Metrics with Hessian Curvature of Type $\frac{1}{2}(1-\kappa^2)$

Example ((M^2, g) such that $\operatorname{Hess}_g \kappa = \frac{1}{2}(1 - \kappa^2)g$: $G = \operatorname{SO}_2$)

Structure equations:

$$\begin{cases} \mathrm{d}\theta^1 = -\theta^2 \wedge \eta \\ \mathrm{d}\theta^2 = \theta^1 \wedge \eta \\ \mathrm{d}\eta = -\kappa\theta^1 \wedge \theta^2 \\ \mathrm{d}\kappa = \kappa_1\theta^1 + \kappa_2\theta^2 \\ \mathrm{d}\kappa_1 = \frac{1}{2}(1-\kappa^2)\theta_1 - \kappa_2\theta \\ \mathrm{d}\kappa_2 = \frac{1}{2}(1-\kappa^2)\theta_2 + \kappa_1\theta^2 \end{cases}$$

• η - Levi-Civita; $\theta = (\theta^1, \theta^2)$ - tautological form; $(\kappa, \kappa_1, \kappa_2) : F_{SO_2}(M) \to \mathbb{R}^3.$ -Example: Metrics with Hessian Curvature of Type $\frac{1}{2}(1-\kappa^2)$

Example: (M^2, g) such that $\operatorname{Hess}_g \kappa = \frac{1}{2}(1 - \kappa^2)g$

We saw that the Lie algebroid associated to the structure equations has:

- $X = \mathbb{R}^3$ with coordinates (k, k_1, k_2) ;
- $A = X \times (\mathbb{R}^2 \oplus \mathfrak{so}_2)$ with basis of sections $\alpha_1, \alpha_2, \beta$.
- The inner SO_2 -action is generated by β .
- The bracket is given by

$$\begin{cases} [\alpha_2, \beta] = \alpha_1\\ [\beta, \alpha_1] = \alpha_2\\ [\alpha_1, \alpha_2] = \kappa \beta \end{cases}$$

The anchor is given by

$$\begin{cases} \rho(\alpha_1) = \kappa_1 \partial_{\kappa} + \frac{1}{2}(1 - \kappa^2) \partial_{\kappa_1} \\ \rho(\alpha_2) = \kappa_2 \partial_{\kappa} + \frac{1}{2}(1 - \kappa^2) \partial_{\kappa_2} \\ \rho(\beta) = -\kappa_2 \partial_{\kappa_1} + \kappa_1 \partial_{\kappa_2} \end{cases}$$

Leaves

The function

$$F(k, k_1, k_2) = k_1^2 + k_2^2 + \frac{1}{3}k^3 - k = c.$$

is constant on the leaves. When $(k, k_1, k_2) \neq (\pm 1, 0, 0)$, the leaves are 2-dimensional.

The foliation has leaves of the following type:

- There are two fixed points: (0,0,1), and (0,0,-1).
- Near to (0, 0, 1) the leaves are spheres.
- There is a leaf near (0, 0, -1) which is diffeomorphic to $\mathbb{R}^2 \{0\}.$

イロン イ部ン イヨン イヨン 三日

 All other leaves are non-compact and contractible (diffeomorphic to ℝ²).

Isotropy and Integrability

The isotropy Lie algebras are:

- **s** \mathfrak{so}_3 at (1,0,0)
- \mathfrak{sl}_2 at (-1,0,0)
- Over all other points $\mathrm{Ker}
 ho_{(k,k_1,k_2)}=\mathbb{R}$ and generated by

$$\xi = k_2 \alpha_1 - k_1 \alpha_2 + \frac{1}{2} (1 - k^2) \beta.$$

A is integrable and but not weakly G-integrable: The only leaves which can cause problems are the spheres.

Final Conclusions

 A_L is G-integrable if and only if:

- *L* is not a sphere;
- \blacksquare L is a sphere such that

$$\frac{1-k_{\max}^2}{1-k_{\min}^2} \in \mathbb{Q}$$

It is possible to write down explicit formulas for the metrics we obtain..... but I will not bother you with this now!

Thank you!

