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Some historical Groupoid successes in index theory

Smooth compact manifold M :

M ×M ⇒M the pair groupoid.

The tangent groupoid of A. Connes :

GtM = TM × {0} ∪M ×M×]0, 1] ⇒M × [0, 1]

It defines : 0→ C∗(GtM |M×]0,1])

' K ⊗ C0(]0, 1])

→ C∗(GtM )
e0→ C∗(GtM |M×{0})

= C∗(TM)

→ 0

[e0] ∈ KK(C∗(GtM ), C∗(TM)) is invertible.
Let e1 : C∗(GtM )→ C∗(GtM |M×{1}) = C∗(M ×M) ' K.

The index element

IndM×M := [e0]−1 ⊗ [e1] ∈ KK(C∗(TM),K) ' K0(C∗(TM)) .
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The algebra Ψ∗(G) = Ψ∗(M ×M) identifies with the C∗-algebra of
order 0 pseudodifferential operators on M and

0 // C∗(M ×M)
' K

// Ψ∗(M ×M) // C(S∗TM) // 0

which gives a connecting element ĨndM×M ∈ KK1(C(S∗TM),K).

Let i be the inclusion of S∗TM × R∗+ as the open subset T ∗M \M of
T ∗M then

ĨndM×M = IndM×M ⊗ [i]

Proposition [Connes]

The morphism · ⊗ IndM×M : K0(T ∗M) ' KK(C, C∗(TM)) −→ Z is
the analytic index map of A-S.

Foliation F on M : Replace in the picture the groupoid M ×M by
the holonomy groupoid Hol(M,F) (i.e. the “smallest” Lie groupoid
over M whose orbits are the leaves of the foliation) [Connes].
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General Lie groupoid G⇒M [Monthubert-Pierrot, Nistor-Weinstein-Xu]

The adiabatic groupoid : GtM = AG× {0} ∪G×]0, 1] ⇒M × [0, 1]
gives IndG := [e0]−1 ⊗ [e1] ∈ KK(C∗(AG), C∗(G)).

Pseudodifferential exact sequence :

0 // C∗(G) // Ψ∗(G) // C(S∗AG) // 0

which defines ĨndG ∈ KK1(C(S∗AG), C∗(G)) with ĨndG = IndG ⊗ [i]
where i is the inclusion of S∗AG× R∗+ as the open subset A∗G \M of
A∗G.

Manifold with boundary - V ⊂M a hypersurface [Melrose & co.]

• 0-calculus, (pseudodifferential) operators vanishing on V :
replace M ×M by G0 ⇒M equal to the pair groupoid on M \ V
outside V and isomorphic to GtV oR∗+ around V .

• b-calculus, (pseudodifferential) operators vanishing on the normal
direction of V : replace M ×M by Gb ⇒M equal to
M \ V ×M \ V outside V and isomorphic to V × V × Ro R∗+
around V .
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What about more general situations ...

Can we mix situation analogous to foliation and hypersurface ?

There is no reason to restrict to :

• V being a hypersurface,

• Operators which are usual operators outside V .

Framework : G⇒M a Lie groupoid, V ⊂M a submanifold,
Γ ⇒ V a sub-groupoid of G and operators that “slow down” near V
in the normal direction and “propagate” along Γ inside V .

Today, in this talk :
• Present the general groupoid constructions involved in such

situations.
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The Deformation to the Normal Cone construction

Let V be a closed submanifold of a smooth manifold M with normal
bundle NM

V . The deformation to the normal cone is

DNC(M,V ) = M × R∗ ∪NM
V × {0}

It is endowed with a smooth structure thanks to the choice of an
exponential map θ : U ′ ⊂ NM

V → U ⊂M by asking the map

Θ : (x,X, t) 7→
{

(θ(x, tX), t) for t 6= 0
(x,X, 0) for t = 0

to be a diffeomorphism from the open neighborhood
W ′ = {(x,X, t) ∈ NM

V ×R | (x, tX) ∈ U ′} of NM
V ×{0} in NM

V ×R on
its image.

We define similarly

DNC+(M,V ) = M × R∗+ ∪NM
V × {0}
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Functoriality of DNC

Consider a commutative diagram of smooth maps

V �
� //

fV
��

M

fM
��

V ′ �
� // M ′

Where the horizontal arrows are inclusions of submanifolds. Let{
DNC(f)(x, λ) = (fM (x), λ) for x ∈M, λ ∈ R∗
DNC(f)(x, ξ, 0) = (fV (x), (dfM )x(ξ), 0) for x ∈ V, ξ̄ ∈ TxM/TxV

We get a smooth map DNC(f) : DNC(M,V )→ DNC(M ′, V ′).
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Deformation groupoid

Let Γ be a closed Lie subgroupoid of a Lie groupoid G
t,s

⇒ G(0).

Functoriality implies :

DNC(G,Γ) ⇒ DNC(G(0),Γ(0))

is naturally a Lie groupoid; its source and range maps are DNC(s)
and DNC(t); DNC(G,Γ)(2) identifies with DNC(G(2),Γ(2)) and its

product with DNC(m) where m : G
(2)
i → Gi is the product.

Remarks

• No transversality asumption !

• NG
Γ is a VB-groupoid over NG(0)

Γ(0) denoted NG
Γ ⇒ NG(0)

Γ(0) .

DNC(G,Γ) = G× R∗ ∪NG
Γ × {0}⇒ G(0) × R∗ ∪NG(0)

Γ(0) × {0}
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Examples

1. The adiabatic groupoid is the restriction of DNC(G,G(0)) over
G(0) × [0, 1].

2. If V is a saturated submanifold of G(0) for G, DNC(G,GVV ) is
the normal groupoid of the immersion GVV ↪→ G which gives the
shriek map [M. Hilsum, G. Skandalis].

3. π : E →M a vector bundle; consider ∆E ⊂ E ×
M
E ⊂ E × E :

T = DNC
(
DNC(E × E,E ×

M
E),∆E × {0}

)
⇒ E × R× R

Let T � = T |E×[0,1]×[0,1] and T hom = T |E×{0}×[0,1].
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G(0) × [0, 1].
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The Blowup construction

The scaling action of R∗ on M × R∗ extends to the gauge action on
DNC(M,V ) = M × R∗ ∪NM

V × {0} :

DNC(M,V )× R∗ −→ DNC(M,V )
(z, t, λ) 7→ (z, λt) for t 6= 0

(x,X, 0, λ) 7→ (x, 1
λX, 0) for t = 0

The manifold V × R embeds in DNC(M,V ) : V �
� //

��

V

��
V
� � // M

The gauge action is free and proper on the open subset
DNC(M,V ) \ V × R of DNC(M,V ). We let :

Blup(M,V ) =
(
DNC(M,V ) \ V × R

)
/R∗ = M \ V ∪ P(NM

V ) and

SBlup(M,V ) =
(
DNC+(M,V ) \ V × R+

)
/R∗+ = M \ V ∪ S(NM

V ) .
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Functoriality of Blup

V
� � //

fV
��

M

fM
��

V ′ �
� // M ′

gives DNC(f) : DNC(M,V )→ DNC(M ′, V ′)

which is equivariant under the gauge action

: it passes to the quotient
Blup as soon as it is defined.

Let Uf (M,V ) = DNC(M,V ) \DNC(f)−1(V ′ × R) and define

Blupf (M,V ) = Uf/R∗ ⊂ Blup(M,V )

Then DNC(f) passes to the quotient :

Blup(f) : Blupf (M,V )→ Blup(M ′, V ′)

Analogous constructions hold for SBlup.
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Blowup groupoid

Let Γ be a closed Lie subgroupoid of a Lie groupoid G
t,s

⇒ G(0). Define

˜DNC(G,Γ) = Ut(G,Γ) ∩ Us(G,Γ)

elements whose image by DNC(s) and DNC(t) are not in Γ(0) × R.

Functoriality implies :

Blupt,s(G,Γ) = ˜DNC(G,Γ)/R∗ ⇒ Blup(G(0),Γ(0))

is naturally a Lie groupoid; its source and range maps are Blup(s)
and Blup(t) and its product is Blup(m).

Analogous constructions hold for SBlup.

Remark

Let N̊G
Γ be the restriction of NG

Γ ⇒ NG(0)

Γ(0) to NG(0)

Γ(0) \ Γ(0).

N̊G
Γ /R∗ inherits a structure of Lie groupoid : PNG

Γ ⇒ PNG(0)

Γ(0) .

Blupr,s(G,Γ) = G \ Γ ∪ PNG
Γ ⇒ G(0) \ Γ(0) ∪ PNG(0)

Γ(0) .
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Examples of blowup groupoids

1. Take G⇒ G(0) a Lie groupoid ans G = G× R× R ⇒ G(0) × R .

Recall that DNC(G,G(0)) = G× R∗ ∪ AG× {0}⇒ G(0) × R.

Blupr,s(G,G(0) × {(0, 0)}) = DNC(G,G(0)) oR∗ ⇒ G(0) × R

Gauge adiabatic groupoid [D.-Skandalis]
2. Let V ⊂M be a hypersurface.

Gb = SBlupr,s(M ×M,V × V )︸ ︷︷ ︸
The b-calculus groupoid

⊂ SBlup(M ×M,V × V )︸ ︷︷ ︸
Melrose’s b-space

G0 = SBlupr,s(M ×M,∆(V ))︸ ︷︷ ︸
The 0-calculus groupoid

⊂ SBlup(M ×M,∆(V ))︸ ︷︷ ︸
Mazzeo-Melrose’s 0-space

Iterate these constructions to go to the study of manifolds with
corners. Or consider a foliation with no holonomy on V . Define the
holonomy groupoid of a manifold with iterated fibred corners.
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About the case V ⊂ G(0)

Let G
t,s

⇒M be a Lie groupoid and V ⊂M a closed submanifold.

DNC(G,V ) = G× R∗ ∪NG
V × {0}⇒M × R∗ ∪NM

V × {0}

Blup(G,V ) = G \ V ∪ P(NG
V ) ⇒M \ V ∪ P(NM

V )

Linear groupoid
Suppose E is a (real) vector space and F ⊂ E a subvector space.
Let t, s : E → F be two linear retractions.

Facts

1. There is a unique structure of linear groupoid on E : E ⇒ F with
source s, target t and units given by the inclusion F ⊂ E.
The product is u · v = u · s(u) + 0E · (v − s(v)) = u+ v − s(u).
The inverse of u is (t+ s− id)(u).

2. t− s : E/F → F gives an action of E/F on E and E is the action
groupoid E o E/F .
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Bundle and projective groupoids

Perform the same construction for E → V a (real) vector-bundle,
F ⊂ E a subbundle and t, s : E → F bundle maps equal to identity
on F . It gives :

• A groupoid structure on E : E ⇒ F .

• E ' F oα E/F where α = t− s : E/F → F .

The group R∗ acts freely on E \ (ker t ∪ ker s) ⇒ F \ V and leads to
the projective groupoid : PE ⇒ P(F ).

PE = P(E) \ P(ker t) ∪ P(ker s)

Source and target are induced by s and t. For composable x, y ∈ PE:
x · y = {u+ v− s(u) ; u ∈ x, v ∈ y s.t. s(u) = t(v)} and the inverse of
x is (s+ t− id)(x).

Example : For E = NG
V → V , F = NM

V and dt, ds : NG
V → NM

V we get
NG
V ⇒ NM

V and P(NG
V ) ⇒ P(NM

V ).
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Exact sequences coming from deformations and blowups

Let Γ ⇒ V be a closed Lie subgroupoid of a Lie groupoid G
t,s

⇒M ,
suppose that Γ is amenable and let M̊ = M \ V . Let N̊G

Γ be the
restriction of the groupoid NG

Γ ⇒ NM
V to NM

V \ V .
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Let Γ ⇒ V be a closed Lie subgroupoid of a Lie groupoid G
t,s

⇒M ,
suppose that Γ is amenable and let M̊ = M \ V . Let N̊G

Γ be the
restriction of the groupoid NG

Γ ⇒ NM
V to NM

V \ V .

DNC+(G,Γ) = G× R∗+ ∪NG
Γ × {0}⇒M × R∗+ ∪NM

V

˜DNC+(G,Γ) = GM̊
M̊
× R∗+ ∪ N̊G

Γ × {0}⇒ M̊ × R∗+ ∪ N̊M
V

SBlupt,s(G,Γ) = ˜DNC+(G,Γ)/R∗+ = GM̊
M̊
∪ SNG

Γ ⇒ M̊ ∪ S(NM
V )
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Exact sequences coming from deformations and blowups

DNC+(G,Γ) = G× R∗+ ∪NG
Γ × {0}⇒M × R∗+ ∪NM

V

˜DNC+(G,Γ) = GM̊
M̊
× R∗+ ∪ N̊G

Γ × {0}⇒ M̊ × R∗+ ∪ N̊M
V

SBlupt,s(G,Γ) = ˜DNC+(G,Γ)/R∗+ = GM̊
M̊
∪ SNG

Γ ⇒ M̊ ∪ S(NM
V )

0 // C∗(G× R∗+) // C∗(DNC+(G,Γ)) // C∗(NGΓ ) // 0

0 // C∗(GM̊
M̊
× R∗+) // C∗( ˜DNC+(G,Γ)) // C∗(N̊GΓ ) // 0

0 // C∗(GM̊
M̊

) // C∗(SBlupt,s(G,Γ)) // C∗(SNGΓ ) // 0
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Connecting elements

0 // C∗(G× R∗+) // C∗(DNC+(G,Γ)) // C∗(NGΓ ) // 0 ∂DNC+

0 // C∗(GM̊
M̊
× R∗+) // C∗( ˜DNC+(G,Γ)) // C∗(N̊GΓ ) // 0 ∂

D̃NC+

0 // C∗(GM̊
M̊

) // C∗(SBlupt,s(G,Γ)) // C∗(SNGΓ ) // 0 ∂SBlup

Connecting elements : ∂DNC+
∈ KK1(C∗(NG

Γ ), C∗(G× R∗+)),

∂
D̃NC+

∈ KK1(C∗(N̊G
Γ ), C∗(GM̊

M̊
× R∗+)) and

∂SBlup ∈ KK1(C∗(SNG
Γ ), C∗(GM̊

M̊
)).
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Connecting elements

0 // C∗(G× R∗+) // C∗(DNC+(G,Γ)) // C∗(NGΓ ) // 0 ∂DNC+

0 // C∗(GM̊
M̊
× R∗+) //

β̊

C∗( ˜DNC+(G,Γ)) //

β

C∗(N̊GΓ )

β∂

// 0 ∂
D̃NC+

0 // C∗(GM̊
M̊

) // C∗(SBlupt,s(G,Γ)) // C∗(SNGΓ ) // 0 ∂SBlup

The β’s being KK-equivalences given by Connes-Thom elements.
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Connecting elements

0 // C∗(G× R∗+) // C∗(DNC+(G,Γ)) // C∗(NGΓ ) // 0 ∂DNC+

0 // C∗(GM̊
M̊
× R∗+) //

β̊

?�

j̊

OO

C∗( ˜DNC+(G,Γ)) //

β

?�

j

OO

C∗(N̊GΓ )

β∂

//
?�

j∂

OO

0 ∂
D̃NC+

0 // C∗(GM̊
M̊

) // C∗(SBlupt,s(G,Γ)) // C∗(SNGΓ ) // 0 ∂SBlup

The j’s coming from inclusion.
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Connecting elements
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0 // C∗(GM̊
M̊

) // C∗(SBlupt,s(G,Γ)) // C∗(SNGΓ ) // 0 ∂SBlup

Proposition

∂SBlup ⊗ β̊ ⊗ [̊j] = β∂ ⊗ [j∂ ]⊗ ∂DNC+
∈ KK1(C∗(SNG

Γ ), C∗(G)).
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Index type connecting elements

0 // C∗(G× R∗+) // Ψ∗(DNC+(G,Γ)) // ΣDNC+
// 0 ĨndDNC+

0 // C∗(GM̊
M̊
× R∗+) //

β̊

?�

j̊

OO

Ψ∗( ˜DNC+(G,Γ)) //

β

?�

j

OO

Σ
D̃NC+

β∂

//?�

j∂

OO

0 Ĩnd
D̃NC+

0 // C∗(GM̊
M̊

) // Ψ∗(SBlupr,s(G,Γ)) // ΣSBlup // 0 ĨndSBlup

Proposition

ĨndSBlup⊗ β̊⊗ [̊j] = β∂⊗ [j∂ ]⊗ ĨndDNC+
∈ KK1(C∗(ΣSBlup), C

∗(G)).
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Thank you for your attention !
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