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Definition
Let H be a closed subgroup of G. A (G,πG)-homogeneous
Poisson structure on G/H is a Poisson bivector field π on G/H,
and the action is Poisson

σ : (G,πG)× (G/H,π) −→ (G/H,π), (g1,g2H) 7−→ g1g2H

Are Poisson homogeneous spaces integrable?
partial answers: Xu, Lu, I.-Fernandes, Bonechi et al.

q : G→ (G/H,π)
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Dirac structures. Presymplectic groupoids

TM := TM⊕ T∗M
nondegenerate fibrewise bilinear form given at each x ∈M

〈(X,α), (Y,β)〉 = β(X) + α(Y), α,β ∈ T∗xM,X, Y ∈ TxM.

Courant bracket [[·, ·]] on Γ(TM)

[[(X,α), (Y,β)]] = ([X, Y],LXβ− iYdα).

We denote by prT : TM→ TM and prT∗ : TM→ T∗M the
canonical projections.

Definition
A Dirac structure onM is a vector subbundle E ⊂ TMwhich is
maximally isotropic with respect to 〈·, ·〉 (that is, E = E⊥) and
which is involutive with respect to [[·, ·]].
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E Dirac structure⇒

 (E, [·, ·], prT |E)Lie algebroid

ϕ := prT∗ |E : E→ T∗M closed IM 2-form

Ker(E) := E ∩ TM ⊆ TM.

Example

(M,π) Poisson⇒ (M,Eπ = {(π](α),α) |α ∈ T∗M}) Dirac

Ker(E) = {0}⇔ E = Eπ
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Definition
Given two Dirac manifolds (M1,E1) and (M2,E2) and a map
J : M1 →M2

i) J is a forward Dirac map if E2 = (J∗E1), where

(J∗E1) = {(dJ(X),β) | (X, (dJ)∗β) ∈ E1}.

J is a strong Dirac map if Ker(dJ) ∩ Ker(E1) = {0}.

ii) J is a backward Dirac map if E1 = (J∗E2), where

(J∗E2) = {(X, (dJ)∗β) | (dJ(X),β) ∈ E2}.
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Definition

A closed 2-formω ∈ Ω2(G) is multiplicative if

m∗ω = pr∗1ω+ pr∗2ω,

where pri : G
(2) → G, i = 1, 2, are the natural projections.

{
closed multiplicative 2-forms on G

}
⇔
{

closed IM 2-forms on A
}

ϕ(a)(X) = ω(a,X), a ∈ A,X ∈ TM,



If (M,E) is a Dirac manifold (E integrable Lie algebroid) then

Ker(ωm) ∩ Ker(ds)m ∩ Ker(dt)m = {0}, m ∈M

(G,ω) is called a presymplectic groupoid.

Ker(ω) = {ar − inv(b)l |a,b ∈ Ker(E)}.

Example

(G,ω) symplectic groupoid⇔ E = Eπ, π Poisson
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Invariant Dirac structures and Poisson quotients

H�M free and proper
q :M→M/H submersion

ρM : h×M→ TM

(M/H,π) Poisson can be pulled-back to a Dirac structure onM

E = {(X,q∗β) |π](β) = dq(X)} ⊂ TM⊕ T∗M,

Proposition

H acts by Dirac maps and the distribution tangent to the
H-orbits agrees with Ker(E):

ρM(h×M) = Ker(E).
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Proposition

(a) The operations of pullback and pushforward establish a
one-to-one correspondence between Poisson structures π
onM/H and H-invariant Dirac structures E onM
satisfying Ker(E) = ρM(h×M).

(b) LetM1 andM2 be manifolds, carrying free and proper
H-actions. For i = 1, 2, let πi be a Poisson structure on
Mi/Hwith corresponding Dirac structure Ei onMi.
Consider an H-equivariant map f :M1 →M2 covering
f̄ :M1/H→M2/H. Then f̄ is a Poisson map if and only if f
is a strong Dirac map.
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Integrability of Poisson structures on quotients

(G, ω̄) symplectic groupoid integrating (M/H,π) with source
and target maps s̄, t̄ : G→M/H.
(q!G,p∗ω̄) presymplectic groupoid integrating the Dirac
structure E onM

q!G = {(x1, ḡ, x2) ∈M× G×M | s̄(ḡ) = q(x2), t̄(ḡ) = q(x1)}

Example

M = S3 ×R, S1 �M

q :M→M/S1 = S2 ×R

(S2 ×R,π) Poisson s.t. (S2 × {t}, (1 + t2)ωS2) symplectic leaves
However, (M,E) is integrable (regular & π2(S

3) vanishes).
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ψ : h×M→ E, (u, x) 7→ (uM(x), 0),

ψ(h× {x}) = Ker(E)|x

(G,ω) a presymplectic groupoid integrating E

⇓

ρG : h× h→ X(G), (u, v) 7→ (ψ(u))r + (inv(ψ(v)))l

ρG(h× h) = Ker(ω)

If ∃Ψ : H nM→ G then there exists a (H×H)-action on G

(h1,h2) · g = Ψ(h1, t(g)) · g · Ψ(h2, s(g))−1
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Proposition

Let π be a Poisson structure onM/H, and let E be its pullback
onM. Let G be a Lie groupoid integrating E as a Lie algebroid
for which the morphism ψ in integrates to Ψ : H nM→ G, and
consider the previous (H×H)-action on G .
(a) The orbit space G/(H×H) is a Lie groupoid (such that the

quotient projection is a groupoid morphism) integrating
the Lie algebroid T∗(M/H) defined by π.

(b) If H is connected and ifω is a multiplicative 2-form on G

such that (G,ω) is a presymplectic integration of E as a
Dirac structure, then there is a unique symplectic structure
ω̄ on G/(H×H) with p∗ω̄ = ω and (G/(H×H), ω̄) is a
symplectic groupoid over (M/H,π).



Note

If (M/H,π) is integrable with symplectic groupoid G then
G = q!G is a presymplectic groupoid overM. In addition, the
morphism ψ integrates to the Lie groupoid morphism

Ψ : H nM→ G, Ψ(h, x) = (hx, ῑq(x), x),

and the induced H×H action on G is

((h1,h2), (x1, ḡ, x2)) 7→ (h1x1, ḡ,h2x2).

In particular, G/(H×H) = G.



If G̃ is the source-simply connected presymplectic groupoid
integrating E and H is connected

Ψ̃ : H̃ nM→ G̃,

where H̃ is the simply-connected Lie group integrating h.
If Ψ̃(π1(H)×M) ⊂ G is an embedded submanifold, then it is an
normal Lie subgrupoid and

G := G̃/Ψ̃(π1(H)×M)

is a Lie groupoid overM. Moreover, since this image is
isotropic with respect to the presymplectic formω on G̃ implies
thatω descends to G, making it into a presymplectic groupoid
integrating E and Ψ̃ descends to a morphism Ψ : H nM→ G

integrating ψ.
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Proposition

Let H be a Lie group, and H0 be its connected component
containing the identity. LetM be a manifold carrying an
H-action that is free and proper. Let π be a Poisson structure on
M/H and E the Dirac structure onM obtained by pullback.
Suppose that E is integrable, that G̃ is the source-simply
connected presymplectic groupoid integrating E and that the
image of the map π1(H0)×M→ G̃ is an embedded
submanifold. Then π is integrable.



Integration of Poisson homogeneous spaces

(G,πG) Poisson Lie group

m : (G,πG)× (G,πG)→ (G,πG)

Poisson map.
δ : g→ ∧2g is the linearization of πG at e (i.e., δ(u) = (LurπG)e)
then the dual map

δ∗ : ∧2 g∗ −→ g∗, ξ∧ η 7−→ [ξ,η]g∗ ,

defines a Lie bracket on g∗, and (g, δ) becomes a Lie bialgebra,
is a Lie algebra cocycle with values in ∧2g
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d = g⊕ g∗ Lie algebra

[u+ ξ, v+ η]d = [u, v]g+ ad∗ξ v− ad∗η u+ [ξ,η]g∗ + ad∗u η− ad∗v ξ,

for u, v ∈ g, ξ,η ∈ g∗, and the bilinear form 〈·, ·〉 on d given by

〈u+ ξ, v+ η〉 = η(u) + ξ(v),

is ad-invariant with respect to [·, ·]d
(d, 〈·, ·〉) is the double of the Lie bialgebra (g, δ)

The adjoint action of g on d integrates to an action of G on d, still
denoted by Adg : d→ d for g ∈ G, which is given by

Adg(u+ ξ) = Adg u+ iAd∗
g−1 ξ

((rg−1)∗πG|g) + Ad∗g−1 ξ,
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Let H be a closed subgroup of G. A (G,πG)-homogeneous
Poisson structure on G/H is a Poisson bivector field π on G/H,
and the action is Poisson

σ : (G,πG)× (G/H,π) −→ (G/H,π), (g1,g2H) 7−→ g1g2H

H	 G (h,g) 7→ rh−1(g) = gh−1

ρ : h×G→ TG, ρ(u,g) = −ul|g = −dlg|e(u).

Proposition

Homogeneous Poisson structures on G/H are in one-to-one
correspondence, via pullback/pushforward by q : G→ G/H,
with Dirac structures E on G satisfying:

(i) E is H-invariant,
(ii) Ker(E) = ρ(h×G),

(iii) m : (G,πG)× (G,E)→ (G,E) is a (forward) Dirac map.
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Dressing action of d = g⊕ g∗ on G,

ρd : d→ X(G), u+ ξ 7→ −(ul + π]G(ξ
l)),

dG = d×G→ G Courant algebroid

ρd ◦Adg = drg−1 ◦ ρd, g ∈ G.

I : dG
�−→ TG⊕ T∗G, I(u+ ξ) = −(ul + π]G(ξ

l), ξl).

G	 G, g 7→ (rg−1 : G→ G), consider its natural lift to TG
g 7→ (drg−1 , (rg)∗).

Lemma

(a) The map I : dG → TG is G-equivariant,
(b) Every lagrangian subalgebra l ⊂ d defines a Dirac structure
lG := l×G in the Courant algebroid dG whose underlying
Lie algebroid is the action Lie algebroid defined by the
dressing action restricted to l.



Lemma
A Dirac structure E on G is of the form I(lG) for a lagrangian
subalgebra l ⊂ d if and only if the group multiplication
m : (G,πG)× (G,E)→ (G,E) is a (forward) Dirac map. In this
case, l = E|e.

In conclusion, we have

Proposition

The map I : dG → TG establishes a one-to-one correspondence
between Dirac structures on G satisfying properties (i), (ii) and
(iii) and lagrangian subalgebras l ⊂ dwhich are AdH-invariant
and satisfy l ∩ g = h.

l = {u+ ξ |u ∈ g, ξ ∈ Ann(h), iξ(π|q(e)) = u+ h}



G/H Poisson homogeneous space.

i) q∗(Eπ) � l nG integrable Lie algebroid
ii) ψ : h nG→ l nG, (u,g) 7→ (u+ 0,g), u ∈ h
Ψ̃(π1(H0)×G) ⊆ G̃ embedded submanifold.

Theorem

Any Poisson homogeneous space (G/H,π) is integrable.



G/H Poisson homogeneous space.

i) q∗(Eπ) � l nG integrable Lie algebroid
ii) ψ : h nG→ l nG, (u,g) 7→ (u+ 0,g), u ∈ h
Ψ̃(π1(H0)×G) ⊆ G̃ embedded submanifold.

Theorem

Any Poisson homogeneous space (G/H,π) is integrable.



G/H Poisson homogeneous space.

i) q∗(Eπ) � l nG integrable Lie algebroid
ii) ψ : h nG→ l nG, (u,g) 7→ (u+ 0,g), u ∈ h
Ψ̃(π1(H0)×G) ⊆ G̃ embedded submanifold.

Theorem

Any Poisson homogeneous space (G/H,π) is integrable.



G/H Poisson homogeneous space.

i) q∗(Eπ) � l nG integrable Lie algebroid
ii) ψ : h nG→ l nG, (u,g) 7→ (u+ 0,g), u ∈ h
Ψ̃(π1(H0)×G) ⊆ G̃ embedded submanifold.

Theorem

Any Poisson homogeneous space (G/H,π) is integrable.



Examples

The complete case: ρd|l : l→ X(G) is by complete vector fields

G̃ := L nG action Lie groupoid

If H ⊆ L is a closed Lie subgroup then

Ψ : H×G→ L×G, (h,g) 7→ (h,g).

(H×H)× (L×G)→ L×G, (h1,h2) · (l,g) = (h1lh
−1
2 ,gh−1

2 ).

G̃/(H×H) � G×H (L/H)
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D be a connected Lie group integrating d
G∗ integrating g∗ is closed in D, G∗ → D, v 7→ v̄

G→ D,g 7→ ḡ

L connected Lie group with Lie algebra l, L→ D, l 7→ l̄

H also embeds into L as a closed subgroup such that every
h ∈ H has the same image under L→ D and G→ D.

G(L) = {(v,g1,g2, l) ∈ G∗ ×G×G× L | v̄ḡ1 = ḡ2l̄
−1}.

G(L) is a Lie groupoid over Gwith structure maps

s(v,g1,g2, l) = g2, t(v,g1,g2, l) = g1,

and multiplication G(L)(2) → G(L),

(v1,g1,g, l1) · (v2,g,g2, l2) = (v2v1,g1,g2, l1l2).



Proposition

1) The Lie groupoid G(L) is an integration of the Lie algebroid
l nG;
2) With H×H act on G(L) by

(h1,h2) · (v,g1,g2, l) = (v,g1h
−1
1 ,g2h

−1
2 ,h1lh

−1
2 ),

the quotient G(L)/(H×H) is a Lie groupoid over G/H
integrating the Lie algebroid T∗(G/H) defined by the Poisson
structure on G/H.


