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and Shanghai Jiao Tong University (visiting position)

BIRS, April 21st 2017



Why Dufour foliations?

Morse foliations = singular folitations of dimension 1 which are locally
given by the level sets of Morse functions.

Generalization to Morse-Bott foliations: locally given by Morse-Bott
functions (still of codimension 1).

What about higher codimension analogs of Morse foliations? They do
exist, and their local study has been initiated by Jean-Paul Dufour some
20 years ago. (Dufour & Z: Linearization of Nambu structures,
Compositio, 1999; and Chapter 6 of book ”Poisson structures and their
normal forms”, Birkhäuser, 2005)

This talk: deformations and stability of singular foliations in general, and
of Dufour foliations in particular.
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1. Singular foliations à la Stefan–Sussmann

Definition of singular foliations (Stefan-Sussmann)

A partition M =
⊔
Fi (Fi are leaves) satisfies :

∀x ∈ M, Fx : the leaf contains x , ∃ local coordinates x1, . . . , xn such that

Fx = {xd+1 = . . . = xn = 0}
each disk {xd+1 = cd+1, . . . xn = cn} is contained in some leaf

Regular case: all the leaves have the same dimension (each disk
{xd+1 = cd+1, . . . xn = cn} in the above definition is an open subset of
some other leaf)
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The local splitting condition

The Stefan–Sussmann definition may be reparaphrased as the following
inductive local splitting condition:

Local splitting condition

Near each point x of rank d , the foliation is locally isomorphic (via a local
diffeomorphism) to a direct product of Rd with a foliation on Rn−d such
that the origin of Rn−d has rank 0.

Here, by definition, the rank of a point is the dimension of the leaf
through it.
Compare with splitting/slice theorems for Poisson structures (Weinstein),
Lie algebroids (Fernandes – Dufour), Dirac manifolds (Dufour – Wade),
slice theorems for proper group actions (Palais), proper Lie groupoids
(Weinstein – Zung)
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Where do singular foliations come from?

Nature: Earth layers; graphite; liquid crystals, composite materials,
Saturn rings, trees, parallel worlds (?), etc. Generators and cloning.

Actions: of Lie groups and algebras, Lie groupoids and algebroids,
vector fields, etc.

Constraints: level sets of functions and maps, singular fibrations,
restrictions to subanifolds, (non)holonomic constraints, etc.

Proposition

Restriction (pull-back) of a singular foliation to a submanifold is again a
singular foliation

Geometry and dynamical systems: Riemannian foliations, stable and
unstable manifolds, representatives of noncommutative spaces, etc.
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Frobenius–Clebsch–Deahna theorem

Definition: Smooth singular distributions

D is a field of vector subspaces of tangent spaces, which is generated by a
family {Xα, α ∈ I} of smooth v.f.: Dx = Vect(Xα(x), α ∈ I ) ∀ x ∈ M. D
is called involutive if for any two vector fields X ,Y tangent to D, their
Lie bracket [X ,Y ] is also tangent to D. D is integrable if it is the
tangent distribution to a smooth singular foliation F :
Dx = TxS(x) ∀ x ∈ M, where S(x) denotes the leaf through x .

If dimDx is constant then D is a regular distribution (subbundle of TM).
It is clear that if D = DF then D is involutive. (Being tangent to D
means tangent to each leaf of F in this case, and the Lie bracket can be
taken leaf by leaf). The converse is also true in the regular case:

Theorem (Frobenius 1877 – Clebsch 1860 – Deahna 1840)

If D is regular then it’s integrable if and only if it’s involutive.
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Stefan–Sussmann theorem

Attention: The above theorem is FALSE in the smooth singular case.
Example: D on R2 given by D(x ,y) = Vect(∂x) if x ≤ 0 and
D(x ,y) = Vect(∂x , ∂y) if x > 0. Then D is involutive but not integrable.
Solution: Impose some additional conditions to avoid pathologies such as
above, e.g. D is generated by locally finitely-generated involutive modules
of vector fields (Hermann’s theorem, 1963), or the following invariance
condition (stronger than involutivity):

Theorem (Stefan-Sussmann 1973-74)

The following conditions are equivalent:

D = DF for some singular foliation F
D is generated by a family C of vector fields and is invariant with
respect to the elements of C

Example: Stefan–Sussmann condition is obviously satisfied for the family
of Hamiltonian vector fields on Poisson manifolds, and for Lie algebroids.
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Algebraization/tensorization of foliations

Idea: Represent foliations by elements of some vector space or algebra, in
order to do deformation theory using analytico-algebraic machinary.
Posible approaches:

Heafliger’s Gamma-structures: in terms of cocycles with values in
Diff (Kq) where q is the codimension. Gives holonomy and universal
classifying space. But not every singular foliation can be given by a
Haefliger structure ?!

Skandalis (+ Androulidakis, Zambon): Via Lie algebroids and
groupoids. Use locally finitely-generated modules of tangent vector
fields. OK for holonomy. But what about normalization and
deformation theory ?!

Our approach: Integrable differential forms and Nambu structures.
We claim that they are the right objects for studying general singular
foliations.
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2. Integrable differential forms and Nambu structures

Definition (Integrable 1-forms (codimension 1 foliations))

A differential 1-form α is called integrable if α ∧ dα = 0

At points where α 6= 0, the involutivity of kerα is equivalent to the above
condition, hence we get a (singular) codimension 1 foliation. Cartan,
Nemytskii (1940s), Kupka, Thom (1960s), etc.

Definition (Integrable q-forms / codimension q foliations)

A differential q-form ω is called integrable if:

ω ∧ iAω = 0 & dω ∧ iAω = 0 ∀ (q − 1)-vector A

The kernel of an integrable q-form ω near a point x where ω(x) 6= 0 is an
involutive distribution of corank q → codimension q foliation.

Integrable q-forms are in use since 1970-80s only (?) Malgrange (wedge
product of 1-forms), Camacho, Lins-Neto, Medeiros, etc.
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Nambu structures via integrable differential forms

Fix a volume form Ω. Then for each q-form ω there is a unique p-vector
field Λ (where p + q = n is the dimension of the manifold) such that

ω = ΛyΩ

Λ is called an integrable p-vector field, or a Nambu structure of order
p, if its dual differential form ω = ΛyΩ is integrable. Equivalent definition:

Definition

A p-vector field Λ is called a Nambu structure iff near every point x such
that Λ(x) 6= 0 there is a local coordinate system (x1, . . . , xn) such that

Λ = f ∂x1 ∧ . . . ∧ ∂xp

(One can put f = 1). One may view a Nambu structure as a singular
folitation + leafwise contravariant volume element.
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A bit of history of Nambu structures

Nambu (1973): generalization of Hamiltonian formalisim from a binary
bracket (the Poisson bracket) to a p-ary bracket (for p = 3). Takhtajan
(1994) gave a definition of Nambu-Poisson structures in the general case
using p-ary brackets in a way similar to Poisson structures.

When p = 2 a Nambu-Poisson structure is nothing but a Poisson
structure, while a Nambu structure is our definition is a Poisson structure
of rank 2. When p 6= 2 the definition of Takhtajan and our new definition
coincide (theorem of Alekseevsky – Guha, Gautheron, Nakanishi).

Nambu p-ary bracket: {f1, . . . , fp} = 〈df1 ∧ · · · ∧ dfp,Λ〉

Hamiltonian vector fields: Xf1,...,fp−1 = (df1 ∧ · · · ∧ dfp−1)yΛ
Generalized Leibniz identity ⇔ Hamiltonian vector fields preserve Λ
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Some remarks on Nambu structures

In general, associated Nambu structures do not lose singularities of
foliations. Nor do they create new artificial singular points.

The sheaf of local tangent Nambu strucures = the sheaf of local
sections of a line bundle (the anti-canonical bundle of the foliations).
If this line bundle is not globally trivial then a global Nambu structure
doesn’t exist, but it’s no big deal: one can talk about twisted
associated Nambu structures by taking tensor product with the dual
(canonical) line bundle, so the theory still works.

Nambu are good not only for foliations, but also for analysis
(singularity theory). Example: manifold with boundary and corners
can also be represented by Nambu. Near a corner, Λ is monomial:

Λ = x1 . . . xk∂x1 ∧ · · · ∧ ∂xk ∧ · · · ∧ ∂xn

One recovers the boundary strata as singular leaves of the associated
foliation. (One can often views tratifications as singular foliations)
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Associated Nambu stuctures to a foliation

Question: Given a singular foliation F , how to associate to it a Nambu
structure Λ, so that one can essentially recover F from Λ?

Intuitively, Λ would be tangent to F in the sense that at every regular
point x of Λ (i.e. Λ(x) 6= 0) we can write Λ = ∂x1 ∧ . . . ∧ ∂xp in a local
coordinate system such that ∂x1, . . . , ∂xp generate F near x . In particular,
Λ vanishes at every singular point of F

However, in some special situations the above intuitive tangency condition
would imply that the singular set of Λ is too big compared to the singular
set of F .

Example: F in C2 with leaves {x = const 6= 0}, {x = 0, y 6= 0} and
{x = y = 0}. Then Λ = f ∂y . If Λ is analytic and vanishes at the singular
point of F then the singular set of Λ (i.e. the level set {f = 0} is of
dimension (at least) 1 while the singular set of F is of dimension 0.
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The tangency condition

Need a compromise between “being tangent everywhere” and “without
unwanted singular points”. The following definitions work well in the
analytic case: Denote by S(Λ) (resp. S(F)) the singular set of a Nambu
structure Λ of order p (resp. of a p-dimensional foliation F).

Λ a tangent Nambu structure to F if codim(S(F) \ S(Λ)) ≥ 2 and
near each point x /∈ S(Λ) ∪ S(F) there is a local coordinate system in
which Λ = ∂x1 ∧ . . . ∧ ∂xp and F is generated by ∂x1, . . . , ∂xp

Moreover, if codim
(
S(F) \ S(Λ)

)
≥ 2, and is without multiplicity in

the sense that Λ can’t be written as Λ = f 2Λ′, where f is a function
which vanishes somewhere, then we say that Λ is an associated
Nambu structure to F .

Existence and Uniqueness Theorem

In the holomorphic category, there always exists a local associated Nambu
structure which is unique up to multiplication by an invertible function.
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Construction of associated Nambu structures

Take p local vector fields X1, . . . ,Xp tangent to F and linearly
independent almost everywhere, and put Π = X1 ∧ . . . ∧ Xq.

Decompose Π = hΛ, where codimS(Λ) ≥ 2.

If codimS(F) ≥ 2 then Λ is an associated Nambu structure of F .

If codimS(F) = 1, we find a reduced function s such that
S(F) = {s = 0} then sΛ is an associated Nambu structure of F .

Example: F on R3 or C3 with leaves {x2 + y 2 + z2 = const}. Take two

tangent vector fields X = y ∂
∂z − z ∂

∂y , Y = z ∂
∂x − x ∂

∂z , and put

Π = X ∧ Y = z

(
x
∂

∂y
∧ ∂

∂z
+ y

∂

∂z
∧ ∂

∂x
+ z

∂

∂x
∧ ∂

∂y

)
then Λ = Π

z is an associated Nambu structure of F .

Global situation: Sheaf of tangent Nambu structures = sheaf of sections
of the anti-canonical line bundle of the foliation. Associated Nambu
structure = section which doesn’t vanish anywhere.
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Associated foliations

An “obvious” foliation generated by Λ consists of 2 kinds of leaves: regular
leaves, and 0-dimensional leaves (singular points of Λ). But this foliation is
“stupid”. Need more sophisticated constructions.

Definition

We say that a vector field X is tangent to Λ if X ∧ Λ = 0

The set of tangent vector fields forms an integrable distribution. However,
the foliation defined in by it may lose many singularities of Λ.
Example: Λ = x ∂

∂x ∧
∂
∂y . Then codimS(Λ) = codim{x = 0} = 1, but the

foliation F defined by the tangent vector fields of Λ consists of just one
leaf, which is C2. Put an additional condition to avoid this situation:

Definition

A vector field X is called a conformally invariant tangent (CIT) vector
field of a Nambu structure Λ if X is tangent to Λ and X conformally
preserves Λ, i.e. LXΛ = f Λ for some function f . The set of CIT vector
fields of Λ will be denoted by CIT (Λ).
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Associated foliations

Theorem and Definition

The set of CIT vector fields of a Nambu structure Λ of order p generates
an integrable singular distribution and hence defines a singular foliation FΛ

which will be called the associated foliation of Λ.

For previous example, Λ = x ∂
∂x ∧

∂
∂y

∂
∂x is a tangent but not an associated vector field of Λ.

FΛ is generated by {x ∂
∂x ,

∂
∂y } and consists two leaves {x = 0} and

{x 6= 0}.

Proposition

If Λ is a holomorphic Nambu structure and codim(Λ) ≥ 2, then every
tangent vector of Λ is also CIT vector field of Λ.
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From Nambu structures to singular foliations and back

Λ→ FΛ → ΛFΛ

We will say Λ conformally preserves a function f if there is Σ such that

[f ,Λ] = f Σ,

where the bracket means the Schouten bracket. Denoted by µ(Λ) the set
of functions which are conformally preserved by Λ.

Proposition

If codimS(Λ) ≥ 2, then ΛFΛ
= uΛ for some invertible function u.

If Λ =
∏

f mi
i

∏
g
mj

j Λ1, where codimS(Λ1) ≥ 2, fi , gj are irreducible,
fi ∈ µ(Λ1), gj 6∈ µ(Λ1), then ΛFΛ

= u
∏

gjΛ1 for some invertible
function u.
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From Nambu structures to singular foliations and back

Example: Let f , g ∈ O2 be irreducible and (f , g) = 1. Consider Λ = fgXf

where Xf = ∂f
∂y ∂x − ∂f

∂x ∂y . Then f ∈ µ(Xf ), g 6∈ µ(Xf ) and ΛFΛ
= gXf

From foliations to Nambu structures and back: F → ΛF → FΛF

Theorem

Let F be a holomorphic singular foliation and ΛF be its associated Nambu
structure. Suppose that FΛF is an associated foliation of ΛF then FΛF is
a saturation of F . Moreover, if codimS(F) ≥ 2 then codimS(FΛF ) ≥ 2.

Saturation means that each leaf of the latter foliation is saturated by the
leaves of the former one.

Reference for Nambu↔foliation correspondence: Minh & Zung,
”Commuting Foliations”, Regular and Chaotic Dynamics 2013.
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Morphisms, pull-backs, stratification, etc.

- The pul-back of a singular foliation by a map is again a singular foliation
(via the pull-back of local associated integrable differential forms)
- Morphisms? Many kinds: isomorphisms (no problems); sending Nambu
to Nambu (preserve the dimension), sending distribution to distribution, ....
- Foliation vs stratification of singular fibers of maps/fibrations: singular
leaves of the associated singlar foliations are often strata of the (Whitney
– Thom – Mather) stratification. It’s true, for example, for nondegenerate
singularities of integrable Hamiltonian systems.
- Counter-example (suggested by Mattei): Level sets of the function
f (x , y , z) = x(x − y)(x − 2y)(x − zy) in C3. An 1-dimensional stratum of
the singular level set is not a leaf, but the leaves in it are just points (due
to changing biratios). Nothing wrong with singular foliations or Nambu
structures, it’s just that sometimes the stratification of a singular fiber
can’t be made foliated)
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What are linear foliations?

There are two different non-equivalent notions of linear singular foliations:

Lie-linear: foliations generated by linear vector fields = generatedby
linear representations of Lie algebras = generated by linear actions of
Lie groups. (Big theory of linear representations)

Nambu-linear: associated to a linear Nambu structure, i.e. whose
coefficients in a coordinate systems are linear.

Nambu-linear are also Lie-linear though the converse is not true (there are
few Nambu-linear foliations): contraction of a linear Nambu p-vector field
with constant (p − 1)-forms give rise to generating linear vector fields.

Classification of Nambu-linear: Dufour–Z (Compositio Math. 1999). Some
other people (Grabowski, ...) arrived at similar results.
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Classification of linear Nambu structures: 2 types

Type I (piles of cabbages / parallel worlds):

Λ = ωy(∂x1 ∧ · · · ∧ ∂xn)

where
ω = dx1 ∧ · · · ∧ dxp−1 ∧ dQ

where Q is a quadratic function
x1, . . . , xp−1 are regular linear first integrals
Q is a quadratic first integral
In the nodegenerate case, Q depends only on xp, . . . , xn
If Q is positive definite then the leaves are p-dimensional spheres
The foliation looks like a pile of cabbages or parallel worlds
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Classification of linear Nambu structures: 2 types

Type II (open books):

Λ = ∂x1 ∧ · · · ∧ ∂xp−1 ∧ X

where
X =

∑
i ,j≥p

aijxi∂xj

is a linear vector field in the variables xp, . . . , xn
This foliation can be splitted into direct product of a linear vector field
with Rp−1.
Looks like open books (especially if X is hyperbolic).

In a sense, the two types are dual to each other: in Type 2 the Nambu
structure is decomposabe, in Type 1 the integrable differential form is
decomposable. Very often, singular foliations are locally of these two
types, because of the linearization theorems (see Lecture 2).
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(Quasi-)homogeneous foliations

What is a homogeneous singular foliation of degree k? Generated by
homogeneous vector fields of degree k?
The problem is that, the Lie bracket of two vector fields of degree k is a
vector field of degree 2k − 1 6= k unless k = 1. So a family of vector fields
of degree k can’t be involutive in general, and if one generates an
involutive family from some vector fields of degree k by taking Lie
brackets, we will get vector fields of different degrees.
To avoid this problem: replace vecto fields by (quasi-)homogeneous
Nambu structures or integrable differential forms.
Example: ω = dF 1 ∧ · · · ∧ dFq, where F1, . . . ,Fq are homogeneous
polynomial functions.
Example: Any Lie-linear foliation is a (Nambu-)homogeneous foliation.
Example: Diract product of homogeneous foliations is again homogeneous.
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H-degree

H-degree = degree of the associated homogeneous Nambu structure. (A
discrete invariant for linear representations)

Example: Let g be a semisimple Lie algebra, and consider the associated
coadjoint foliation on g∗. Leaves = coadjoint orbits. The singular set of
codimension 3. First integrals = Casimir functions. The associated Nambu
structure is

Λ = ∧mΠ

where m is half the dimension of coadjoint orbits. The H-degree is also m,
because Π is linear. Up to a multiplicative constant, the dual integrable
differential form is

dF1 ∧ · · · ∧ dFd

where F1, . . . ,Fd are generators of the algebra of Casimir functions. (d is
the dimension of the Cartan subalgebra).
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Example: g = gl(n,K)

The coordinates are xij , 1 ≤ i , j ≤ n. The tangent vector fields are (for
i 6= j)

Xij = xij(∂xjj − ∂xii ) + (xii − xjj)∂xji +
∑
k 6=i ,j

(xik∂xjk − xkj∂xki )

The tangent Nambu structure ∧i 6=jXij is divisible by
∏

i<j(xii − xjj) and

Λ = ∧i 6=jXij/
∏
i<j

(xii − xjj)

is the associated Nambu structure of order n(n − 1) (equal to the
dimension of the generic orbits), which is homogeneous of degree
n(n − 1)/2 (half of the order). It is proportional to ∧n(n−1)/2Π where Π is
the associated linear Poisson structure on the dual of the Lie algebra.
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3. Deformation cohomology of singular foliations

We want to develop a general deformation theory for singular foliations.
Fundamental tool at the infinitesimal level: deformation cohomology.
General idea: Given a certain structure S
- Infinitesimal deformations: D such that the formal deformation S + εD
of S also satisfies structural equations modulo ε2

- Trivial deformations: terms of the type (1 + εX )∗S − S modulo ε2

- Deformation cohomology:

Hdef (S) =
{infinitesimal deformations}
{trivial deformations}

may be interpreted as the formal tangent space to the moduli space of
deformations.
- If Hdef (S) = 0 then S is called infinitesimally rigid. In many situations,
infinitesimal rigidity implies rigidity (Richardson–Nijenhuis, Mather, etc.).
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Infinitesimal deformations of Nambu structures

Let Λ be a Nambu structure of order p.

A multi-vector field Π of order p is called an infinitesimal
deformation of Λ if Λ + εΠ is a Nambu structure modulo ε2. The
condition “Λ + εΠ is Nambu modulo ε2” is a linear system of
equations on Π (linear first order PDEs + linear algebraic equations),
so the set of infinitesimal deformations is a vector space.

If Π = LXΛ for some vector field X , then Π is called a trivial
deformation of Λ. The set of all trivial deformations is also a vector
space.

If Π = LXΛ + f Λ for some vector field X and some function f , then
Π is called a trivial deformation of the associated foliation FΛ. The
set of all trivial deformations of the foliation is also a vector space.
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Deformation cohomology of Λ and FΛ

Definition: Deformation cohomology of Λ and FΛ

Hdef (Λ) =
{Infinitesimal deformations of Λ}

{LXΛ}
,

Hdef (FΛ) =
{Infinitesimal deformations of Λ}

{LXΛ + f Λ}
.

Remark: If a local associated Nambu structure doesn’t exist globally
(because the anti-canonical line bundle is non-trivial, use a ”twisted
associated Nambu structure” (twisted by the canonical bundle).
Problems: Computations of deformation cohomologies, relations to
problems of rigidity and (true) deformations, comparison with other
cohomology theories, characteristic classes and indices, etc.
If the deformation cohomology is finite-dimensional, one expects that the
moduli space of deformations/normal forms of perturbations is also locally
finite-dimensional.
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Examples of deformation cohomology

(Computations worked out with Ph. Monnier and Truong Hong Minh)

• The regular case: J. L. Heitsch (1973-75) defined a differential complex
whose first cohomology class is the deformation cohomology space of a
regular foliation F : It is nothing else but the algebroid cohomology of the
natural linear action of the tangent Lie algebroid TF on the normal
bundle NF = TM/TF of F .
Assume that there is a global Nambu structure Λ associated to F (i.e.
regular leafwise volume contravariant form). Then F = FΛ and our
deformation cohomology for the foliation coincides with Heitsch’s:

Theorem

Hdef (F) = H1(TF ,NF )

The differential complex here is Ω∗(TF ,NF ) of leafwise differential forms
with values in the normal bundle: it’s very similar to the usual De Rham
complex of differential forms with values in R
Nguyen Tien Zung (IMT & SJTU) Deformations and Stability of Dufour Foliations Banff, April 21st 2017 31 / 48



Examples of deformation cohomology

The above theorem is still valid when a global assocated Nambu structure
doesn’t exist: replace Nambu by a twisted Nambu in this case.
Hdef (Λ) can be much larger than Hdef (FΛ), also in the regular case.

For example, let M = P × Q compact, where Q is simply-connected, and
the foliation F is given by the projection to P, i.e. the leaves are
{pt} × Q. Then the deformation cohomology of the foliation is trivial (it
follows from the above theorem, and agrees with Reeb stability theorem).
On the other hand, Hdef (Λ) becomes the deformation cohomology of a
function f on P (the value of f at a point x in P equals the volume of
{x} × Q with respect to the contravariant volume form Λ), and we have:

Theorem

Let f : P → R be a smooth simple Morse function on a compact manifold
P. Then dim Hdef (f ) is the number of singular points of f .
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Examples of deformation cohomology

• The regular case of top order:
If Λ is regular of top order, then only 1 leaf (the manifold itself), the
foliation is trival (no deformation), but Λ can be deformed (by changing
the total volume)

Theorem

If Λ is a regular Nambu structure of top degree on a compact manifold
then Hdef (Λ) = R and Hdef (FΛ) = 0

Consistent with Moser [1964]: Two volume forms ω1 and ω2 on a compact
manifold M are diffeomorphic ⇔ they have the same global volume:∫

M
ω1 =

∫
M
ω2
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Examples of deformation cohomology

• The case of top order with nondegenerate singularities:
Locally Λ = x1∂x1 ∧ ∂x2 ∧ · · · ∧ ∂xn near singular points (Type II). Two
kinds of leaves: regular n-dimensional domains, and singular
(n − 1)-submanifolds.

Classification of these structures is done by Olga Radko (2002, for n = 2:
Poisson surfaces) and David Martinez Torres (2004, for n arbitrary).
Numerical invariants of the classifiation (besides topological ones):

Regularized Liouville volume of the manifold

(n − 1)-dimensional volume of each singular leaf (induced from Λ)

Theorem

Let Λ be a Nambu structure of top order with nondegenerate singularities
on a compact manifold M. Then dim Hdef (FΛ) = 0 and
dim Hdef (Λ) = k + 1, where k is the number of (n− 1)-dimensional leaves.
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Examples of deformation cohomology

• The case of top order, local coholmology.
Assume that

Λ = f
∂

∂x1
∧ . . . ∧ ∂

∂xn

where f (0) = 0 and moreover 0 is a singular point of f , i.e. df (0) = 0.
We will work here in the local holomorphic category, with germs of
functions. In this case we have:

Hdef (FΛ) ∼=
On〈

f , ∂f∂x1
, . . . , ∂f∂xn

〉
and dim Hdef (FΛ) = τ(f ) is the Tjurina number of f at 0.

Hdef (Λ) ∼=
On

{X (f )− (divX )f |X ∈ X}
and dim Hdef (Λ) = some number of f (?! Don’t know the name)
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Examples of deformation cohomology

• The case of order 0 (i.e, functions). Λ = f is a 0-vector field. Locally:

Hdef (f ) =
On

{X (f )|X ∈ X}
=

On〈
∂f
∂x1
, . . . , ∂f∂xn

〉 ,
Hdef (Ff ) =

On

{X (f ) + cf |X ∈ X, c ∈ On}
=

On〈
f , ∂f∂x1

, . . . , ∂f∂xn

〉 .
dimHdef (f ) = µ(f ), dimHdef (Ff ) = τ(f ) (Milnor and Tjurina number).

• The case of vector fields (order 1) If Λ = X is a vector field, the leaves
of the foliation are integral curves of X . Normalization of the foliation =
Orbital normalization of X .
Local deformation cohomology (for germs of vector fields) is given by
resonant terms, and can be infinite-dimensional. If the vector field has a
non-resonant linear part, then the local deformation cohomology is trivial.
Global deformation = complicated dynamical problem.
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Decomposable Nambu structures with small singularities

Λ is a Nambu structure and ω = iΛΩ, Ω is a volume form.

If ω is decomposable (i.e. ω = ω1 ∧ . . . ∧ ωq) and codim(ω) ≥ 3 then
by Malgrange (1977): ω = udf1 ∧ . . . ∧ dfq

Proposition

Let ω = udf1 ∧ . . . ∧ dfq be an integrable q-form and η is an infinitesimal
deformation ω. If codimS(ω) ≥ q + 2 then

η = a0df1 ∧ . . . ∧ dfq + u

q∑
i=1

df1 ∧ . . . ∧ dfi−1 ∧ dai ∧ dfi+1 ∧ . . . ∧ dfq.

It means that ω + εη is also decomposable and admits first integrals
modulo ε2.
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Decomposable Nambu structures with small singularities

Corollary

If ω = df (Nambu structure of order n − 1) and codimS(df ) ≥ 3 then

Hdef (Fdf ) =
On{

ai
∂f
∂x1

+ . . .+ an
∂f
∂xn

+ h ◦ f |ai ∈ On, h ∈ O
}

In particular, µ(f ) ≥ dimHdef (Fdf ) ≥ τ(f )− 1.

Corollary

If O is an isolated singular point of ω = udf1 ∧ . . . ∧ dfq then

dimHdef (Fω) <∞
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Some open problems concerning deformation

Interpret deformation cohomology as part of a bigger cohomology
theory (with a differential complex) in the singular case ?

Computation of deformation cohomology for linear actions of Lie
algebras, and for other situations?

Rigidity of singular foliations given by semisimple compact group
actions: The group actions are rgid, but if we forget the group, is the
foliation still rigid ?

Singular Reeb stability (for singular points and leaves) ? Linearized
models along a leaf ?

Local and global (Infinitesimal) rigidity of orbit-like foliations with
simply-connected leaves ?

Etc.
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4. Dufour foliations

A Dufour foliation of dimension p is a foliation which can be locally
given near every singular point by a Nambu structure of order p which has
a nondegenerate linear part. If every singular point of a Dufour foliation is
of type 1 (resp., type 2), then we say that it is a Dufour foliation of type
1 (resp., type 2). If there are singular points of both types then we say
that it is a Dufour foliation of mixed type.

Examples:
1) Morse fucntions and Morse foliations are Dufour foliations of Type 1
and codimension 1. On can also define Dufour-Bott foliations. Topology
and stability of Morse and Morse-Bott foliations are studied by many
people, also quite recently (Reeb stability, Thurston, Wagneur, Camacho,
Scardua, Seade, Mafra, Fukui, Rosati, ...)
2) Contravariant fields of top order and nondegenerate singularities
(studied by O. Radko, D. Martinez, ...) are Dufour foliations of Type 2
and codimension 0.
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Some questions on Dufour foliations

Local deformations/stability at singular points? Done (local
linearization problem).

Deformation cohomology and global structural stability of Dufour
foliations? (Extention of results from the Morse case)

Realization via Lie algebroids? Not clear. (When order = 2 then
realized via Poisson structures and their cotangent Lie algebroids. In
general how can one use surgery to glue Lie algebroids together? Use
categorical approach to Lie algebroids?)

Existence of Dufour foliation of a given codimension on arbitrary
manifolds?

Topology and Morse theory? Restriction to Dufour foliations of Type
1 with compact leaves already gives a large family of foliations to
study topology.

Extensions to Dufour-Bott foliations
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Linearization of singular points of Type 2

Splitting proposition

If the linear part Λ1 of a Nambu structure Λ which vanishes at O is of
Type 2, Λ1 = ∂x1 ∧ · · · ∧ ∂xp−1 ∧

∑
i ,j≥p aijxi∂xj , with non-vanishing trace∑

i≥p aii 6= 0, then then Λ is (p − 1)-splittable, i.e. it can be written
locally, in some coordinate system, as

Λ = ∂x1 ∧ · · · ∧ ∂xp−1 ∧ X

The above proposition is a particular case ofthe so-called generalized
Kupka’s phenomenon. After the splitting, the linearization problem for Λ
becomes the linearization problem for a vector field X , so we get:

Theorem (Dufour–Z 1999)

If
∑

i ,j≥p aijxi∂xj is non-resonant then Λ is smoothly linearizable. If
moreover it satisfies a Diophantine condition and Λ is analytic then
analytically linearizable.
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Linearization of singular points of Type 1

Λ = Λ1 + h.o.t is of Type 1, i.e.

Λ1y(dx1 ∧ · · · ∧ dxn) = dQ ∧ dxp+2 ∧ · · · ∧ dxn

where Q is a quadratic function. We will consider only the nondegenerate
case, i.e. Q is nondegenerate quadratic in variables x1, . . . , xp+1

Theorem (Dufour–Z 1999, Z 2013)

a) If Λ is formal then it’s formally linearizable
b) If Λ is analytic then it’s analytically linearizable
c) If Λ is smooth and the signature of Q is different from (2, ∗) then Λ is
smootly linearizable. If the signature is (2, ∗) then there are
counter-examples.

Of course, under the assumptions of the above theorems, the deformation
cohomology is trivial. From that infinitesimal rigidity to linearizability, we
need more work.
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Tools used in the proof of local linearization

Division theorems (De Rham, Saito)

Decomposition of the dual integrable differential form

Godbillon–Vey algorithm (to formally linearize the foliation)

Malgrange’s “Frobenius with singularity” theorem (for the existence
of analytic first integrals)

Blowing up (in the compact case, when Q is positive definite)

Equivariant smooth linearization of vector fields
(Sternberg–Belitskii–Kopanskii)

Levi decomposition (for the existence of SO(p + 1) symmetry
group, similar to the one used in the linearization of Lie algebroids.)
Cerveau was first to use it for singular foliations.

Slicing method (for dealing with the smooth noncompact case:
turning non-compact leaves into compact leaves by slicing).
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Stability of Dufour foliations: the elliptic case

Theorem

Consider a Dufour foliation of type 1 of dimension p ≥ 2 with only elliptic
singular points. Then:
i) All regular fibers are diffeomorphic to Sp

ii) The foliation is completely integrable (i.e., it admits a complete set of
first integrals)
iii) The deformation cohomology is trivial
iv) The foliation is structurally stable (any nearby singular foliation will be
diffeomorphic to it)
v) The foliation can be blown up to a regular Sp fibration over a base
space = manifold with boundary: the boundary corresponds to singular
points of the foliation.
iv) The classification of such filiations is equivalent to the classification of
Sp fibrations over manifolds with boundary.

Remark: The dimension of the base space is the codimension of the
foliation. The Reeb case is when this base space is a closed interval.
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Deformations and stability of Dufour foliations: the general
case

- Deformation cohomology → possible infinitesimal holonomy.
- If there is no room for infinitesimal holonomy (i.e. when some leaves are
known to be closed simply-connected) then the deformation cohomology is
trivial.
- Under some conditions (transversality of heteroclinic leavs + some
simply-connected fibers), all the leaves will be automatically closed, the
foliation will be completely integrable, infinitesimaly rigid, and structurally
stable.
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A simple example

There are Dufour foliations which are locally non-structurally-stable but
globally structurelly stable
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THANK YOU!
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