlup_{r,s}(M \times M, \Delta(V))}_{\text{The 0-calculus groupoid}} \subset \underbrace{SBlup(M \times M, \Delta(V))}_{\text{Mazzeo-Melrose's 0-space}}$$
Iterate these constructions to go to the study of manifolds with corners.

Examples of blowup groupoids

1. Take $G \rightrightarrows G^{(0)}$ a Lie groupoid ans $\mathbb{G} = G \times \mathbb{R} \times \mathbb{R} \rightrightarrows G^{(0)} \times \mathbb{R}$. Recall that $DNC(G, G^{(0)}) = G \times \mathbb{R}^* \cup \mathfrak{A}G \times \{0\} \rightrightarrows G^{(0)} \times \mathbb{R}$.

$$Blup_{r,s}(\mathbb{G},\mathbb{G}^{(0)}\times\{(0,0)\}) = DNC(G,G^{(0)}) \rtimes \mathbb{R}^* \rightrightarrows G^{(0)} \times \mathbb{R}$$

Gauge adiabatic groupoid [D.-Skandalis] 2. Let $V \subset M$ be a hypersurface.

$$\underbrace{G_b = SBlup_{r,s}(M \times M, V \times V)}_{\text{The b-calculus groupoid}} \subset \underbrace{SBlup(M \times M, V \times V)}_{\text{Melrose's b-space}}$$
$$\underbrace{G_0 = SBlup_{r,s}(M \times M, \Delta(V))}_{\text{The 0-calculus groupoid}} \subset \underbrace{SBlup(M \times M, \Delta(V))}_{\text{Mazzeo-Melrose's 0-space}}$$
te these constructions to go to the study of manifolds with

Iterate these constructions to go to the study of manifolds we corners. Or consider a foliation with no holonomy on V.

Examples of blowup groupoids

1. Take $G \rightrightarrows G^{(0)}$ a Lie groupoid ans $\mathbb{G} = G \times \mathbb{R} \times \mathbb{R} \rightrightarrows G^{(0)} \times \mathbb{R}$. Recall that $DNC(G, G^{(0)}) = G \times \mathbb{R}^* \cup \mathfrak{A}G \times \{0\} \rightrightarrows G^{(0)} \times \mathbb{R}$.

$$Blup_{r,s}(\mathbb{G},\mathbb{G}^{(0)}\times\{(0,0)\}) = DNC(G,G^{(0)}) \rtimes \mathbb{R}^* \rightrightarrows G^{(0)} \times \mathbb{R}$$

Gauge adiabatic groupoid [D.-Skandalis] 2. Let $V \subset M$ be a hypersurface.

$$\underbrace{G_b = SBlup_{r,s}(M \times M, V \times V)}_{\text{The b-calculus groupoid}} \subset \underbrace{SBlup(M \times M, V \times V)}_{\text{Melrose's b-space}}$$
$$\underbrace{G_0 = SBlup_{r,s}(M \times M, \Delta(V))}_{\text{The 0-calculus groupoid}} \subset \underbrace{SBlup(M \times M, \Delta(V))}_{\text{Mazzeo-Melrose's 0-space}}$$

Iterate these constructions to go to the study of manifolds with corners. Or consider a foliation with no holonomy on V. Define the holonomy groupoid of a manifold with iterated fibred corners.

The DNC and Blup constructions 00000000 If enough time •O •OOO

About the case $V \subset G^{(0)}$

Let $G \stackrel{t,s}{\rightrightarrows} M$ be a Lie groupoid and $V \subset M$ a closed submanifold.

The DNC and Blup constructions 00000000 If enough time •O 0000

About the case $V \subset G^{(0)}$

Let $G \stackrel{t,s}{\rightrightarrows} M$ be a Lie groupoid and $V \subset M$ a closed submanifold.

$$DNC(G, V) = G \times \mathbb{R}^* \cup \mathcal{N}_V^G \times \{0\} \Longrightarrow M \times \mathbb{R}^* \cup N_V^M \times \{0\}$$
$$Blup(G, V) = G \setminus V \cup \mathcal{P}(N_V^G) \Longrightarrow M \setminus V \cup \mathbb{P}(N_V^M)$$

The DNC and Blup constructions 00000000

If enough time •O 0000

About the case $V \subset G^{(0)}$

Let $G \stackrel{t,s}{\rightrightarrows} M$ be a Lie groupoid and $V \subset M$ a closed submanifold.

$$DNC(G, V) = G \times \mathbb{R}^* \cup \mathcal{N}_V^G \times \{0\} \rightrightarrows M \times \mathbb{R}^* \cup N_V^M \times \{0\}$$
$$Blup(G, V) = G \setminus V \cup \mathcal{P}(N_V^G) \rightrightarrows M \setminus V \cup \mathbb{P}(N_V^M)$$

Linear groupoid

Suppose E is a (real) vector space and $F \subset E$ a subvector space. Let $t, s: E \to F$ be two linear retractions.

If enough time •O •OOOO

About the case $V \subset G^{(0)}$

Let $G \stackrel{t,s}{\rightrightarrows} M$ be a Lie groupoid and $V \subset M$ a closed submanifold.

$$DNC(G, V) = G \times \mathbb{R}^* \cup \mathcal{N}_V^G \times \{0\} \rightrightarrows M \times \mathbb{R}^* \cup N_V^M \times \{0\}$$
$$Blup(G, V) = G \setminus V \cup \mathcal{P}(N_V^G) \rightrightarrows M \setminus V \cup \mathbb{P}(N_V^M)$$

Linear groupoid

Suppose E is a (real) vector space and $F \subset E$ a subvector space. Let $t, s: E \to F$ be two linear retractions.

Facts

1. There is a unique structure of linear groupoid on $E : \mathcal{E} \rightrightarrows F$ with source s, target t and units given by the inclusion $F \subset E$. The product is $u \cdot v = u \cdot s(u) + 0_E \cdot (v - s(v)) = u + v - s(u)$. The inverse of u is (t + s - id)(u).

If enough time •O •OOO

About the case $V \subset G^{(0)}$

Let $G \stackrel{t,s}{\rightrightarrows} M$ be a Lie groupoid and $V \subset M$ a closed submanifold.

$$DNC(G, V) = G \times \mathbb{R}^* \cup \mathcal{N}_V^G \times \{0\} \rightrightarrows M \times \mathbb{R}^* \cup N_V^M \times \{0\}$$
$$Blup(G, V) = G \setminus V \cup \mathcal{P}(N_V^G) \rightrightarrows M \setminus V \cup \mathbb{P}(N_V^M)$$

Linear groupoid

Suppose E is a (real) vector space and $F \subset E$ a subvector space. Let $t, s: E \to F$ be two linear retractions.

Facts

- 1. There is a unique structure of linear groupoid on $E : \mathcal{E} \rightrightarrows F$ with source s, target t and units given by the inclusion $F \subset E$. The product is $u \cdot v = u \cdot s(u) + 0_E \cdot (v - s(v)) = u + v - s(u)$. The inverse of u is (t + s - id)(u).
- 2. $t s : E/F \to F$ gives an action of E/F on E and \mathcal{E} is the action groupoid $E \rtimes E/F$.

Perform the same construction for $E \to V$ a (real) vector-bundle, $F \subset E$ a subbundle and $t, s : E \to F$ bundle maps equal to identity on F. It gives :

- A groupoid structure on $E : \mathcal{E} \rightrightarrows F$.
- $\mathcal{E} \simeq F \rtimes_{\alpha} E/F$ where $\alpha = t s : E/F \to F$.

Perform the same construction for $E \to V$ a (real) vector-bundle, $F \subset E$ a subbundle and $t, s : E \to F$ bundle maps equal to identity on F. It gives :

- A groupoid structure on $E : \mathcal{E} \rightrightarrows F$.
- $\mathcal{E} \simeq F \rtimes_{\alpha} E/F$ where $\alpha = t s : E/F \to F$.

The group \mathbb{R}^* acts freely on $\mathcal{E} \setminus (ker \ t \cup ker \ s) \rightrightarrows F \setminus V$ and leads to the projective groupoid : $\mathcal{P}E \rightrightarrows \mathbb{P}(F)$.

Perform the same construction for $E \to V$ a (real) vector-bundle, $F \subset E$ a subbundle and $t, s : E \to F$ bundle maps equal to identity on F. It gives :

- A groupoid structure on $E : \mathcal{E} \rightrightarrows F$.
- $\mathcal{E} \simeq F \rtimes_{\alpha} E/F$ where $\alpha = t s : E/F \to F$.

The group \mathbb{R}^* acts freely on $\mathcal{E} \setminus (ker \ t \cup ker \ s) \rightrightarrows F \setminus V$ and leads to the projective groupoid : $\mathcal{P}E \rightrightarrows \mathbb{P}(F)$.

$$\mathcal{P}E = \mathbb{P}(E) \setminus \mathbb{P}(ker \ t) \cup \mathbb{P}(ker \ s)$$

Source and target are induced by s and t. For composable $x, y \in \mathcal{P}E$: $x \cdot y = \{u + v - s(u) ; u \in x, v \in y \text{ s.t. } s(u) = t(v)\}$ and the inverse of x is (s + t - id)(x).

Perform the same construction for $E \to V$ a (real) vector-bundle, $F \subset E$ a subbundle and $t, s : E \to F$ bundle maps equal to identity on F. It gives :

- A groupoid structure on $E : \mathcal{E} \rightrightarrows F$.
- $\mathcal{E} \simeq F \rtimes_{\alpha} E/F$ where $\alpha = t s : E/F \to F$.

The group \mathbb{R}^* acts freely on $\mathcal{E} \setminus (ker \ t \cup ker \ s) \rightrightarrows F \setminus V$ and leads to the projective groupoid : $\mathcal{P}E \rightrightarrows \mathbb{P}(F)$.

$$\mathcal{P}E = \mathbb{P}(E) \setminus \mathbb{P}(ker \ t) \cup \mathbb{P}(ker \ s)$$

Source and target are induced by s and t. For composable $x, y \in \mathcal{P}E$: $x \cdot y = \{u + v - s(u) ; u \in x, v \in y \text{ s.t. } s(u) = t(v)\}$ and the inverse of x is (s + t - id)(x).

 $\begin{array}{l} \mbox{Example}: \mbox{For } E=N_V^G \rightarrow V, \ F=N_V^M \ \mbox{and } \overline{dt}, \overline{ds}: N_V^G \rightarrow N_V^M \ \mbox{we get} \\ \mathcal{N}_V^G \rightrightarrows N_V^M \ \mbox{and } \mathcal{P}(N_V^G) \rightrightarrows \mathbb{P}(N_V^M). \end{array}$

The DNC and Blup constructions 00000000

If enough time 00 •000

Exact sequences coming from deformations and blowups

Let $\Gamma \rightrightarrows V$ be a closed Lie subgroupoid of a Lie groupoid $G \stackrel{t,s}{\rightrightarrows} M$, suppose that Γ is amenable and let $\mathring{M} = M \setminus V$. Let $\mathring{\mathcal{N}}_{\Gamma}^{G}$ be the restriction of the groupoid $\mathcal{N}_{\Gamma}^{G} \rightrightarrows \mathcal{N}_{V}^{M}$ to $\mathcal{N}_{V}^{M} \setminus V$.

The DNC and Blup constructions 00000000

If enough time 00 •000

Exact sequences coming from deformations and blowups $_{t,s}$

Let $\Gamma \rightrightarrows V$ be a closed Lie subgroupoid of a Lie groupoid $G \rightrightarrows^{,,,,} M$, suppose that Γ is amenable and let $\mathring{M} = M \setminus V$. Let $\mathring{\mathcal{N}}_{\Gamma}^{G}$ be the restriction of the groupoid $\mathcal{N}_{\Gamma}^{G} \rightrightarrows \mathcal{N}_{V}^{M}$ to $\mathcal{N}_{V}^{M} \setminus V$.

$$DNC_{+}(G,\Gamma) = G \times \mathbb{R}^{*}_{+} \cup \mathcal{N}_{\Gamma}^{G} \times \{0\} \rightrightarrows M \times \mathbb{R}^{*}_{+} \cup \mathcal{N}_{V}^{M}$$
$$DNC_{+}(G,\Gamma) = G_{\tilde{M}}^{\tilde{M}} \times \mathbb{R}^{*}_{+} \cup \mathring{\mathcal{N}}_{\Gamma}^{G} \times \{0\} \rightrightarrows \mathring{M} \times \mathbb{R}^{*}_{+} \cup \mathring{\mathcal{N}}_{V}^{M}$$
$$SBlup_{t,s}(G,\Gamma) = \widetilde{DNC_{+}(G,\Gamma)}/\mathbb{R}^{*}_{+} = G_{\tilde{M}}^{\tilde{M}} \cup \mathcal{SN}_{\Gamma}^{G} \rightrightarrows \mathring{M} \cup \mathbb{S}(\mathcal{N}_{V}^{M})$$

Exact sequences coming from deformations and blowups

$$DNC_{+}(G,\Gamma) = G \times \mathbb{R}^{*}_{+} \cup \mathcal{N}_{\Gamma}^{G} \times \{0\} \rightrightarrows M \times \mathbb{R}^{*}_{+} \cup \mathcal{N}_{V}^{M}$$
$$\widetilde{DNC_{+}(G,\Gamma)} = G_{\tilde{M}}^{\tilde{M}} \times \mathbb{R}^{*}_{+} \cup \mathring{\mathcal{N}}_{\Gamma}^{G} \times \{0\} \rightrightarrows \tilde{M} \times \mathbb{R}^{*}_{+} \cup \mathring{\mathcal{N}}_{V}^{M}$$
$$SBlup_{t,s}(G,\Gamma) = \widetilde{DNC_{+}(G,\Gamma)}/\mathbb{R}^{*}_{+} = G_{\tilde{M}}^{\tilde{M}} \cup \mathcal{SN}_{\Gamma}^{G} \rightrightarrows \tilde{M} \cup \mathbb{S}(\mathcal{N}_{V}^{M})$$

$$0 \longrightarrow C^*(G \times \mathbb{R}^*_+) \longrightarrow C^*(DNC_+(G, \Gamma)) \longrightarrow C^*(\mathcal{N}_{\Gamma}^G) \longrightarrow 0$$

$$0 \longrightarrow C^*(G^{\mathring{M}}_{\mathring{M}} \times \mathbb{R}^*_+) \longrightarrow C^*(DN\widetilde{C_+(G}, \Gamma)) \longrightarrow C^*(\mathring{\mathcal{N}}^G_{\Gamma}) \longrightarrow 0$$

$$0 \longrightarrow C^*(G_{\mathring{M}}^{\mathring{M}}) \longrightarrow C^*(SBlup_{t,s}(G,\Gamma)) \longrightarrow C^*(\mathcal{SN}_{\Gamma}^G) \longrightarrow 0$$

The DNC and Blup constructions 00000000

Connecting elements

$$0 \longrightarrow C^*(G \times \mathbb{R}^*_+) \longrightarrow C^*(DNC_+(G, \Gamma)) \longrightarrow C^*(\mathcal{N}_{\Gamma}^G) \longrightarrow 0 \ \partial_{DNC_+}$$

$$0 \longrightarrow C^*(G_{\mathring{M}}^{\mathring{M}}) \longrightarrow C^*(SBlup_{t,s}(G,\Gamma)) \longrightarrow C^*(\mathcal{SN}_{\Gamma}^G) \longrightarrow 0 \ \partial_{SBlup}$$

Connecting elements : $\partial_{DNC_+} \in KK^1(C^*(\mathcal{N}_{\Gamma}^G), C^*(G \times \mathbb{R}^*_+)),$ $\partial_{\widetilde{DNC_+}} \in KK^1(C^*(\mathring{\mathcal{N}}_{\Gamma}^G), C^*(G_{\check{M}}^{\check{M}} \times \mathbb{R}^*_+))$ and $\partial_{SBlup} \in KK^1(C^*(\mathcal{SN}_{\Gamma}^G), C^*(G_{\check{M}}^{\check{M}})).$

The DNC and Blup constructions 00000000

Connecting elements

 $0 \longrightarrow C^*(G \times \mathbb{R}^*_+) \longrightarrow C^*(DNC_+(G,\Gamma)) \longrightarrow C^*(\mathcal{N}_{\Gamma}^G) \longrightarrow 0 \ \partial_{DNC_+}$

The β 's being KK-equivalences given by Connes-Thom elements.

The DNC and Blup constructions 00000000

Connecting elements

The j's coming from inclusion.

The DNC and Blup constructions 00000000

Connecting elements

Proposition

 $\partial_{SBlup} \otimes \mathring{\beta} \otimes [\mathring{j}] = \beta^{\partial} \otimes [j^{\partial}] \otimes \partial_{DNC_{+}} \in KK^{1}(C^{*}(\mathcal{SN}_{\Gamma}^{G}), C^{*}(G)).$

The DNC and Blup constructions 00000000

Index type connecting elements

The DNC and Blup constructions 00000000

Index type connecting elements

$\begin{array}{l} & \text{Proposition} \\ & \widetilde{Ind}_{SBlup} \otimes \mathring{\beta} \otimes [\mathring{j}] = \beta^{\partial} \otimes [j^{\partial}] \otimes \widetilde{Ind}_{DNC_{+}} \in KK^{1}(C^{*}(\Sigma_{SBlup}), C^{*}(G)). \end{array}$

The DNC and Blup constructions 00000000

If enough time $\bigcirc \bigcirc \\ 0000 \bullet$

Thank you for your attention !