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Some historical Groupoid successes in index theory

Smooth compact manifold M :
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Some historical Groupoid successes in index theory

Smooth compact manifold M : M x M = M the pair groupoid.

The tangent groupoid of A. Connes :

Gy =TM x {0} UM x Mx]0,1] = M x [0,1]
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Some historical Groupoid successes in index theory

Smooth compact manifold M : M x M = M the pair groupoid.
The tangent groupoid of A. Connes :

Ghy=TM x {0}y UM x Mx]0,1] = M x [0,1]

It defines : 0 — C*(G}/|axj01]) = C*(Ghy) “ C*(Giylrrxgoy) = 0
~ K & o]0, 1) ~ ¢

[eo] € KK(C*(G%,),C*(TM)) is invertible.
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Some historical Groupoid successes in index theory

Smooth compact manifold M : M x M = M the pair groupoid.

The tangent groupoid of A. Connes :
Ghy=TM x {0}y UM x Mx]0,1] = M x [0,1]

It defines : 0 — C*(G}/|axj01]) = C*(Ghy) « C*(Giylrrxgoy) = 0
~ K& Coll0, 1) — (T M)

[eo] € KK(C*(G%,),C*(TM)) is invertible.

Let e1 : C*(Gh;) = C*(Ghylmxq1y) = C*(M x M) ~ K.

The index element

Indpsxar == [e0] F @ [e1] € KK(C*(TM),K) ~ K°(C*(TM)) .
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The algebra U*(G) = U*(M x M) identifies with the C*-algebra of
order 0 pseudodifferential operators on M and

00— C*(M x M) — U*(M x M) —> C(S*TM) —>0
~ K

which gives a connecting element Indyrxn € KKYC(S*TM),K).

gh
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The algebra U*(G) = U*(M x M) identifies with the C*-algebra of
order 0 pseudodifferential operators on M and

00— C*(M x M) — U*(M x M) —> C(S*TM) —>0
~ K

which gives a connecting element Indyrxn € KKYC(S*TM),K).
Let i be the inclusion of S*T'M x R’ as the open subset T*M \ M of
T*M then .

I?’Ld]\/[XM = I?’LdMXM &® M
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The algebra U*(G) = U*(M x M) identifies with the C*-algebra of
order 0 pseudodifferential operators on M and

00— C*(M x M) — U*(M x M) —> C(S*TM) —>0
~ K

which gives a connecting element Indyrxn € KKYC(S*TM),K).
Let i be the inclusion of S*T'M x R’ as the open subset T*M \ M of
T*M then

%NIXM =Indyxm ® M

Proposition [Connes]

The morphism - ® Indyrxa : KO(T*M) ~ KK (C,C*(TM)) — 7Z is
the analytic index map of A-S.
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The algebra U*(G) = U*(M x M) identifies with the C*-algebra of
order 0 pseudodifferential operators on M and

00— C*(M x M) — U*(M x M) —> C(S*TM) —>0
~ K

which gives a connecting element Indyrxn € KKYC(S*TM),K).
Let i be the inclusion of S*T'M x R’ as the open subset T*M \ M of
T*M then

%ijM =Indyxm ® M

Proposition [Connes]

The morphism - ® Indyrxa : KO(T*M) ~ KK (C,C*(TM)) — 7Z is
the analytic index map of A-S.

Foliation F on M : Replace in the picture the groupoid M x M by
the holonomy groupoid Hol(M,F) (i.e. the “smallest” Lie groupoid
over M whose orbits are the leaves of the foliation) [Connes].
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General Lie groupoid G = M [Monthubert-Pierrot, Nistor-Weinstein-Xu]
The adiabatic groupoid : G4, = AG x {0} UGx]0,1] = M x [0,1]
gives Indg = [eg] ! @ [e1] € KK (C*(/AG), C*(Q)).
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General Lie groupoid G = M [Monthubert-Pierrot, Nistor-Weinstein-Xu]
The adiabatic groupoid : G4, = AG x {0} UGx]0,1] = M x [0,1]
gives Indg = [eg] ! @ [e1] € KK (C*(/AG), C*(Q)).

Pseudodifferential exact sequence :

00— C*(G) —= T*(G) —= C(S*AG) —= 0

which defines Indg € KK(C(S*UAG), C*(G))
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General Lie groupoid G = M [Monthubert-Pierrot, Nistor-Weinstein-Xu]
The adiabatic groupoid : G4, = AG x {0} UGx]0,1] = M x [0,1]
gives Indg = [eg] ! @ [e1] € KK (C*(/AG), C*(Q)).

Pseudodifferential exact sequence :

00— C*(G) —= T*(G) —= C(S*AG) —= 0

which defines Indg € KK (C(S*AG), C*(G)) with Indg = Indg ® [i]
where 7 is the inclusion of S*2G x R as the open subset 2A*G \ M of
AG.
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General Lie groupoid G = M [Monthubert-Pierrot, Nistor-Weinstein-Xu]
The adiabatic groupoid : G4, = AG x {0} UGx]0,1] = M x [0,1]
gives Indg = [eg] ! @ [e1] € KK (C*(/AG), C*(Q)).

Pseudodifferential exact sequence :

00— C*(G) —= T*(G) —= C(S*AG) —= 0

which defines Indg € KK (C(S*AG), C*(G)) with Indg = Indg ® [i]
where 7 is the inclusion of S*2G x R as the open subset 2A*G \ M of
AG.

Manifold with boundary - V' C M a hypersurface [Melrose & co.]
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General Lie groupoid G = M [Monthubert-Pierrot, Nistor-Weinstein-Xu]
The adiabatic groupoid : G4, = AG x {0} UGx]0,1] = M x [0,1]
gives Indg = [eg] ! @ [e1] € KK (C*(/AG), C*(Q)).

Pseudodifferential exact sequence :

00— C*(G) —= T*(G) —= C(S*AG) —= 0

which defines Indg € KK (C(S*AG), C*(G)) with Indg = Indg ® [i]
where 7 is the inclusion of S*2G x R as the open subset 2A*G \ M of
AG.

Manifold with boundary - V' C M a hypersurface [Melrose & co.]

e (-calculus, (pseudodifferential) operators vanishing on V :
replace M x M by Gy = M equal to the pair groupoid on M \ V
outside V' and isomorphic to Gi, x R* around V.
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General Lie groupoid G = M [Monthubert-Pierrot, Nistor-Weinstein-Xu]
The adiabatic groupoid : G4, = AG x {0} UGx]0,1] = M x [0,1]
gives Indg = [eg] ! @ [e1] € KK (C*(/AG), C*(Q)).

Pseudodifferential exact sequence :
0——C*"(G) ——= ¥*(G) ——= C(S*AG) ——=0

which defines Indg € KK (C(S*AG), C*(G)) with Indg = Indg ® [i]
where 7 is the inclusion of S*2G x R as the open subset 2A*G \ M of
AG.

Manifold with boundary - V' C M a hypersurface [Melrose & co.]

e (-calculus, (pseudodifferential) operators vanishing on V :
replace M x M by Gy = M equal to the pair groupoid on M \ V
outside V' and isomorphic to Gi, x R* around V.

o b-calculus, (pseudodifferential) operators vanishing on the normal
direction of V' : replace M x M by Gy = M equal to
M\V x M\ V outside V" and isomorphic to V' x V' x R x R*.
around V.
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What about more general situations ...

Can we mix situation analogous to foliation and hypersurface 7
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What about more general situations ...

Can we mix situation analogous to foliation and hypersurface ?
There is no reason to restrict to :

e V being a hypersurface,

e Operators which are usual operators outside V.
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What about more general situations ...

Can we mix situation analogous to foliation and hypersurface ?
There is no reason to restrict to :

e V being a hypersurface,
e Operators which are usual operators outside V.
Framework : G = M a Lie groupoid, V C M a submanifold,

I’ = V a sub-groupoid of G and operators that “slow down” near V
in the normal direction and “propagate” along I' inside V.
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What about more general situations ...

Can we mix situation analogous to foliation and hypersurface ?
There is no reason to restrict to :

e V being a hypersurface,
e Operators which are usual operators outside V.
Framework : G = M a Lie groupoid, V C M a submanifold,

I’ = V a sub-groupoid of G and operators that “slow down” near V
in the normal direction and “propagate” along I' inside V.

Today, in this talk :
e Present the general groupoid constructions involved in such
situations.



Motivations The DNC and Blup constructions If enough time

0000 ®0000000 (e]e]
0000

The Deformation to the Normal Cone construction

Let V be a closed submanifold of a smooth manifold M with normal
bundle N‘J}/f . The deformation to the normal cone is

DNC(M,V) =M x R* U N¥ x {0}
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The Deformation to the Normal Cone construction

Let V be a closed submanifold of a smooth manifold M with normal
bundle N‘J}/f . The deformation to the normal cone is

DNC(M,V) =M x R* U N¥ x {0}

It is endowed with a smooth structure thanks to the choice of an
exponential map 0 : U’ C N‘J,\f[ — U C M by asking the map

(0(x,tX),t) for t #0

O (@ X.1) H{ (z,X,0) fort=0

to be a diffeomorphism from the open neighborhood
W = {(z,X,t) € N xR | (z,tX) € U’} of N x {0} in N¥ xR on
its image.
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The Deformation to the Normal Cone construction

Let V be a closed submanifold of a smooth manifold M with normal
bundle N‘J}/f . The deformation to the normal cone is

DNC(M,V) =M x R* U N¥ x {0}

It is endowed with a smooth structure thanks to the choice of an
exponential map 0 : U’ C N‘J,\f[ — U C M by asking the map

(0(x,tX),t) for t #0

O (@ X.1) H{ (z,X,0) fort=0

to be a diffeomorphism from the open neighborhood
W = {(z,X,t) € N xR | (z,tX) € U’} of N x {0} in N¥ xR on
its image.

We define similarly

DNCL(M,V)=M xR} UNY x {0}
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Functoriality of DNC
Consider a commutative diagram of smooth maps

Ve——bsM

o

V/( M/
Where the horizontal arrows are inclusions of submanifolds. Let

{ DNC(f)(z,A) = (far(2), M) forz € M, A €R,
DNO(f)(fE,&,O) = (fV(x)v (dfM)ﬂc(g)vO) for x € Va §€ TxM/TacV

We get a smooth map DNC(f) : DNC(M,V)— DNC(M',V").
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Deformation groupoid

t,s
Let T be a closed Lie subgroupoid of a Lie groupoid G = G(©).
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Deformation groupoid

t,s
Let T be a closed Lie subgroupoid of a Lie groupoid G = G(©).
Functoriality implies :

DNC(G,T) = DNC(G©, 1)

is naturally a Lie groupoid;
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Deformation groupoid

t,s
Let T be a closed Lie subgroupoid of a Lie groupoid G = G(©).
Functoriality implies :

DNC(G,T) = DNC(G©, 1)

is naturally a Lie groupoid; its source and range maps are DNC(s)
and DNC(t); DNC(G,T)? identifies with DNC(G®), T()) and its
product with DNC(m) where m : GEQ) — G, is the product.
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Deformation groupoid

t,s
Let T be a closed Lie subgroupoid of a Lie groupoid G = G(©).
Functoriality implies :

DNC(G,T) = DNC(G©, 1)

is naturally a Lie groupoid; its source and range maps are DNC(s)
and DNC(t); DNC(G,T)? identifies with DNC(G®), T()) and its
product with DNC(m) where m : GEQ) — G, is the product.

Remarks

e No transversality asumption !
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Deformation groupoid

t,s
Let T be a closed Lie subgroupoid of a Lie groupoid G = G(©).
Functoriality implies :

DNC(G,T) = DNC(G©, 1)

is naturally a Lie groupoid; its source and range maps are DNC(s)
and DNC(t); DNC(G,T)? identifies with DNC(G®), T()) and its
product with DNC(m) where m : GEQ) — G, is the product.

Remarks

e No transversality asumption !
e NE is a VB-groupoid over NFGZEJC;) denoted N¥ = ng'zg;).
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Deformation groupoid

t,s
Let T be a closed Lie subgroupoid of a Lie groupoid G = G(©).
Functoriality implies :

DNC(G,T) = DNC(G©, 1)

is naturally a Lie groupoid; its source and range maps are DNC(s)
and DNC(t); DNC(G,T)? identifies with DNC(G®), T()) and its
product with DNC(m) where m : GEQ) — G, is the product.

Remarks

e No transversality asumption !
e NE is a VB-groupoid over NFGZEJC;) denoted N¥ = Nﬁﬁf?.

DNC(G,T) =G x R* UNE x {0} = GO x R* UNS, x {0}
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Examples

1. The adiabatic groupoid is the restriction of DNC(G,G®) over
G x [0,1].
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Examples

1. The adiabatic groupoid is the restriction of DNC(G, G(?)) over
G x [0,1].

2. If V is a saturated submanifold of G(®) for G, DNC(G, GY/) is
the normal groupoid of the immersion GV, < G which gives the
shriek map [M. Hilsum, G. Skandalis].
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Examples
. The adiabatic groupoid is the restriction of DNC(G, G(?)) over
G x [0,1].

If V is a saturated submanifold of G for G, DNC(G,GY)) is
the normal groupoid of the immersion GV, < G which gives the
shriek map [M. Hilsum, G. Skandalis].

m: E — M a vector bundle; consider AF C EX ECFE X E :
M

gh
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Examples

. The adiabatic groupoid is the restriction of DNC(G, G(?)) over
G x [0,1].

. If V is a saturated submanifold of G(*) for G, DNC(G, GY)) is
the normal groupoid of the immersion GV, < G which gives the
shriek map [M. Hilsum, G. Skandalis].

. m: FE — M a vector bundle; consider AF C EX ECFE X E :
M

T =DNC(DNC(E x E,E x E),AE x {0}) = ExR xR
M

Let 75 = TlEx011x[0,1] and Thom = T|gx(o0yx[0,1]-
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Examples

3. m: E — M a vector bundle; consider AF C EX ECFE X E :
M

T =DNC(DNC(E x E,E x E),AE x {0}) 2 ExRxR
M

Let 75 = Tlex011x[0,1] and Thom = T|gx{0yx[0,1]-

IndM
EXTMXE*DNC(EXEE><E)|E><[01] >“EXE
M M X
7 =937 v'
Thom ™1 T hom 7O gfg T

‘TE TE x [0,] —————— TE

gh time
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Examples

3. m: E — M a vector bundle; consider AF C EX ECFE X E :
M

T =DNC(DNC(E x E,E x E),AE x {0}) 2 ExRxR
M

Let 75 = Tlex011x[0,1] and Thom = T|gx{0yx[0,1]-

IndM
E><TM><E7DNC(E><EE><E)|EX[01] > ExE
M M -
Thom™* Thom 7O gfx; Indg
‘TE TE x [0,] —————— TE

Gives IndM = IndM [D.-Lescure-Nistor].

gh time
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The Blowup construction

The scaling action of R* on M x R* extends to the gauge action on
DNC(M,V) =M x R*UN¥ x {0} :

DNC(M,V)xR* —s  DNC(M,V)
(2,8, A) — (z,At) fort#0
(,X,0,A) —  (z %X,O) fort=0
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The Blowup construction

The scaling action of R* on M x R* extends to the gauge action on
DNC(M,V) =M x R*UN¥ x {0} :

DNC(M,V) x R* — DNC(M,V)

(2,8, A) — (z,At) fort#0
(,X,0,A) — (x,%XJ)) fort=0

The manifold V' x R embeds in DNC(M,V) : Ve—=V

|

Ve——sM

The DNC and Blup constructions If enougk

1 time
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The Blowup construction

The scaling action of R* on M x R* extends to the gauge action on
DNC(M,V) =M x R*UN¥ x {0} :

DNC(M,V)xR* —s  DNC(M,V)
(2,8, A) — (z,At) fort#0
(,X,0,A) —  (z %X,O) fort=0

The manifold V' x R embeds in DNC(M,V) : Ve—=V

|

Ve——sM
The gauge action is free and proper on the open subset
DNC(M,V)\V xR of DNC(M,V).

The DNC and Blup constructions If enough

time
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The Blowup construction

The scaling action of R* on M x R* extends to the gauge action on
DNC(M,V) =M x R*UN¥ x {0} :

DNC(M,V)xR* —s  DNC(M,V)
(2,8, A) — (z,At) fort#0
(,X,0,A) —  (z %X,O) fort=0

The manifold V' x R embeds in DNC(M,V) : Ve—=V

|

Ve——sM
The gauge action is free and proper on the open subset
DNC(M,V)\V xR of DNC(M,V). We let :

Blup(M,V) = (DNC(M,V)\ V x R)/R* = M\ V UP(N{)

The DNC and Blup constructions If enough

time
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The Blowup construction

The scaling action of R* on M x R* extends to the gauge action on
DNC(M,V) =M x R*UN¥ x {0} :

DNC(M,V)xR* —s  DNC(M,V)
(2,8, A) — (z,At) fort#0
(,X,0,A) —  (z %X,O) fort=0

The manifold V' x R embeds in DNC(M,V) : Ve—=V

|

Ve——sM
The gauge action is free and proper on the open subset
DNC(M,V)\V xR of DNC(M,V). We let :

Blup(M,V) = (DNC(M,V)\V x R)/R* = M\ VUP(N}') and

SBlup(M,V) = (DNC(M,V)\V xRy )/R% = M\ VUS(NY) .

The DNC and Blup constructions If enough

time
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Functoriality of Blup
Ve—> M gives DNC(f): DNC(M,V) — DNC(M', V")
fvi fum

V/( M/
which is equivariant under the gauge action
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Functoriality of Blup
Ve—> M gives DNC(f): DNC(M,V)— DNC(M', V")
W |
Ve—s M’

which is equivariant under the gauge action : it passes to the quotient
Blup as soon as it is defined.
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Functoriality of Blup
Ve—> M gives DNC(f): DNC(M,V) — DNC(M', V")

W

V/ M/
which is equivariant under the gauge action : it passes to the quotient
Blup as soon as it is defined.

Let Us(M,V)=DNC(M,V)\ DNC(f)"'(V’ x R) and define

Blupy(M,V) =Uy/R* C Blup(M,V)



Motivations The DNC and Blup constructions If enough time

0000 00000e00 (e]e]
0000

Functoriality of Blup
Ve—s M  gives DNC(f): DNC(M,V) — DNC(M', V")

o

V/ M/
which is equivariant under the gauge action : it passes to the quotient
Blup as soon as it is defined.

Let Ug(M,V) = DNC(M,V)\ DNC(f)~}(V' x R) and define

Blupy(M,V) =Uy/R* C Blup(M,V)

Then DNC(f) passes to the quotient :
Blup(f) : Blups(M,V) — Blup(M', V")

Analogous constructions hold for SBlup.
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Blowup groupoid

t,s
Let T be a closed Lie subgroupoid of a Lie groupoid G = G(©). Define

DNC(G,T) =U/(G,T)NUs(G,T)
elements whose image by DNC(s) and DNC(t) are not in T©) x R.
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Blowup groupoid

t,s
Let T be a closed Lie subgroupoid of a Lie groupoid G = G(©). Define

DNC(G,T) = Uy(G,T) NU(G,T)

elements whose image by DNC(s) and DNC(t) are not in T©) x R.
Functoriality implies :

Blup, (G,T') = DNC(G,T)/R* = Blup(G®,T()
is naturally a Lie groupoid; its source and range maps are Blup(s)
and Blup(t) and its product is Blup(m).
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Blowup groupoid

t,s
Let T be a closed Lie subgroupoid of a Lie groupoid G = G(©). Define

DNC(G,T) = Uy(G,T) NU(G,T)

elements whose image by DNC(s) and DNC(t) are not in T©) x R.
Functoriality implies :

—_~—

Blup, +(G,T) = DNC(G,T)/R* = Blup(G®, 7))

is naturally a Lie groupoid; its source and range maps are Blup(s)
and Blup(t) and its product is Blup(m).

Analogous constructions hold for SBlup.
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Blowup groupoid

t,s
Let T be a closed Lie subgroupoid of a Lie groupoid G = G(©). Define
DNC(G,T) =U(G,T)NUs(G,T)

elements whose image by DNC(s) and DNC(t) are not in T©) x R.
Functoriality implies :

—_~—

Blup, +(G,T) = DNC(G,T)/R* = Blup(G®, 7))

is naturally a Lie groupoid; its source and range maps are Blup(s)
and Blup(t) and its product is Blup(m).

Analogous constructions hold for SBlup.

Remark
Let N& be the restriction of N = Ngf;;) to ng(g[;) \ O,

© 0
NE /R* inherits a structure of Lie groupoid : PAF = IF’N?’EE))).

Blup,.(G,T) = G\T UPNE = GO\TO® UPNS, .
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Examples of blowup groupoids
1. Take G = G© a Lie groupoid ans G =G xRxR = G® xR .
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Examples of blowup groupoids

1. Take G = G© a Lie groupoid ans G =G xRxR = G® xR .
Recall that DNC(G,G0) = G x R* UAG x {0} = G x R.
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Examples of blowup groupoids

1. Take G = G© a Lie groupoid ans G =G xRxR = G® xR .
Recall that DNC(G,G0) = G x R* UAG x {0} = G x R.

Blup, (G,G* x {(0,0)}) = DNC(G,G?) xR* = G xR

Gauge adiabatic groupoid [D.-Skandalis]
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Examples of blowup groupoids

1. Take G = G© a Lie groupoid ans G =G xRxR = G® xR .
Recall that DNC(G,G®) = G x R* UAG x {0} = G® x R.

Blup, (G,G* x {(0,0)}) = DNC(G,G?) xR* = G xR

Gauge adiabatic groupoid [D.-Skandalis]
2. Let V. C M be a hypersurface.

Gp = SBlup, (M x M,V x V) C SBlup(M x M,V x V)

The b-calculus groupoid Melrose’s b-space
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1. Take G = G© a Lie groupoid ans G =G xRxR = G® xR .
Recall that DNC(G,G®) = G x R* UAG x {0} = G® x R.

Blup, (G,G* x {(0,0)}) = DNC(G,G?) xR* = G xR

Gauge adiabatic groupoid [D.-Skandalis]
2. Let V. C M be a hypersurface.

Gp = SBlup, (M x M,V x V) C SBlup(M x M,V x V)

The b-calculus groupoid Melrose’s b-space

Go = SBlup, s(M x M,A(V)) C SBlup(M x M,A(V))

The 0-calculus groupoid Mazzeo-Melrose’s 0-space
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Examples of blowup groupoids

1. Take G = G© a Lie groupoid ans G =G xRxR = G® xR .
Recall that DNC(G,G®) = G x R* UAG x {0} = G® x R.

Blup, (G,G* x {(0,0)}) = DNC(G,G?) xR* = G xR

Gauge adiabatic groupoid [D.-Skandalis]
2. Let V. C M be a hypersurface.

Gp = SBlup, (M x M,V x V) C SBlup(M x M,V x V)

The b-calculus groupoid Melrose’s b-space

Go = SBlup, s(M x M,A(V)) C SBlup(M x M,A(V))

The 0-calculus groupoid Mazzeo-Melrose’s 0-space

Iterate these constructions to go to the study of manifolds with
corners.
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1. Take G = G© a Lie groupoid ans G =G xRxR = G® xR .
Recall that DNC(G,G®) = G x R* UAG x {0} = G® x R.

Blup, (G,G* x {(0,0)}) = DNC(G,G?) xR* = G xR

Gauge adiabatic groupoid [D.-Skandalis]
2. Let V. C M be a hypersurface.

Gp = SBlup, (M x M,V x V) C SBlup(M x M,V x V)

The b-calculus groupoid Melrose’s b-space

Go = SBlup, s(M x M,A(V)) C SBlup(M x M,A(V))

The 0-calculus groupoid Mazzeo-Melrose’s 0-space

Iterate these constructions to go to the study of manifolds with
corners. Or consider a foliation with no holonomy on V.
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Examples of blowup groupoids

1. Take G = G© a Lie groupoid ans G =G xRxR = G® xR .
Recall that DNC(G,G®) = G x R* UAG x {0} = G® x R.

Blup, (G,G* x {(0,0)}) = DNC(G,G?) xR* = G xR

Gauge adiabatic groupoid [D.-Skandalis]
2. Let V. C M be a hypersurface.

Gp = SBlup, (M x M,V x V) C SBlup(M x M,V x V)

The b-calculus groupoid Melrose’s b-space

Go = SBlup, s(M x M,A(V)) C SBlup(M x M,A(V))

The 0-calculus groupoid Mazzeo-Melrose’s 0-space

Iterate these constructions to go to the study of manifolds with
corners. Or consider a foliation with no holonomy on V. Define the
holonomy groupoid of a manifold with iterated fibred corners.
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About the case V c GO

t,s
Let G = M be a Lie groupoid and V' C M a closed submanifold.
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About the case V ¢ G
t,s
Let G = M be a Lie groupoid and V' C M a closed submanifold.
DNC(G,V) =G xR*UNF x {0} = M x R* U N x {0}

Blup(G,V) =G\ VUPNG) = M\ VUPNH)
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About the case V ¢ GO
t,s
Let G = M be a Lie groupoid and V' C M a closed submanifold.
DNC(G,V) =G xR*UNF x {0} = M x R* U N x {0}
Blup(G,V) = G\ VUP(NF) = M\ VUPNY)
Linear groupoid

Suppose E is a (real) vector space and F' C F a subvector space.
Let t, s: E — F be two linear retractions.
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About the case V c GO

t,s
Let G = M be a Lie groupoid and V' C M a closed submanifold.
DNC(G,V) =G xR*UNF x {0} = M x R* U N} x {0}

Blup(G,V) =G\ VUPNG) = M\ VUPNH)

Linear groupoid
Suppose E is a (real) vector space and F' C F a subvector space.
Let t, s: E — F be two linear retractions.

Facts
1. There is a unique structure of linear groupoid on £ : £ = F with
source s, target ¢ and units given by the inclusion F' C E.
The product is u-v =wu-s(u) + 0g - (v — $(v)) = u + v — s(u).
The inverse of u is (t + s — id)(u).



Motive

0000

\tions The DNC and Blup construction If enough time

00000000 [ Je]
0000

About the case V c GO

t,s
Let G = M be a Lie groupoid and V' C M a closed submanifold.
DNC(G,V) =G xR*UNF x {0} = M x R* U N} x {0}

Blup(G,V) =G\ VUPNG) = M\ VUPNH)

Linear groupoid
Suppose E is a (real) vector space and F' C F a subvector space.
Let t, s: E — F be two linear retractions.

Facts
1. There is a unique structure of linear groupoid on £ : £ = F with
source s, target ¢ and units given by the inclusion F' C E.
The product is u-v =wu-s(u) + 0g - (v — $(v)) = u + v — s(u).
The inverse of u is (t + s — id)(u).
2. t—s: E/F — F gives an action of E/F on E and & is the action
groupoid E x E/F.
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Bundle and projective groupoids

Perform the same construction for E — V a (real) vector-bundle,
F C E a subbundle and ¢, s: E — F bundle maps equal to identity
on F. It gives :

e A groupoid structure on £ : £€ = F.

e £~ F Xy E/F wherea=t—s:E/F = F.
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Perform the same construction for E — V a (real) vector-bundle,
F C E a subbundle and ¢, s: E — F bundle maps equal to identity
on F. It gives :

e A groupoid structure on £ : £€ = F.

e £~ F Xy E/F wherea=t—s:E/F = F.

The group R* acts freely on €\ (ker t U ker s) = F'\ V and leads to
the projective groupoid : PE = P(F).
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Bundle and projective groupoids

Perform the same construction for E — V a (real) vector-bundle,
F C E a subbundle and ¢, s: E — F bundle maps equal to identity
on F. It gives :

e A groupoid structure on £ : £€ = F.

o E~F X, E/F wherea=t—s: E/F — F.

The group R* acts freely on €\ (ker t U ker s) = F'\ V and leads to
the projective groupoid : PE = P(F).

PE =P(E) \ P(ker t) UP(ker s)
Source and target are induced by s and ¢t. For composable z, y € PE:

zy={utv—s(u); uez, veyst stu)=tv)} and the inverse of
xis (s +t—id)(x).
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Bundle and projective groupoids

Perform the same construction for E — V a (real) vector-bundle,
F C E a subbundle and ¢, s: E — F bundle maps equal to identity
on F. It gives :

e A groupoid structure on £ : £€ = F.

o E~F X, E/F wherea=t—s: E/F — F.

The group R* acts freely on €\ (ker t U ker s) = F'\ V and leads to
the projective groupoid : PE = P(F).

PE =P(E) \ P(ker t) UP(ker s)

Source and target are induced by s and ¢t. For composable z, y € PE:
zy={utv—s(u); uez, veyst stu)=tv)} and the inverse of
xis (s +t—id)(x).

Example : For E= NG — V, F = N} and dt,ds : NG — N we get
NE = N} and P(NG) = P(NM).
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Exact sequences coming from deformations and blowups

t,s
Let I' = V be a closed Lie subgroupoid of a Lie groupoid G = M,
suppose that I" is amenable and let M = M \ V. Let ./\/19 be the
restriction of the groupoid N¥ = MM to N\ V.
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Exact sequences coming from deformations and blowups
t,s
Let I' = V be a closed Lie subgroupoid of a Lie groupoid G = M,
suppose that I" is amenable and let M = M \ V. Let NFG be the
restriction of the groupoid N¥ = MM to N\ V.

DNC4(G,T) =G xRy UNFE x {0} = M x R, UNY

DNC.(G,T) = GM x R, UNE x {0} = M x R} UNY

SBlup,4(G,T') = DNC4(G,T)/R% = GM USNE = M USWY)
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Exact sequences coming from deformations and blowups

DNC4(G,T) =G xRy UNF x {0} = M x R}, UNY

DNC(G,T) = GM x RY UNE x {0} = M x R UNY

SBlup; +(G,T) = DNC.(G,T)/R% = GM USNE = M USY)

0 ——> C*(G x R ) —— C*(DNC4(G,T)) —— C*(NG) —=0
0 —— C*(GM x R} ) — C*(DNC(G.T)) —> C*(NF) —=0

0 —— C*(GM) —— C*(SBlup; +(G,T)) ——= C*(SNE) —=0
M I
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Connecting elements

0 —— C*(G x R%) —— C*(DNC4(G,T)) —— C*(NF) —= 0 dpne,

0—— C*(G% x R* ) —— C*(DNC(G,T)) — C*(NF) ——0 8D7V\E+

0 ——— C*(GM) ——— C*(SBlupy,s(G,T)) ——> C*(SNF) — 0 9spiup

Connecting elements : dpnc, € KKYC*(NEF),C*(G x RY)),
anN\Cer € KKI(C*(NF),C*(G%qx R*)) and
dsprup € KK (C*(SNF), C*(GY).
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Connecting elements

0 —— C*(G x R%) —— C*(DNC4(G,T)) —— C*(NF) —= 0 dpne,

0—— C*(G% x R* ) —— C*(DNC(G,T)) — C*(NF) ——0 aDT\;@
B B B9

0 ——— C*(GM) ——— C*(SBlupy,s(G,T)) —> C*(SNF) — 0 9spiup

The p’s being K K-equivalences given by Connes-Thom elements.
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Connecting elements

0 —— C*(G x R%) —— C*(DNC4(G,T)) —— C*(NF) —= 0 dpne,

j J 3°
M~ °
0—— C*(G% X RY) —— C*(DNC1(G,T)) ———= C*(NF) —=0 aDT\;@
B B B9

0 ——— C*(GM) ——— C*(SBlupy,s(G,T)) —> C*(SNF) — 0 9spiup

The j’s coming from inclusion.
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Connecting elements

0 —— C*(G x R%) —— C*(DNC4(G,T)) —— C*(NF) —= 0 dpne,

j J 3°

“

T~

0—— C*(G% x R ) —— C*(DNC(G,T)) — C*(NF) ——0 aDT\;@

B B B9

0 ——— C*(GM) ——— C*(SBlupy,s(G,T)) —> C*(SNF) — 0 9spiup

Proposition
dsiup ® B @ [j] = B ® [°] ® e, € KK'(C*(SNF),C*(G)).
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Index type connecting elements
0——— C*(G X Ri) E—— \I/*(DNCJ,_(G,F)) e EDNC+ —>0 f;l;lDNc+

k/

! . J __
00— C*(Gy] x RY) —= W (DNCL(G,T) —> S50 —> 0 Indgs

B B 89

0 C*(G%:) — lIl’«(SBlup"“yS(C:’ F)) —— ZS'B’l'u,p —0 fr?glsBlup
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Index type connecting elements

0——— C*(G X Ri) E—— \I/*(DNCJ,_(G,F)) e EDNC+ —>0 fT\lEDNc+

! . J __
00— C*(Gy] x RY) —= W (DNCL(G,T) —> S50 —> 0 Indgs

0 C*(G%:) — \I/*(SBlupns(G, F)) —— ZSBl'u,p —0 %SBlup

Proposition

va\ﬁlsglup@@,f;'@[jo'] = ,68®[j8]®ﬁbleNC+ € KK'(C*(SsBiup), C*(G)).



Thank you for your attention !
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