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The integration problem for Courant algebroids

I Poisson manifolds integrate to symplectic groupoids

I Poisson manifolds are equivalent to degree 1 symplectic
dg-manifolds

I Courant algebroids are equivalent to degree 2 symplectic
dg-manifolds

Therefore, one might expect Courant algebroids to integrate to
“symplectic 2-groupoids”. We are beginning to understand what
this means.

This is joint work with Xiang Tang.
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Differential forms on simplicial manifolds

Let X• be a simplicial manifold. Let f qi : Xq → Xq−1 denote the
face maps, and let σqi : Xq → Xq+1 denote the degeneracy maps.

There is a simplicial coboundary operator δ : Ω•(Xq)→ Ω•(Xq+1):

δα :=

q+1∑
i=0

(−1)i (f q+1
i )∗α

Definition

A differential form α ∈ Ω•(Xq) is called

I multiplicative if δα = 0,

I normalized if (σiq−1)∗α = 0 for all i .
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The tangent complex
For x ∈ X0 and q ≥ 0, let σq := σq−10 · · ·σ00, and

Tx ,qX := Tσq(x)Xq.

Then Tx ,•X is a simplicial vector space.

There is a boundary map ∂q : Tx ,qX → Tx ,q−1X :

∂q(v) =
∑
i

(−1)i (f qi )∗v .

The normalized tangent space is

T̂x ,qX := (Tx ,qX )/

(∑
i

(σq−1i )∗Tx ,q−1X

)
.

The tangent complex of X• at x is

· · · → T̂x ,qX
∂−→ T̂x ,q−1

∂−→ · · · T̂x ,0X = TxX0.
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Lie 2-groupoids

Recall that the horn map λq,k takes an element of Xq to its horn
of faces, excluding the kth face.

Definition

A Lie 2-groupoid is a simplicial manifold whose horn maps are

1. surjective submersions for q = 1, 2,

2. diffeomorphisms for q > 2.

The tangent complex of a Lie 2-groupoid vanishes above degree 2,
so we have a 3-term complex of vector bundles

T̂2X
∂−→ T̂1X

∂−→ T̂0X = TX0.
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Simplicial nondegeneracy

Let X• be a Lie 2-groupoid, and let ω be a normalized 2-form on
X2. Define two associated pairings:

1. For v ∈ TxX0 and w ∈ Tx ,2X ,

Aω(v , [w ]) = ω(σ2∗v ,w),

2. For θ, η ∈ Tx ,1X ,

Bω([θ], [η]) = ω((σ11)∗θ, (σ
0
0)∗η) + ω((σ11)∗η, (σ

0
0)∗θ).

Definition

ω is simplicially nondegenerate if Aω and Bω are nondegenerate
pairings for all x ∈ X0.
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Symplectic 2-groupoids

Definition

A symplectic 2-groupoid is a Lie 2-groupoid X• equipped with a
closed, multiplicative, normalized, and simplicially nondegenerate
ω ∈ Ω2(X2).

If α ∈ Ω2(X1) is closed, normalized, and satisfies Aδα = Bδα = 0,
then ω′ = ω + δα is considered equivalent to ω.
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Linear 2-groupoids

A linear 2-groupoid is a 2-groupoid V• that is also a simplicial
vector space. The Dold-Kan correspondence gives a bijection
between linear 2-groupoids and 3-term chain complexes of vector
spaces:

(W2
∂−→W1

∂−→W0) ↔ V2 = W2 ⊕W1 ⊕W1 ⊕W0

�� ����
V1 = W1 ⊕W0

����
V0 = W0

So structures on linear 2-groupoids can be translated into
structures on 3-term chain complexes.
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Constant 2-forms

Theorem

There is a one-to-one correspondence between constant normalized
multiplicative 2-forms ω ∈ Ω(V2) and pairs (C41,C32), where C41

is a bilinear pairing of W0 with W2 and C32 is a bilinear form on
W1 such that

C41(∂w1,w2) = C32(∂w2,w1) + C32(w1, ∂w2).

Furthermore, ω is simplicially nondegenerate if and only if C41 and
the symmetric part of C32 are both nondegenerate.

ω =


C11 C12 C13 C14

C21 C22 C23 0
C31 C32 0 0
C41 0 0 0

 .
Degeneracy vs simplicial nondegeneracy.
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Minimal description of constant symplectic
2-groupoids

Theorem

There is a one-to-one correspondence between constant symplectic
2-groupoids and tuples (W1,W0, 〈·, ·〉, ∂, r), where

I W1 and W0 are vector spaces,

I 〈·, ·〉 is a nondegenerate symmetric bilinear form on W1,

I ∂ : W1 →W0 is a linear map such that the image of ∂∗ in
W ∗

1
∼= W1 is isotropic,

I r ∈ ∧2W ∗
1 .

Furthermore, equivalences change r arbitrarily and nothing else.

When r = 0, we call the symplectic 2-groupoid symmetric. Note
that in this case ω is genuinely nondegenerate.
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Constant Courant algebroids

Given a (symmetric) constant symplectic 2-groupoid with data
(W1,W0, 〈·, ·〉, ∂), we can form a Courant algebroid structure on
W1 ×W0 →W0, where

I The bilinar form is 〈·, ·〉,
I The anchor map ρ : W1 ×W0 → TW0 = W0 ×W0 is given by
ρ(w1,w0) = (∂w1,w0),

I The Courant bracket vanishes on constant sections.

So, in some sense we can say that say that constant symplectic
2-groupoids integrate these constant Courant algebroids.

Theorem

There is a one-to-one correspondence between constant Courant
algebroids and equivalence classes of constant symplectic
2-groupoids.
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Linear Lagrangian sub-2-groupoids

Let (V•, ω) be a symmetric constant symplectic 2-groupoid with
data (W1,W0, 〈·, ·〉, ∂).

Proposition

Linear Lagrangian sub-2-groupoids L• ⊆ V• are in one-to-one
correspondence with pairs (U1,U0), Ui ⊆Wi , such that U⊥1 = U1

and ∂U1 ⊆ U0.

In the case where L• is wide, i.e. U0 = W0, then
U1 ×W0 ⊆W1 ×W0 is a Dirac structure. We call this a constant
Dirac structure.

Theorem

There is a one-to-one correspondence between constant Dirac
structures and wide linear Lagrangian sub-2-groupoids.
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Thanks!


