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This is joint work with Xiang Tang.
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Let X, be a simplicial manifold. Let fiq : Xqg = Xg—1 denote the
face maps, and let o7 : X — Xg41 denote the degeneracy maps.

There is a simplicial coboundary operator ¢ : Q*(Xq) — Q°*(Xq+1):

g+1

so = 3 (~1) () a
i=0

Definition
A differential form a € Q°(Xj) is called
» multiplicative if dae = 0,

» normalized if (aé_l)*a =0 for all /.
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The tangent complex
For x € Xo and g > 0, let 09 := 08*1 ---0f, and

TeaX = Toap)Xq.

Then T, X is a simplicial vector space.

There is a boundary map 9g : Ty g X — T g-1X:

9g(v) = S (1) (F7).v

i

The normalized tangent space is
TegX = (TugX)/ (Z(a" P 1X>

The tangent complex of X, at x is

o TeaX D Tgr D ToX = TeXo.
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Lie 2-groupoids

Recall that the horn map g takes an element of X to its horn
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Definition

A Lie 2-groupoid is a simplicial manifold whose horn maps are
1. surjective submersions for g = 1, 2,

2. diffeomorphisms for g > 2.

The tangent complex of a Lie 2-groupoid vanishes above degree 2,
so we have a 3-term complex of vector bundles

ToX & X & ToX = TX.
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Simplicial nondegeneracy

Let X, be a Lie 2-groupoid, and let w be a normalized 2-form on
Xo. Define two associated pairings:

1. For ve T, Xp and w € T, X,

Au(v, [W]) = w(oiv, w),

2. For0,ne T 1X,

Bu([6]. [n]) = w((01):8. (98)-1) + (1)1, (03)46):

w is simplicially nondegenerate if A, and B,, are nondegenerate
pairings for all x € Xj.
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Symplectic 2-groupoids

Definition

A symplectic 2-groupoid is a Lie 2-groupoid X, equipped with a
closed, multiplicative, normalized, and simplicially nondegenerate
w € Qz(X2).

If & € Q?(X1) is closed, normalized, and satisfies A5, = Bso = 0,
then W' = w + da is considered equivalent to w.
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Linear 2-groupoids

A linear 2-groupoid is a 2-groupoid V4 that is also a simplicial
vector space. The Dold-Kan correspondence gives a bijection
between linear 2-groupoids and 3-term chain complexes of vector
spaces:

(W22>W12>W0) < W=WaeWaeW eW

i

Vi=WiaeW

!

Vo =W

So structures on linear 2-groupoids can be translated into
structures on 3-term chain complexes.
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Constant 2-forms

There is a one-to-one correspondence between constant normalized
multiplicative 2-forms w € Q(V2) and pairs (Ca1, C32), where Cq1
is a bilinear pairing of Wy with Wy and Cs; is a bilinear form on
Wy such that

Ca1(Owr, wa) = C32(Owa, wy) + Caa(w, Ows).

Furthermore, w is simplicially nondegenerate if and only if C41 and
the symmetric part of C3p are both nondegenerate.

Cii Go Gz Gy
G G G3 O
Csh O 0 0

Degeneracy vs simplicial nondegeneracy.



Minimal description of constant symplectic
2-groupoids
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Minimal description of constant symplectic
2-groupoids

Theorem
There is a one-to-one correspondence between constant symplectic
2-groupoids and tuples (Wi, Wy, (-,-), D, r), where
» Wi and Wy are vector spaces,
» (-,-) is a nondegenerate symmetric bilinear form on Wj,
» 0: Wi — Wy is a linear map such that the image of 0* in
Wy = Wi is isotropic,
> reA? Wy
Furthermore, equivalences change r arbitrarily and nothing else.

When r = 0, we call the symplectic 2-groupoid symmetric. Note
that in this case w is genuinely nondegenerate.
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» The Courant bracket vanishes on constant sections.



Constant Courant algebroids

Given a (symmetric) constant symplectic 2-groupoid with data
(Wy, W, (-,-), D), we can form a Courant algebroid structure on
Wy x WO — Wo, where
» The bilinar form is (-, -),
» The anchor map p: Wy x Wy — TWy = Wy x Wy is given by
p(wi, wp) = (Owr, wo),
» The Courant bracket vanishes on constant sections.

So, in some sense we can say that say that constant symplectic
2-groupoids integrate these constant Courant algebroids.



Constant Courant algebroids

Given a (symmetric) constant symplectic 2-groupoid with data
(Wy, W, (-,-), D), we can form a Courant algebroid structure on
Wy x WO — Wo, where
» The bilinar form is (-, -),
» The anchor map p: Wy x Wy — TWy = Wy x Wy is given by
p(wi, wp) = (Owr, wo),
» The Courant bracket vanishes on constant sections.

So, in some sense we can say that say that constant symplectic
2-groupoids integrate these constant Courant algebroids.

Theorem

There is a one-to-one correspondence between constant Courant
algebroids and equivalence classes of constant symplectic
2-groupoids.
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Linear Lagrangian sub-2-groupoids

Let (Ve,w) be a symmetric constant symplectic 2-groupoid with
data (Wla WOa <'> '>7 a)

Proposition

Linear Lagrangian sub-2-groupoids Ly C V4 are in one-to-one
correspondence with pairs (U1, Up), Ui C W;, such that Ui = Us
and 0U; C Uy.

In the case where L, is wide, i.e. Uy = Wy, then
Ui x Wp C Wi x Wy is a Dirac structure. We call this a constant
Dirac structure.

Theorem

There is a one-to-one correspondence between constant Dirac
structures and wide linear Lagrangian sub-2-groupoids.



Thanks!



