Blowup and deformation groupoids constructions related to index problem

D. \& Skandalis - Blowup constructions for Lie groupoids and a Boutet de Monvel type calculus (In preparation)

Claire Debord

UCA

Banff 2017

Some historical Groupoid successes in index theory

Smooth compact manifold M :

Some historical Groupoid successes in index theory

Smooth compact manifold $M: M \times M \rightrightarrows M$ the pair groupoid. The tangent groupoid of A. Connes :

$$
\left.\left.\mathcal{G}_{M}^{t}=T M \times\{0\} \cup M \times M \times\right] 0,1\right] \rightrightarrows M \times[0,1]
$$

Some historical Groupoid successes in index theory

Smooth compact manifold $M: M \times M \rightrightarrows M$ the pair groupoid. The tangent groupoid of A. Connes :

$$
\left.\left.\mathcal{G}_{M}^{t}=T M \times\{0\} \cup M \times M \times\right] 0,1\right] \rightrightarrows M \times[0,1]
$$

It defines : $0 \rightarrow C^{*}\left(\left.\mathcal{G}_{M}^{t}\right|_{M \times] 0,1]}\right) \rightarrow C^{*}\left(\mathcal{G}_{M}^{t}\right) \xrightarrow{e_{0}} C^{*}\left(\left.\mathcal{G}_{M}^{t}\right|_{M \times\{0\}}\right) \rightarrow 0$ $\left.\left.\simeq \mathcal{K} \otimes C_{0}(] 0,1\right]\right)=C^{*}(T M)$
$\left[e_{0}\right] \in K K\left(C^{*}\left(\mathcal{G}_{M}^{t}\right), C^{*}(T M)\right)$ is invertible.

Some historical Groupoid successes in index theory

Smooth compact manifold $M: M \times M \rightrightarrows M$ the pair groupoid.
The tangent groupoid of A. Connes :

$$
\left.\left.\mathcal{G}_{M}^{t}=T M \times\{0\} \cup M \times M \times\right] 0,1\right] \rightrightarrows M \times[0,1]
$$

It defines : $0 \rightarrow C^{*}\left(\left.\mathcal{G}_{M}^{t}\right|_{M \times] 0,1]}\right) \rightarrow C^{*}\left(\mathcal{G}_{M}^{t}\right) \xrightarrow{e_{0}} C^{*}\left(\left.\mathcal{G}_{M}^{t}\right|_{M \times\{0\}}\right) \rightarrow 0$

$$
\simeq \mathcal{K} \otimes C_{0}([0,1]) \quad=C^{*}(T M)
$$

$\left[e_{0}\right] \in K K\left(C^{*}\left(\mathcal{G}_{M}^{t}\right), C^{*}(T M)\right)$ is invertible.
Let $e_{1}: C^{*}\left(\mathcal{G}_{M}^{t}\right) \rightarrow C^{*}\left(\left.\mathcal{G}_{M}^{t}\right|_{M \times\{1\}}\right)=C^{*}(M \times M) \simeq \mathcal{K}$.
The index element

$$
\operatorname{Ind}_{M \times M}:=\left[e_{0}\right]^{-1} \otimes\left[e_{1}\right] \in K K\left(C^{*}(T M), \mathcal{K}\right) \simeq K^{0}\left(C^{*}(T M)\right) .
$$

The algebra $\Psi^{*}(G)=\Psi^{*}(M \times M)$ identifies with the C^{*}-algebra of order 0 pseudodifferential operators on M and

$$
\begin{aligned}
0 \longrightarrow C^{*} & (M \times M) \longrightarrow \Psi^{*}(M \times M) \longrightarrow C\left(\mathbb{S}^{*} T M\right) \longrightarrow 0 \\
& \simeq \mathcal{K}
\end{aligned}
$$

which gives a connecting element $\widetilde{\operatorname{Ind}}_{M \times M} \in K K^{1}\left(C\left(\mathbb{S}^{*} T M\right), \mathcal{K}\right)$.

The algebra $\Psi^{*}(G)=\Psi^{*}(M \times M)$ identifies with the C^{*}-algebra of order 0 pseudodifferential operators on M and

$$
\begin{aligned}
0 \longrightarrow C^{*} & (M \times M) \longrightarrow \Psi^{*}(M \times M) \longrightarrow C\left(\mathbb{S}^{*} T M\right) \longrightarrow 0 \\
& \simeq \mathcal{K}
\end{aligned}
$$

which gives a connecting element $\widetilde{\operatorname{Ind}}_{M \times M} \in K K^{1}\left(C\left(\mathbb{S}^{*} T M\right), \mathcal{K}\right)$. Let i be the inclusion of $\mathbb{S}^{*} T M \times \mathbb{R}_{+}^{*}$ as the open subset $T^{*} M \backslash M$ of $T^{*} M$ then

$$
\widetilde{\operatorname{Ind}}_{M \times M}=\operatorname{Ind} d_{M \times M} \otimes[i]
$$

The algebra $\Psi^{*}(G)=\Psi^{*}(M \times M)$ identifies with the C^{*}-algebra of order 0 pseudodifferential operators on M and

$$
\begin{aligned}
0 \longrightarrow C^{*} & (M \times M) \longrightarrow \Psi^{*}(M \times M) \longrightarrow C\left(\mathbb{S}^{*} T M\right) \longrightarrow 0 \\
& \simeq \mathcal{K}
\end{aligned}
$$

which gives a connecting element $\widetilde{\operatorname{Ind}}_{M \times M} \in K K^{1}\left(C\left(\mathbb{S}^{*} T M\right), \mathcal{K}\right)$. Let i be the inclusion of $\mathbb{S}^{*} T M \times \mathbb{R}_{+}^{*}$ as the open subset $T^{*} M \backslash M$ of $T^{*} M$ then

$$
\widetilde{\operatorname{Ind}}_{M \times M}=\operatorname{Ind} d_{M \times M} \otimes[i]
$$

Proposition [Connes]

The morphism $\cdot \otimes \operatorname{Ind}_{M \times M}: K^{0}\left(T^{*} M\right) \simeq K K\left(\mathbb{C}, C^{*}(T M)\right) \longrightarrow \mathbb{Z}$ is the analytic index map of A-S.

The algebra $\Psi^{*}(G)=\Psi^{*}(M \times M)$ identifies with the C^{*}-algebra of order 0 pseudodifferential operators on M and

$$
\begin{aligned}
0 \longrightarrow C^{*} & (M \times M) \longrightarrow \Psi^{*}(M \times M) \longrightarrow C\left(\mathbb{S}^{*} T M\right) \longrightarrow 0 \\
& \simeq \mathcal{K}
\end{aligned}
$$

which gives a connecting element $\widetilde{\operatorname{Ind}}_{M \times M} \in K K^{1}\left(C\left(\mathbb{S}^{*} T M\right), \mathcal{K}\right)$. Let i be the inclusion of $\mathbb{S}^{*} T M \times \mathbb{R}_{+}^{*}$ as the open subset $T^{*} M \backslash M$ of $T^{*} M$ then

$$
\widetilde{\operatorname{Ind}}_{M \times M}=\operatorname{Ind} d_{M \times M} \otimes[i]
$$

Proposition [Connes]

The morphism $\cdot \otimes \operatorname{Ind}_{M \times M}: K^{0}\left(T^{*} M\right) \simeq K K\left(\mathbb{C}, C^{*}(T M)\right) \longrightarrow \mathbb{Z}$ is the analytic index map of A-S.

Foliation \mathcal{F} on M : Replace in the picture the groupoid $M \times M$ by the holonomy groupoid $\operatorname{Hol}(M, \mathcal{F})$ (i.e. the "smallest" Lie groupoid over M whose orbits are the leaves of the foliation) [Connes].

General Lie groupoid $G \rightrightarrows M$ [Monthubert-Pierrot, Nistor-Weinstein-Xu] The adiabatic groupoid : $\left.\left.\mathcal{G}_{M}^{t}=\mathfrak{A} G \times\{0\} \cup G \times\right] 0,1\right] \rightrightarrows M \times[0,1]$ gives $\operatorname{Ind}_{G}:=\left[e_{0}\right]^{-1} \otimes\left[e_{1}\right] \in K K\left(C^{*}(\mathfrak{A} G), C^{*}(G)\right)$.

General Lie groupoid $G \rightrightarrows M$ [Monthubert-Pierrot, Nistor-Weinstein-Xu] $\left.\left.\overline{\text { The adiabatic groupoid : } \mathcal{G}_{M}^{t}}=\mathfrak{A} G \times\{0\} \cup G \times\right] 0,1\right] \rightrightarrows M \times[0,1]$ gives $\operatorname{Ind}_{G}:=\left[e_{0}\right]^{-1} \otimes\left[e_{1}\right] \in K K\left(C^{*}(\mathfrak{A} G), C^{*}(G)\right)$.

Pseudodifferential exact sequence :

$$
0 \longrightarrow C^{*}(G) \longrightarrow \Psi^{*}(G) \longrightarrow C\left(\mathbb{S}^{*} \mathfrak{A} G\right) \longrightarrow 0
$$

which defines $\widetilde{\operatorname{Ind}}_{G} \in K K^{1}\left(C\left(\mathbb{S}^{*} \mathfrak{A} G\right), C^{*}(G)\right)$

General Lie groupoid $G \rightrightarrows M$ [Monthubert-Pierrot, Nistor-Weinstein-Xu] $\left.\left.\overline{\text { The adiabatic groupoid : } \mathcal{G}_{M}^{t}}=\mathfrak{A} G \times\{0\} \cup G \times\right] 0,1\right] \rightrightarrows M \times[0,1]$ gives $\operatorname{Ind}_{G}:=\left[e_{0}\right]^{-1} \otimes\left[e_{1}\right] \in K K\left(C^{*}(\mathfrak{A} G), C^{*}(G)\right)$.

Pseudodifferential exact sequence :

$$
0 \longrightarrow C^{*}(G) \longrightarrow \Psi^{*}(G) \longrightarrow C\left(\mathbb{S}^{*} \mathfrak{A} G\right) \longrightarrow 0
$$

which defines $\widetilde{\operatorname{Ind}}_{G} \in K K^{1}\left(C(\mathbb{S} * \mathfrak{A} G), C^{*}(G)\right)$ with $\widetilde{\operatorname{Ind}}_{G}=\operatorname{Ind}_{G} \otimes[i]$ where i is the inclusion of $\mathbb{S}^{*} \mathfrak{A} G \times \mathbb{R}_{+}^{*}$ as the open subset $\mathfrak{A}^{*} G \backslash M$ of $\mathfrak{A}^{*} G$.

General Lie groupoid $G \rightrightarrows M$ [Monthubert-Pierrot, Nistor-Weinstein-Xu] $\left.\left.\overline{\text { The adiabatic groupoid : } \mathcal{G}_{M}^{t}}=\mathfrak{A} G \times\{0\} \cup G \times\right] 0,1\right] \rightrightarrows M \times[0,1]$ gives $\operatorname{Ind}_{G}:=\left[e_{0}\right]^{-1} \otimes\left[e_{1}\right] \in K K\left(C^{*}(\mathfrak{A} G), C^{*}(G)\right)$.

Pseudodifferential exact sequence :

$$
0 \longrightarrow C^{*}(G) \longrightarrow \Psi^{*}(G) \longrightarrow C\left(\mathbb{S}^{*} \mathfrak{A} G\right) \longrightarrow 0
$$

which defines $\widetilde{\operatorname{Ind}}_{G} \in K K^{1}\left(C\left(\mathbb{S}^{*} \mathfrak{A} G\right), C^{*}(G)\right)$ with $\widetilde{\operatorname{Ind}}_{G}=\operatorname{Ind}_{G} \otimes[i]$ where i is the inclusion of $\mathbb{S}^{*} \mathfrak{A} G \times \mathbb{R}_{+}^{*}$ as the open subset $\mathfrak{A}^{*} G \backslash M$ of $\mathfrak{A}^{*} G$.

Manifold with boundary - $V \subset M$ a hypersurface [Melrose \& co.]

General Lie groupoid $G \rightrightarrows M$ [Monthubert-Pierrot, Nistor-Weinstein-Xu] $\left.\left.\overline{\text { The adiabatic groupoid : } \mathcal{G}_{M}^{t}}=\mathfrak{A} G \times\{0\} \cup G \times\right] 0,1\right] \rightrightarrows M \times[0,1]$ gives $\operatorname{Ind}_{G}:=\left[e_{0}\right]^{-1} \otimes\left[e_{1}\right] \in K K\left(C^{*}(\mathfrak{A} G), C^{*}(G)\right)$.

Pseudodifferential exact sequence :

$$
0 \longrightarrow C^{*}(G) \longrightarrow \Psi^{*}(G) \longrightarrow C\left(\mathbb{S}^{*} \mathfrak{A} G\right) \longrightarrow 0
$$

which defines $\widetilde{\operatorname{Ind}}_{G} \in K K^{1}\left(C\left(\mathbb{S}^{*} \mathfrak{A} G\right), C^{*}(G)\right)$ with $\widetilde{\operatorname{Ind}}_{G}=\operatorname{Ind}_{G} \otimes[i]$ where i is the inclusion of $\mathbb{S}^{*} \mathfrak{A} G \times \mathbb{R}_{+}^{*}$ as the open subset $\mathfrak{A}^{*} G \backslash M$ of $\mathfrak{A}^{*} G$.

Manifold with boundary - $V \subset M$ a hypersurface [Melrose \& co.]

- 0-calculus, (pseudodifferential) operators vanishing on V : replace $M \times M$ by $G_{0} \rightrightarrows M$ equal to the pair groupoid on $M \backslash V$ outside V and isomorphic to $\mathcal{G}_{V}^{t} \rtimes \mathbb{R}_{+}^{*}$ around V.

General Lie groupoid $G \rightrightarrows M$ [Monthubert-Pierrot, Nistor-Weinstein-Xu] $\left.\left.\overline{\text { The adiabatic groupoid : } \mathcal{G}_{M}^{t}}=\mathfrak{A} G \times\{0\} \cup G \times\right] 0,1\right] \rightrightarrows M \times[0,1]$ gives $\operatorname{Ind}_{G}:=\left[e_{0}\right]^{-1} \otimes\left[e_{1}\right] \in K K\left(C^{*}(\mathfrak{A} G), C^{*}(G)\right)$.

Pseudodifferential exact sequence :

$$
0 \longrightarrow C^{*}(G) \longrightarrow \Psi^{*}(G) \longrightarrow C\left(\mathbb{S}^{*} \mathfrak{A} G\right) \longrightarrow 0
$$

which defines $\widetilde{\operatorname{Ind}}_{G} \in K K^{1}\left(C(\mathbb{S} * \mathfrak{A} G), C^{*}(G)\right)$ with $\widetilde{\operatorname{Ind}}_{G}=\operatorname{Ind}_{G} \otimes[i]$ where i is the inclusion of $\mathbb{S}^{*} \mathfrak{A} G \times \mathbb{R}_{+}^{*}$ as the open subset $\mathfrak{A}^{*} G \backslash M$ of $\mathfrak{A}^{*} G$.

Manifold with boundary - $V \subset M$ a hypersurface [Melrose \& co.]

- 0-calculus, (pseudodifferential) operators vanishing on V : replace $M \times M$ by $G_{0} \rightrightarrows M$ equal to the pair groupoid on $M \backslash V$ outside V and isomorphic to $\mathcal{G}_{V}^{t} \rtimes \mathbb{R}_{+}^{*}$ around V.
- b-calculus, (pseudodifferential) operators vanishing on the normal direction of $V:$ replace $M \times M$ by $G_{b} \rightrightarrows M$ equal to $M \backslash V \times M \backslash V$ outside V and isomorphic to $V \times V \times \mathbb{R} \rtimes \mathbb{R}_{+}^{*}$ around V.

What about more general situations ...

Can we mix situation analogous to foliation and hypersurface ?

What about more general situations ...

Can we mix situation analogous to foliation and hypersurface ? There is no reason to restrict to :

- V being a hypersurface,
- Operators which are usual operators outside V.

What about more general situations ...

Can we mix situation analogous to foliation and hypersurface ? There is no reason to restrict to :

- V being a hypersurface,
- Operators which are usual operators outside V.

Framework : $G \rightrightarrows M$ a Lie groupoid, $V \subset M$ a submanifold, $\Gamma \rightrightarrows V$ a sub-groupoid of G and operators that "slow down" near V in the normal direction and "propagate" along Γ inside V.

What about more general situations ...

Can we mix situation analogous to foliation and hypersurface ? There is no reason to restrict to :

- V being a hypersurface,
- Operators which are usual operators outside V.

Framework : $G \rightrightarrows M$ a Lie groupoid, $V \subset M$ a submanifold, $\Gamma \rightrightarrows V$ a sub-groupoid of G and operators that "slow down" near V in the normal direction and "propagate" along Γ inside V.

Today, in this talk :

- Present the general groupoid constructions involved in such situations.

The Deformation to the Normal Cone construction

Let V be a closed submanifold of a smooth manifold M with normal bundle N_{V}^{M}. The deformation to the normal cone is

$$
D N C(M, V)=M \times \mathbb{R}^{*} \cup N_{V}^{M} \times\{0\}
$$

The Deformation to the Normal Cone construction

Let V be a closed submanifold of a smooth manifold M with normal bundle N_{V}^{M}. The deformation to the normal cone is

$$
D N C(M, V)=M \times \mathbb{R}^{*} \cup N_{V}^{M} \times\{0\}
$$

It is endowed with a smooth structure thanks to the choice of an exponential map $\theta: U^{\prime} \subset N_{V}^{M} \rightarrow U \subset M$ by asking the map

$$
\Theta:(x, X, t) \mapsto\left\{\begin{array}{l}
(\theta(x, t X), t) \text { for } t \neq 0 \\
(x, X, 0) \text { for } t=0
\end{array}\right.
$$

to be a diffeomorphism from the open neighborhood $W^{\prime}=\left\{(x, X, t) \in N_{V}^{M} \times \mathbb{R} \mid(x, t X) \in U^{\prime}\right\}$ of $N_{V}^{M} \times\{0\}$ in $N_{V}^{M} \times \mathbb{R}$ on its image.

The Deformation to the Normal Cone construction

Let V be a closed submanifold of a smooth manifold M with normal bundle N_{V}^{M}. The deformation to the normal cone is

$$
D N C(M, V)=M \times \mathbb{R}^{*} \cup N_{V}^{M} \times\{0\}
$$

It is endowed with a smooth structure thanks to the choice of an exponential map $\theta: U^{\prime} \subset N_{V}^{M} \rightarrow U \subset M$ by asking the map

$$
\Theta:(x, X, t) \mapsto\left\{\begin{array}{l}
(\theta(x, t X), t) \text { for } t \neq 0 \\
(x, X, 0) \text { for } t=0
\end{array}\right.
$$

to be a diffeomorphism from the open neighborhood $W^{\prime}=\left\{(x, X, t) \in N_{V}^{M} \times \mathbb{R} \mid(x, t X) \in U^{\prime}\right\}$ of $N_{V}^{M} \times\{0\}$ in $N_{V}^{M} \times \mathbb{R}$ on its image.
We define similarly

$$
D N C_{+}(M, V)=M \times \mathbb{R}_{+}^{*} \cup N_{V}^{M} \times\{0\}
$$

Functoriality of $D N C$

Consider a commutative diagram of smooth maps

Where the horizontal arrows are inclusions of submanifolds. Let
$\begin{cases}D N C(f)(x, \lambda)=\left(f_{M}(x), \lambda\right) & \text { for } x \in M, \lambda \in \mathbb{R}_{*} \\ D N C(f)(x, \xi, 0)=\left(f_{V}(x), \overline{\left(d f_{M}\right)_{x}(\xi)}, 0\right) & \text { for } x \in V, \bar{\xi} \in T_{x} M / T_{x} V\end{cases}$
We get a smooth map $D N C(f): D N C(M, V) \rightarrow D N C\left(M^{\prime}, V^{\prime}\right)$.

Deformation groupoid

Let Γ be a closed Lie subgroupoid of a Lie groupoid $G \stackrel{t, s}{\rightrightarrows} G^{(0)}$.

Deformation groupoid

Let Γ be a closed Lie subgroupoid of a Lie groupoid $G \stackrel{t, s}{\rightrightarrows} G^{(0)}$. Functoriality implies :

$$
D N C(G, \Gamma) \rightrightarrows D N C\left(G^{(0)}, \Gamma^{(0)}\right)
$$

is naturally a Lie groupoid;

Deformation groupoid

Let Γ be a closed Lie subgroupoid of a Lie groupoid $G \stackrel{t, s}{\rightrightarrows} G^{(0)}$. Functoriality implies :

$$
D N C(G, \Gamma) \rightrightarrows D N C\left(G^{(0)}, \Gamma^{(0)}\right)
$$

is naturally a Lie groupoid; its source and range maps are $D N C(s)$ and $D N C(t) ; D N C(G, \Gamma)^{(2)}$ identifies with $D N C\left(G^{(2)}, \Gamma^{(2)}\right)$ and its product with $D N C(m)$ where $m: G_{i}^{(2)} \rightarrow G_{i}$ is the product.

Deformation groupoid

Let Γ be a closed Lie subgroupoid of a Lie groupoid $G \stackrel{t, s}{\rightrightarrows} G^{(0)}$. Functoriality implies :

$$
D N C(G, \Gamma) \rightrightarrows D N C\left(G^{(0)}, \Gamma^{(0)}\right)
$$

is naturally a Lie groupoid; its source and range maps are $D N C(s)$ and $D N C(t) ; D N C(G, \Gamma)^{(2)}$ identifies with $D N C\left(G^{(2)}, \Gamma^{(2)}\right)$ and its product with $D N C(m)$ where $m: G_{i}^{(2)} \rightarrow G_{i}$ is the product.

Remarks

- No transversality asumption!

Deformation groupoid

Let Γ be a closed Lie subgroupoid of a Lie groupoid $G \stackrel{t, s}{\rightrightarrows} G^{(0)}$. Functoriality implies :

$$
D N C(G, \Gamma) \rightrightarrows D N C\left(G^{(0)}, \Gamma^{(0)}\right)
$$

is naturally a Lie groupoid; its source and range maps are $D N C(s)$ and $D N C(t) ; D N C(G, \Gamma)^{(2)}$ identifies with $D N C\left(G^{(2)}, \Gamma^{(2)}\right)$ and its product with $D N C(m)$ where $m: G_{i}^{(2)} \rightarrow G_{i}$ is the product.

Remarks

- No transversality asumption!
- N_{Γ}^{G} is a $\mathcal{V} \mathcal{B}$-groupoid over $N_{\Gamma^{(0)}}^{G^{(0)}}$ denoted $\mathcal{N}_{\Gamma}^{G} \rightrightarrows N_{\Gamma^{(0)}}^{G^{(0)}}$.

Deformation groupoid

Let Γ be a closed Lie subgroupoid of a Lie groupoid $G \stackrel{t, s}{\rightrightarrows} G^{(0)}$. Functoriality implies :

$$
D N C(G, \Gamma) \rightrightarrows D N C\left(G^{(0)}, \Gamma^{(0)}\right)
$$

is naturally a Lie groupoid; its source and range maps are $D N C(s)$ and $D N C(t) ; D N C(G, \Gamma)^{(2)}$ identifies with $D N C\left(G^{(2)}, \Gamma^{(2)}\right)$ and its product with $D N C(m)$ where $m: G_{i}^{(2)} \rightarrow G_{i}$ is the product.

Remarks

- No transversality asumption!
- N_{Γ}^{G} is a $\mathcal{V B}$-groupoid over $N_{\Gamma^{(0)}}^{G^{(0)}}$ denoted $\mathcal{N}_{\Gamma}^{G} \rightrightarrows N_{\Gamma^{(0)}}^{G^{(0)}}$.

$$
D N C(G, \Gamma)=G \times \mathbb{R}^{*} \cup \mathcal{N}_{\Gamma}^{G} \times\{0\} \rightrightarrows G^{(0)} \times \mathbb{R}^{*} \cup N_{\Gamma^{(0)}}^{G^{(0)}} \times\{0\}
$$

Examples

1. The adiabatic groupoid is the restriction of $\operatorname{DNC}\left(G, G^{(0)}\right)$ over $G^{(0)} \times[0,1]$.

Examples

1. The adiabatic groupoid is the restriction of $\operatorname{DNC}\left(G, G^{(0)}\right)$ over $G^{(0)} \times[0,1]$.
2. If V is a saturated submanifold of $G^{(0)}$ for $G, D N C\left(G, G_{V}^{V}\right)$ is the normal groupoid of the immersion $G_{V}^{V} \hookrightarrow G$ which gives the shriek map [M. Hilsum, G. Skandalis].

Examples

1. The adiabatic groupoid is the restriction of $\operatorname{DNC}\left(G, G^{(0)}\right)$ over $G^{(0)} \times[0,1]$.
2. If V is a saturated submanifold of $G^{(0)}$ for $G, D N C\left(G, G_{V}^{V}\right)$ is the normal groupoid of the immersion $G_{V}^{V} \hookrightarrow G$ which gives the shriek map [M. Hilsum, G. Skandalis].
3. $\pi: E \rightarrow M$ a vector bundle; consider $\Delta E \subset E \times \underset{M}{ } E \subset E \times E$:

Examples

1. The adiabatic groupoid is the restriction of $\operatorname{DNC}\left(G, G^{(0)}\right)$ over $G^{(0)} \times[0,1]$.
2. If V is a saturated submanifold of $G^{(0)}$ for $G, D N C\left(G, G_{V}^{V}\right)$ is the normal groupoid of the immersion $G_{V}^{V} \hookrightarrow G$ which gives the shriek map [M. Hilsum, G. Skandalis].
3. $\pi: E \rightarrow M$ a vector bundle; consider $\Delta E \subset E \underset{M}{\times} E \subset E \times E$:

$$
\mathcal{T}=D N C(D N C(E \times E, E \underset{M}{E} E), \Delta E \times\{0\}) \rightrightarrows E \times \mathbb{R} \times \mathbb{R}
$$

Let $\mathcal{T}^{\square}=\left.\mathcal{T}\right|_{E \times[0,1] \times[0,1]}$ and \mathcal{T} hom $=\left.\mathcal{T}\right|_{E \times\{0\} \times[0,1]}$.

Examples

3. $\pi: E \rightarrow M$ a vector bundle; consider $\Delta E \subset E \underset{M}{ } E \subset E \times E:$

$$
\mathcal{T}=D N C(D N C(E \times E, E \underset{M}{\times} E), \Delta E \times\{0\}) \rightrightarrows E \times \mathbb{R} \times \mathbb{R}
$$

Let $\mathcal{T}^{\square}=\left.\mathcal{T}\right|_{E \times[0,1] \times[0,1]}$ and \mathcal{T} hom $=\left.\mathcal{T}\right|_{E \times\{0\} \times[0,1]}$.

$$
\operatorname{Ind}_{a}^{M}
$$

Examples

3. $\pi: E \rightarrow M$ a vector bundle; consider $\Delta E \subset E \underset{M}{ } E \subset E \times E:$

$$
\mathcal{T}=D N C(D N C(E \times E, E \underset{M}{\times} E), \Delta E \times\{0\}) \rightrightarrows E \times \mathbb{R} \times \mathbb{R}
$$

$$
\text { Let } \mathcal{T}{ }^{\square}=\left.\mathcal{T}\right|_{E \times[0,1] \times[0,1]} \text { and } \mathcal{T} \text { hom }=\left.\mathcal{T}\right|_{E \times\{0\} \times[0,1]} .
$$

Gives $\operatorname{Ind} d_{a}^{M}=$ Ind $_{t}^{M}$ [D.-Lescure-Nistor].

The Blowup construction

The scaling action of \mathbb{R}^{*} on $M \times \mathbb{R}^{*}$ extends to the gauge action on $D N C(M, V)=M \times \mathbb{R}^{*} \cup N_{V}^{M} \times\{0\}:$

$$
\begin{array}{ccc}
D N C(M, V) \times \mathbb{R}^{*} & \longrightarrow & D N C(M, V) \\
(z, t, \lambda) & \mapsto & (z, \lambda t) \text { for } t \neq 0 \\
(x, X, 0, \lambda) & \mapsto & \left(x, \frac{1}{\lambda} X, 0\right) \text { for } t=0
\end{array}
$$

The Blowup construction

The scaling action of \mathbb{R}^{*} on $M \times \mathbb{R}^{*}$ extends to the gauge action on $D N C(M, V)=M \times \mathbb{R}^{*} \cup N_{V}^{M} \times\{0\}:$

$$
\begin{array}{ccc}
D N C(M, V) \times \mathbb{R}^{*} & \longrightarrow & D N C(M, V) \\
(z, t, \lambda) & \mapsto & (z, \lambda t) \text { for } t \neq 0 \\
(x, X, 0, \lambda) & \mapsto & \left(x, \frac{1}{\lambda} X, 0\right) \text { for } t=0
\end{array}
$$

The manifold $V \times \mathbb{R}$ embeds in $\operatorname{DNC}(M, V)$:

The Blowup construction

The scaling action of \mathbb{R}^{*} on $M \times \mathbb{R}^{*}$ extends to the gauge action on $D N C(M, V)=M \times \mathbb{R}^{*} \cup N_{V}^{M} \times\{0\}:$

$$
\begin{array}{clc}
D N C(M, V) \times \mathbb{R}^{*} & \longrightarrow & D N C(M, V) \\
(z, t, \lambda) & \mapsto & (z, \lambda t) \text { for } t \neq 0 \\
(x, X, 0, \lambda) & \mapsto & \left(x, \frac{1}{\lambda} X, 0\right) \text { for } t=0
\end{array}
$$

The manifold $V \times \mathbb{R}$ embeds in $\operatorname{DNC}(M, V)$:

The gauge action is free and proper on the open subset $D N C(M, V) \backslash V \times \mathbb{R}$ of $D N C(M, V)$.

The Blowup construction

The scaling action of \mathbb{R}^{*} on $M \times \mathbb{R}^{*}$ extends to the gauge action on $D N C(M, V)=M \times \mathbb{R}^{*} \cup N_{V}^{M} \times\{0\}:$

$$
\begin{array}{clc}
D N C(M, V) \times \mathbb{R}^{*} & \longrightarrow & D N C(M, V) \\
(z, t, \lambda) & \mapsto & (z, \lambda t) \text { for } t \neq 0 \\
(x, X, 0, \lambda) & \mapsto & \left(x, \frac{1}{\lambda} X, 0\right) \text { for } t=0
\end{array}
$$

The manifold $V \times \mathbb{R}$ embeds in $\operatorname{DNC}(M, V)$:

The gauge action is free and proper on the open subset $D N C(M, V) \backslash V \times \mathbb{R}$ of $D N C(M, V)$. We let :

$$
\operatorname{Blup}(M, V)=(D N C(M, V) \backslash V \times \mathbb{R}) / \mathbb{R}^{*}=M \backslash V \cup \mathbb{P}\left(N_{V}^{M}\right)
$$

The Blowup construction

The scaling action of \mathbb{R}^{*} on $M \times \mathbb{R}^{*}$ extends to the gauge action on $D N C(M, V)=M \times \mathbb{R}^{*} \cup N_{V}^{M} \times\{0\}:$

$$
\begin{array}{ccc}
D N C(M, V) \times \mathbb{R}^{*} & \longrightarrow & D N C(M, V) \\
(z, t, \lambda) & \mapsto & (z, \lambda t) \text { for } t \neq 0 \\
(x, X, 0, \lambda) & \mapsto & \left(x, \frac{1}{\lambda} X, 0\right) \text { for } t=0
\end{array}
$$

The manifold $V \times \mathbb{R}$ embeds in $D N C(M, V)$:

The gauge action is free and proper on the open subset $D N C(M, V) \backslash V \times \mathbb{R}$ of $D N C(M, V)$. We let :
$\operatorname{Blup}(M, V)=(D N C(M, V) \backslash V \times \mathbb{R}) / \mathbb{R}^{*}=M \backslash V \cup \mathbb{P}\left(N_{V}^{M}\right)$ and
$\operatorname{SBlup}(M, V)=\left(D N C_{+}(M, V) \backslash V \times \mathbb{R}_{+}\right) / \mathbb{R}_{+}^{*}=M \backslash V \cup \mathbb{S}\left(N_{V}^{M}\right)$.

Functoriality of Blup

Functoriality of Blup

gives $D N C(f): D N C(M, V) \rightarrow D N C\left(M^{\prime}, V^{\prime}\right)$
which is equivariant under the gauge action : it passes to the quotient Blup as soon as it is defined.

Functoriality of Blup

which is equivariant under the gauge action : it passes to the quotient Blup as soon as it is defined.
Let $U_{f}(M, V)=D N C(M, V) \backslash D N C(f)^{-1}\left(V^{\prime} \times \mathbb{R}\right)$ and define

$$
\operatorname{Blup}_{f}(M, V)=U_{f} / \mathbb{R}^{*} \subset \operatorname{Blup}(M, V)
$$

Functoriality of Blup

which is equivariant under the gauge action : it passes to the quotient Blup as soon as it is defined.
Let $U_{f}(M, V)=D N C(M, V) \backslash D N C(f)^{-1}\left(V^{\prime} \times \mathbb{R}\right)$ and define

$$
\operatorname{Blup}_{f}(M, V)=U_{f} / \mathbb{R}^{*} \subset \operatorname{Blup}(M, V)
$$

Then $D N C(f)$ passes to the quotient :

$$
\operatorname{Blup}(f): \operatorname{Blup}_{f}(M, V) \rightarrow \operatorname{Blup}\left(M^{\prime}, V^{\prime}\right)
$$

Analogous constructions hold for SBlup.

Blowup groupoid

Let Γ be a closed Lie subgroupoid of a Lie groupoid $G \xlongequal{t, s} G^{(0)}$. Define

$$
D \widetilde{N C(G}, \Gamma)=U_{t}(G, \Gamma) \cap U_{s}(G, \Gamma)
$$

elements whose image by $D N C(s)$ and $D N C(t)$ are not in $\Gamma^{(0)} \times \mathbb{R}$.

Blowup groupoid

Let Γ be a closed Lie subgroupoid of a Lie groupoid $G \stackrel{t, s}{\rightrightarrows} G^{(0)}$. Define

$$
D \widetilde{N C(G}, \Gamma)=U_{t}(G, \Gamma) \cap U_{s}(G, \Gamma)
$$

elements whose image by $D N C(s)$ and $D N C(t)$ are not in $\Gamma^{(0)} \times \mathbb{R}$. Functoriality implies :

$$
\left.\operatorname{Blup}_{t, s}(G, \Gamma)=\overline{D N(G}, \Gamma\right) / \mathbb{R}^{*} \rightrightarrows \operatorname{Blup}\left(G^{(0)}, \Gamma^{(0)}\right)
$$

is naturally a Lie groupoid; its source and range maps are Blup(s) and $\operatorname{Blup}(t)$ and its product is $\operatorname{Blup}(m)$.

Blowup groupoid

Let Γ be a closed Lie subgroupoid of a Lie groupoid $G \stackrel{t, s}{\rightrightarrows} G^{(0)}$. Define

$$
D \widetilde{N C(G}, \Gamma)=U_{t}(G, \Gamma) \cap U_{s}(G, \Gamma)
$$

elements whose image by $D N C(s)$ and $D N C(t)$ are not in $\Gamma^{(0)} \times \mathbb{R}$. Functoriality implies :

$$
\left.\operatorname{Blup}_{t, s}(G, \Gamma)=\widetilde{D N(G}, \Gamma\right) / \mathbb{R}^{*} \rightrightarrows \operatorname{Blup}\left(G^{(0)}, \Gamma^{(0)}\right)
$$

is naturally a Lie groupoid; its source and range maps are Blup(s) and $\operatorname{Blup}(t)$ and its product is $\operatorname{Blup}(m)$.
Analogous constructions hold for SBlup.

Blowup groupoid

Let Γ be a closed Lie subgroupoid of a Lie groupoid $G \stackrel{t, s}{\rightrightarrows} G^{(0)}$. Define

$$
D \widetilde{N C(G}, \Gamma)=U_{t}(G, \Gamma) \cap U_{s}(G, \Gamma)
$$

elements whose image by $D N C(s)$ and $D N C(t)$ are not in $\Gamma^{(0)} \times \mathbb{R}$. Functoriality implies :

$$
\left.\operatorname{Blup}_{t, s}(G, \Gamma)=\overline{D N(G}, \Gamma\right) / \mathbb{R}^{*} \rightrightarrows \operatorname{Blup}\left(G^{(0)}, \Gamma^{(0)}\right)
$$

is naturally a Lie groupoid; its source and range maps are Blup(s) and $\operatorname{Blup}(t)$ and its product is $\operatorname{Blup}(m)$.
Analogous constructions hold for SBlup.

Remark

Let $\mathcal{N}_{\Gamma}^{\circ}$ be the restriction of $\mathcal{N}_{\Gamma}^{G} \rightrightarrows N_{\Gamma^{(0)}}^{G^{(0)}}$ to $N_{\Gamma^{(0)}}^{G^{(0)}} \backslash \Gamma^{(0)}$. $\dot{\mathcal{N}}_{\Gamma}^{G} / \mathbb{R}^{*}$ inherits a structure of Lie groupoid : $\mathcal{P} \mathcal{N}_{\Gamma}^{G} \rightrightarrows \mathbb{P} N_{\Gamma^{(0)}}^{G^{(0)}}$.

$$
\operatorname{Blup}_{r, s}(G, \Gamma)=G \backslash \Gamma \cup \mathcal{P} \mathcal{N}_{\Gamma}^{G} \rightrightarrows G^{(0)} \backslash \Gamma^{(0)} \cup \mathbb{P} N_{\Gamma^{(0)}}^{G^{(0)}} .
$$

Examples of blowup groupoids

1. Take $G \rightrightarrows G^{(0)}$ a Lie groupoid ans $\mathbb{G}=G \times \mathbb{R} \times \mathbb{R} \rightrightarrows G^{(0)} \times \mathbb{R}$.

Examples of blowup groupoids

1. Take $G \rightrightarrows G^{(0)}$ a Lie groupoid ans $\mathbb{G}=G \times \mathbb{R} \times \mathbb{R} \rightrightarrows G^{(0)} \times \mathbb{R}$. Recall that $D N C\left(G, G^{(0)}\right)=G \times \mathbb{R}^{*} \cup \mathfrak{A} G \times\{0\} \rightrightarrows G^{(0)} \times \mathbb{R}$.

Examples of blowup groupoids

1. Take $G \rightrightarrows G^{(0)}$ a Lie groupoid ans $\mathbb{G}=G \times \mathbb{R} \times \mathbb{R} \rightrightarrows G^{(0)} \times \mathbb{R}$. Recall that $\operatorname{DNC}\left(G, G^{(0)}\right)=G \times \mathbb{R}^{*} \cup \mathfrak{A} G \times\{0\} \rightrightarrows G^{(0)} \times \mathbb{R}$.

$$
\operatorname{Blup}_{r, s}\left(\mathbb{G}, \mathbb{G}^{(0)} \times\{(0,0)\}\right)=D N C\left(G, G^{(0)}\right) \rtimes \mathbb{R}^{*} \rightrightarrows G^{(0)} \times \mathbb{R}
$$

Gauge adiabatic groupoid [D.-Skandalis]

Examples of blowup groupoids

1. Take $G \rightrightarrows G^{(0)}$ a Lie groupoid ans $\mathbb{G}=G \times \mathbb{R} \times \mathbb{R} \rightrightarrows G^{(0)} \times \mathbb{R}$. Recall that $\operatorname{DNC}\left(G, G^{(0)}\right)=G \times \mathbb{R}^{*} \cup \mathfrak{A} G \times\{0\} \rightrightarrows G^{(0)} \times \mathbb{R}$.

$$
\operatorname{Blup}_{r, s}\left(\mathbb{G}, \mathbb{G}^{(0)} \times\{(0,0)\}\right)=\operatorname{DNC}\left(G, G^{(0)}\right) \rtimes \mathbb{R}^{*} \rightrightarrows G^{(0)} \times \mathbb{R}
$$

Gauge adiabatic groupoid [D.-Skandalis]
2. Let $V \subset M$ be a hypersurface.

$$
\underbrace{G_{b}=S \operatorname{SBlup}_{r, s}(M \times M, V \times V)}_{\text {The b-calculus groupoid }} \subset \underbrace{S B l u p(M \times M, V \times V)}_{\text {Melrose's b-space }}
$$

Examples of blowup groupoids

1. Take $G \rightrightarrows G^{(0)}$ a Lie groupoid ans $\mathbb{G}=G \times \mathbb{R} \times \mathbb{R} \rightrightarrows G^{(0)} \times \mathbb{R}$. Recall that $\operatorname{DNC}\left(G, G^{(0)}\right)=G \times \mathbb{R}^{*} \cup \mathfrak{A} G \times\{0\} \rightrightarrows G^{(0)} \times \mathbb{R}$.

$$
\operatorname{Blup}_{r, s}\left(\mathbb{G}, \mathbb{G}^{(0)} \times\{(0,0)\}\right)=\operatorname{DNC}\left(G, G^{(0)}\right) \rtimes \mathbb{R}^{*} \rightrightarrows G^{(0)} \times \mathbb{R}
$$

Gauge adiabatic groupoid [D.-Skandalis]
2. Let $V \subset M$ be a hypersurface.

$$
\begin{aligned}
& \underbrace{G_{b}=S B l u p_{r, s}(M \times M, V \times V)}_{\text {The b-calculus groupoid }} \subset \underbrace{S B l u p(M \times M, V \times V)}_{\text {Melrose's b-space }} \\
& \underbrace{G_{0}=S B l u p_{r, s}(M \times M, \Delta(V))}_{\text {The 0-calculus groupoid }} \subset \underbrace{S B l u p(M \times M, \Delta(V))}_{\text {Mazzeo-Melrose's 0-space }}
\end{aligned}
$$

Examples of blowup groupoids

1. Take $G \rightrightarrows G^{(0)}$ a Lie groupoid ans $\mathbb{G}=G \times \mathbb{R} \times \mathbb{R} \rightrightarrows G^{(0)} \times \mathbb{R}$. Recall that $\operatorname{DNC}\left(G, G^{(0)}\right)=G \times \mathbb{R}^{*} \cup \mathfrak{A} G \times\{0\} \rightrightarrows G^{(0)} \times \mathbb{R}$.

$$
\operatorname{Blup}_{r, s}\left(\mathbb{G}, \mathbb{G}^{(0)} \times\{(0,0)\}\right)=\operatorname{DNC}\left(G, G^{(0)}\right) \rtimes \mathbb{R}^{*} \rightrightarrows G^{(0)} \times \mathbb{R}
$$

Gauge adiabatic groupoid [D.-Skandalis]
2. Let $V \subset M$ be a hypersurface.

$$
\begin{aligned}
& \underbrace{G_{b}=S B l u p_{r, s}(M \times M, V \times V)}_{\text {The b-calculus groupoid }} \subset \underbrace{S B l u p(M \times M, V \times V)}_{\text {Melrose's b-space }} \\
& \underbrace{G_{0}=S B l u p_{r, s}(M \times M, \Delta(V))}_{\text {The 0-calculus groupoid }} \subset \underbrace{S B l u p(M \times M, \Delta(V))}_{\text {Mazzeo-Melrose's 0-space }}
\end{aligned}
$$

Iterate these constructions to go to the study of manifolds with corners.

Examples of blowup groupoids

1. Take $G \rightrightarrows G^{(0)}$ a Lie groupoid ans $\mathbb{G}=G \times \mathbb{R} \times \mathbb{R} \rightrightarrows G^{(0)} \times \mathbb{R}$. Recall that $\operatorname{DNC}\left(G, G^{(0)}\right)=G \times \mathbb{R}^{*} \cup \mathfrak{A} G \times\{0\} \rightrightarrows G^{(0)} \times \mathbb{R}$.

$$
\operatorname{Blup}_{r, s}\left(\mathbb{G}, \mathbb{G}^{(0)} \times\{(0,0)\}\right)=\operatorname{DNC}\left(G, G^{(0)}\right) \rtimes \mathbb{R}^{*} \rightrightarrows G^{(0)} \times \mathbb{R}
$$

Gauge adiabatic groupoid [D.-Skandalis]
2. Let $V \subset M$ be a hypersurface.

$$
\begin{aligned}
& \underbrace{G_{b}=S B l u p_{r, s}(M \times M, V \times V)}_{\text {The b-calculus groupoid }} \subset \underbrace{S B l u p(M \times M, V \times V)}_{\text {Melrose's b-space }} \\
& \underbrace{G_{0}=S B l u p_{r, s}(M \times M, \Delta(V))}_{\text {The 0-calculus groupoid }} \subset \underbrace{S B l u p(M \times M, \Delta(V))}_{\text {Mazzeo-Melrose's 0-space }}
\end{aligned}
$$

Iterate these constructions to go to the study of manifolds with corners. Or consider a foliation with no holonomy on V.

Examples of blowup groupoids

1. Take $G \rightrightarrows G^{(0)}$ a Lie groupoid ans $\mathbb{G}=G \times \mathbb{R} \times \mathbb{R} \rightrightarrows G^{(0)} \times \mathbb{R}$. Recall that $\operatorname{DNC}\left(G, G^{(0)}\right)=G \times \mathbb{R}^{*} \cup \mathfrak{A} G \times\{0\} \rightrightarrows G^{(0)} \times \mathbb{R}$.

$$
\operatorname{Blup}_{r, s}\left(\mathbb{G}, \mathbb{G}^{(0)} \times\{(0,0)\}\right)=\operatorname{DNC}\left(G, G^{(0)}\right) \rtimes \mathbb{R}^{*} \rightrightarrows G^{(0)} \times \mathbb{R}
$$

Gauge adiabatic groupoid [D.-Skandalis]
2. Let $V \subset M$ be a hypersurface.

$$
\begin{aligned}
& \underbrace{G_{b}=S B l u p_{r, s}(M \times M, V \times V)}_{\text {The b-calculus groupoid }} \subset \underbrace{S B l u p(M \times M, V \times V)}_{\text {Melrose's b-space }} \\
& \underbrace{G_{0}=S B l u p_{r, s}(M \times M, \Delta(V))}_{\text {The 0-calculus groupoid }} \subset \underbrace{S B l u p(M \times M, \Delta(V))}_{\text {Mazzeo-Melrose's 0-space }}
\end{aligned}
$$

Iterate these constructions to go to the study of manifolds with corners. Or consider a foliation with no holonomy on V. Define the holonomy groupoid of a manifold with iterated fibred corners.

About the case $V \subset G^{(0)}$

Let $G \stackrel{t, s}{\rightrightarrows} M$ be a Lie groupoid and $V \subset M$ a closed submanifold.

About the case $V \subset G^{(0)}$

Let $G \stackrel{t, s}{\rightrightarrows} M$ be a Lie groupoid and $V \subset M$ a closed submanifold.

$$
\begin{aligned}
D N C(G, V)=G \times \mathbb{R}^{*} \cup \mathcal{N}_{V}^{G} \times\{0\} & \rightrightarrows M \times \mathbb{R}^{*} \cup N_{V}^{M} \times\{0\} \\
\operatorname{Blup}(G, V)=G \backslash V \cup \mathcal{P}\left(N_{V}^{G}\right) & \rightrightarrows M \backslash V \cup \mathbb{P}\left(N_{V}^{M}\right)
\end{aligned}
$$

About the case $V \subset G^{(0)}$

Let $G \stackrel{t, s}{\rightrightarrows} M$ be a Lie groupoid and $V \subset M$ a closed submanifold.

$$
\begin{aligned}
D N C(G, V)=G \times \mathbb{R}^{*} \cup \mathcal{N}_{V}^{G} \times\{0\} & \rightrightarrows M \times \mathbb{R}^{*} \cup N_{V}^{M} \times\{0\} \\
\operatorname{Blup}(G, V)=G \backslash V \cup \mathcal{P}\left(N_{V}^{G}\right) & \rightrightarrows M \backslash V \cup \mathbb{P}\left(N_{V}^{M}\right)
\end{aligned}
$$

Linear groupoid
Suppose E is a (real) vector space and $F \subset E$ a subvector space. Let $t, s: E \rightarrow F$ be two linear retractions.

About the case $V \subset G^{(0)}$

Let $G \stackrel{t, s}{\rightrightarrows} M$ be a Lie groupoid and $V \subset M$ a closed submanifold.

$$
\begin{gathered}
D N C(G, V)=G \times \mathbb{R}^{*} \cup \mathcal{N}_{V}^{G} \times\{0\} \rightrightarrows M \times \mathbb{R}^{*} \cup N_{V}^{M} \times\{0\} \\
\operatorname{Blup}(G, V)=G \backslash V \cup \mathcal{P}\left(N_{V}^{G}\right) \rightrightarrows M \backslash V \cup \mathbb{P}\left(N_{V}^{M}\right)
\end{gathered}
$$

Linear groupoid

Suppose E is a (real) vector space and $F \subset E$ a subvector space.
Let $t, s: E \rightarrow F$ be two linear retractions.

Facts

1. There is a unique structure of linear groupoid on $E: \mathcal{E} \rightrightarrows F$ with source s, target t and units given by the inclusion $F \subset E$.
The product is $u \cdot v=u \cdot s(u)+0_{E} \cdot(v-s(v))=u+v-s(u)$.
The inverse of u is $(t+s-i d)(u)$.

About the case $V \subset G^{(0)}$

Let $G \stackrel{t, s}{\rightrightarrows} M$ be a Lie groupoid and $V \subset M$ a closed submanifold.

$$
\begin{gathered}
D N C(G, V)=G \times \mathbb{R}^{*} \cup \mathcal{N}_{V}^{G} \times\{0\} \rightrightarrows M \times \mathbb{R}^{*} \cup N_{V}^{M} \times\{0\} \\
\operatorname{Blup}(G, V)=G \backslash V \cup \mathcal{P}\left(N_{V}^{G}\right) \rightrightarrows M \backslash V \cup \mathbb{P}\left(N_{V}^{M}\right)
\end{gathered}
$$

Linear groupoid

Suppose E is a (real) vector space and $F \subset E$ a subvector space.
Let $t, s: E \rightarrow F$ be two linear retractions.

Facts

1. There is a unique structure of linear groupoid on $E: \mathcal{E} \rightrightarrows F$ with source s, target t and units given by the inclusion $F \subset E$.
The product is $u \cdot v=u \cdot s(u)+0_{E} \cdot(v-s(v))=u+v-s(u)$.
The inverse of u is $(t+s-i d)(u)$.
2. $t-s: E / F \rightarrow F$ gives an action of E / F on E and \mathcal{E} is the action groupoid $E \rtimes E / F$.

Bundle and projective groupoids

Perform the same construction for $E \rightarrow V$ a (real) vector-bundle, $F \subset E$ a subbundle and $t, s: E \rightarrow F$ bundle maps equal to identity on F. It gives :

- A groupoid structure on $E: \mathcal{E} \rightrightarrows F$.
- $\mathcal{E} \simeq F \rtimes_{\alpha} E / F$ where $\alpha=t-s: E / F \rightarrow F$.

Bundle and projective groupoids

Perform the same construction for $E \rightarrow V$ a (real) vector-bundle, $F \subset E$ a subbundle and $t, s: E \rightarrow F$ bundle maps equal to identity on F. It gives :

- A groupoid structure on $E: \mathcal{E} \rightrightarrows F$.
- $\mathcal{E} \simeq F \rtimes_{\alpha} E / F$ where $\alpha=t-s: E / F \rightarrow F$.

The group \mathbb{R}^{*} acts freely on $\mathcal{E} \backslash($ ker $t \cup$ ker $s) \rightrightarrows F \backslash V$ and leads to the projective groupoid: $\mathcal{P} E \rightrightarrows \mathbb{P}(F)$.

Bundle and projective groupoids

Perform the same construction for $E \rightarrow V$ a (real) vector-bundle, $F \subset E$ a subbundle and $t, s: E \rightarrow F$ bundle maps equal to identity on F. It gives :

- A groupoid structure on $E: \mathcal{E} \rightrightarrows F$.
- $\mathcal{E} \simeq F \rtimes_{\alpha} E / F$ where $\alpha=t-s: E / F \rightarrow F$.

The group \mathbb{R}^{*} acts freely on $\mathcal{E} \backslash($ ker $t \cup$ ker $s) \rightrightarrows F \backslash V$ and leads to the projective groupoid: $\mathcal{P} E \rightrightarrows \mathbb{P}(F)$.

$$
\mathcal{P} E=\mathbb{P}(E) \backslash \mathbb{P}(\text { ker } t) \cup \mathbb{P}(\text { ker } s)
$$

Source and target are induced by s and t. For composable $x, y \in \mathcal{P} E$: $x \cdot y=\{u+v-s(u) ; u \in x, v \in y$ s.t. $s(u)=t(v)\}$ and the inverse of x is $(s+t-i d)(x)$.

Bundle and projective groupoids

Perform the same construction for $E \rightarrow V$ a (real) vector-bundle, $F \subset E$ a subbundle and $t, s: E \rightarrow F$ bundle maps equal to identity on F. It gives :

- A groupoid structure on $E: \mathcal{E} \rightrightarrows F$.
- $\mathcal{E} \simeq F \rtimes_{\alpha} E / F$ where $\alpha=t-s: E / F \rightarrow F$.

The group \mathbb{R}^{*} acts freely on $\mathcal{E} \backslash($ ker $t \cup$ ker $s) \rightrightarrows F \backslash V$ and leads to the projective groupoid: $\mathcal{P} E \rightrightarrows \mathbb{P}(F)$.

$$
\mathcal{P} E=\mathbb{P}(E) \backslash \mathbb{P}(\text { ker } t) \cup \mathbb{P}(\text { ker } s)
$$

Source and target are induced by s and t. For composable $x, y \in \mathcal{P} E$: $x \cdot y=\{u+v-s(u) ; u \in x, v \in y$ s.t. $s(u)=t(v)\}$ and the inverse of x is $(s+t-i d)(x)$.
Example: For $E=N_{V}^{G} \rightarrow V, F=N_{V}^{M}$ and $\overline{d t}, \overline{d s}: N_{V}^{G} \rightarrow N_{V}^{M}$ we get $\mathcal{N}_{V}^{G} \rightrightarrows N_{V}^{M}$ and $\mathcal{P}\left(N_{V}^{G}\right) \rightrightarrows \mathbb{P}\left(N_{V}^{M}\right)$.

Exact sequences coming from deformations and blowups

Let $\Gamma \rightrightarrows V$ be a closed Lie subgroupoid of a Lie groupoid $G \stackrel{t, s}{\rightrightarrows} M$, suppose that Γ is amenable and let $\stackrel{\circ}{ }=M \backslash V$. Let \mathcal{N}_{Γ}^{G} be the restriction of the groupoid $\mathcal{N}_{\Gamma}^{G} \rightrightarrows \mathcal{N}_{V}^{M}$ to $\mathcal{N}_{V}^{M} \backslash V$.

Exact sequences coming from deformations and blowups
Let $\Gamma \rightrightarrows V$ be a closed Lie subgroupoid of a Lie groupoid $G \stackrel{t, s}{\rightrightarrows} M$, suppose that Γ is amenable and let $\dot{M}=M \backslash V$. Let \mathcal{N}_{Γ}^{G} be the restriction of the groupoid $\mathcal{N}_{\Gamma}^{G} \rightrightarrows \mathcal{N}_{V}^{M}$ to $\mathcal{N}_{V}^{M} \backslash V$.

$$
\begin{gathered}
D N C_{+}(G, \Gamma)=G \times \mathbb{R}_{+}^{*} \cup \mathcal{N}_{\Gamma}^{G} \times\{0\} \rightrightarrows M \times \mathbb{R}_{+}^{*} \cup \mathcal{N}_{V}^{M} \\
\left.D N \widetilde{C_{+}(G}, \Gamma\right)=G_{\grave{M}}^{M_{M}} \times \mathbb{R}_{+}^{*} \cup \dot{\mathcal{N}}_{\Gamma}^{G} \times\{0\} \rightrightarrows \stackrel{\circ}{ } \times \mathbb{R}_{+}^{*} \cup \stackrel{\circ}{\mathcal{N}}_{V}^{M} \\
\left.\operatorname{SBlup}_{t, s}(G, \Gamma)=D N \widetilde{C_{+}(G}, \Gamma\right) / \mathbb{R}_{+}^{*}=G_{\grave{M}}^{\dot{M}} \cup \mathcal{S} \mathcal{N}_{\Gamma}^{G} \rightrightarrows \stackrel{\circ}{M} \cup \mathbb{S}\left(\mathcal{N}_{V}^{M}\right)
\end{gathered}
$$

Exact sequences coming from deformations and blowups

$$
\begin{aligned}
& D N C_{+}(G, \Gamma)=G \times \mathbb{R}_{+}^{*} \cup \mathcal{N}_{\Gamma}^{G} \times\{0\} \rightrightarrows M \times \mathbb{R}_{+}^{*} \cup \mathcal{N}_{V}^{M} \\
& \left.D \widetilde{N C_{+}(G}, \Gamma\right)=G_{\grave{M}}^{\grave{M}^{M}} \times \mathbb{R}_{+}^{*} \cup \dot{\mathcal{N}}_{\Gamma}^{G} \times\{0\} \rightrightarrows \stackrel{\circ}{M} \times \mathbb{R}_{+}^{*} \cup \dot{\mathcal{N}}_{V}^{M} \\
& \text { SBlup } \left._{t, s}(G, \Gamma)=D \widetilde{N C_{+}(G}, \Gamma\right) / \mathbb{R}_{+}^{*}=G_{\stackrel{N}{M}}^{M_{M}} \cup \mathcal{S} \mathcal{N}_{\Gamma}^{G} \rightrightarrows \stackrel{\circ}{M} \cup \mathbb{S}\left(\mathcal{N}_{V}^{M}\right) \\
& 0 \longrightarrow C^{*}\left(G \times \mathbb{R}_{+}^{*}\right) \longrightarrow C^{*}\left(D N C_{+}(G, \Gamma)\right) \longrightarrow C^{*}\left(\mathcal{N}_{\Gamma}^{G}\right) \longrightarrow 0 \\
& \left.0 \longrightarrow C^{*}\left(G_{M}^{\circ} \stackrel{\circ}{M} \times \mathbb{R}_{+}^{*}\right) \longrightarrow C^{*}\left(D N \widetilde{C_{+}(G}, \Gamma\right)\right) \longrightarrow C^{*}\left(\dot{\mathcal{N}}_{\Gamma}^{G}\right) \longrightarrow 0 \\
& 0 \longrightarrow C^{*}\left(G_{\dot{M}}^{\dot{M}}\right) \longrightarrow C^{*}\left(\operatorname{SBlup}_{t, s}(G, \Gamma)\right) \longrightarrow C^{*}\left(\mathcal{S N}_{\Gamma}^{G}\right) \longrightarrow 0
\end{aligned}
$$

Connecting elements

$$
\begin{aligned}
& 0 \longrightarrow C^{*}\left(G \times \mathbb{R}_{+}^{*}\right) \longrightarrow C^{*}\left(D N C_{+}(G, \Gamma)\right) \longrightarrow C^{*}\left(\mathcal{N}_{\Gamma}^{G}\right) \longrightarrow 0 \partial_{D N C_{+}} \\
& 0 \longrightarrow C^{*}\left(G_{M}^{\dot{N}} \times \mathbb{R}_{+}^{*}\right) \longrightarrow C^{*}\left(D N \widetilde{C_{+}(G, \Gamma)}\right) \longrightarrow C^{*}\left(\dot{\mathcal{N}}_{\Gamma}^{\sigma}\right) \longrightarrow 0 \partial_{\widetilde{D N C_{+}}} \widetilde{\longrightarrow}{ }^{(G)}
\end{aligned}
$$

$0 \longrightarrow C^{*}\left(G_{M}^{\Omega}\right) \longrightarrow C^{*}\left(\operatorname{SBlup}_{t, s}(G, \Gamma)\right) \longrightarrow C^{*}\left(\mathcal{S N}_{\Gamma}^{G}\right) \longrightarrow 0 \partial_{\text {SBlup }}$
Connecting elements : $\partial_{D N C_{+}} \in K K^{1}\left(C^{*}\left(\mathcal{N}_{\Gamma}^{G}\right), C^{*}\left(G \times \mathbb{R}_{+}^{*}\right)\right)$,
$\partial_{\widetilde{D N C_{+}}} \in K K^{1}\left(C^{*}\left(\mathcal{N}_{\Gamma}^{G}\right), C^{*}\left(G_{M}^{M_{M}} \times \mathbb{R}_{+}^{*}\right)\right)$ and
$\partial_{\text {SBlup }} \in K K^{1}\left(C^{*}\left(\mathcal{S N}_{\Gamma}^{G}\right), C^{*}\left(G_{M}^{\circ}\right)\right)$.

Connecting elements

The β 's being $K K$-equivalences given by Connes-Thom elements.

Connecting elements

The j 's coming from inclusion.

Connecting elements

Proposition

$\partial_{S B l u p} \otimes \dot{\beta} \otimes[j]=\beta^{\partial} \otimes\left[j^{\partial}\right] \otimes \partial_{D N C_{+}} \in K K^{1}\left(C^{*}\left(\mathcal{S N}_{\Gamma}^{G}\right), C^{*}(G)\right)$.

Index type connecting elements

Index type connecting elements

Proposition
$\widetilde{\operatorname{Ind}}_{S B l u p} \otimes \AA \otimes[j ं]=\beta^{\partial} \otimes\left[j^{\partial}\right] \otimes \widetilde{\operatorname{Ind}}_{D N C_{+}} \in K K^{1}\left(C^{*}\left(\Sigma_{S B l u p}\right), C^{*}(G)\right)$.

If enough time

Thank you for your attention!

