Topological Data Analysis for Brain Networks

Relating Functional Brain Network Topology to Clinical Measures of Behavior

Bei Wang^{1,2} University of Utah

Joint work with Eleanor Wong^{1,2}, Sourabh Palande^{1,2}, Brandon Zielinski³, Jeffrey Anderson⁴, P. Thomas Fletcher^{1,2}

¹Scientific Computing and Imaging (SCI) Institute ²School of Computing ³Pediatrics and Neurology ⁴Radiology

May 11, 2017

Big Picture

Goal: Quantify the relationship between brain functional networks and behavioral measures.

Our Contribution: Use topological features based on persistent homology.

Result: Combining correlations with topological features gives better prediction of autism severity than using correlations alone.



Motivation

About Autism Spectrum Disorders (ASD):

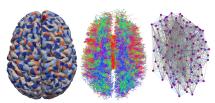
- No cure, causes unknown
- Diagnosis:
 - No systematic method
 - ADOS (Autism Diagnostic Observation Schedule)

Correlate functional brain network to ADOS scores

- Early diagnosis
- Treatment tracking

What is a Brain Network?

- Represents brain regions and pairwise associations
- Computation of Correlation Matrices:
 - Resting state functional MRI (R-fMRI)
 - Preprocessing
 - Define regions of interest (ROIs)
 - Estimate time series signals
 - Compute pairwise associations Pearson Correlation



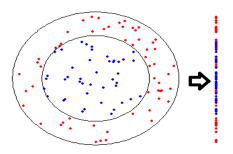
Why Topology?

How to use this data?

- Graph and graph theoretic measures (e.g. small worldness)
 - Require binary associations (thresholding)
- Correlations as features
 - High dimensionality, not enough samples
- Dimensionality reduction: PCA, random projections
 - May lose structures in higher dimensions

Why Topology

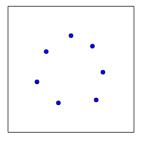
Projection - may lose structures in higher dimensions

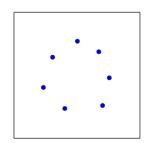


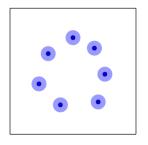
Topology captures structure

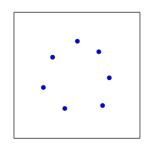
- In higher dimensions
- Across all continuous thresholds

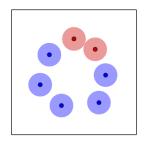
- What are topological features? Homological features:
 - Dim 0 Connected Components
 - Dim 1 Tunnels / Loops
 - Dim 2 Voids
- How to compute them (in a nutshell)?
 - Begin with point cloud
 - Grow balls of diameter t around each point
 - Track features of the union of balls as t increases

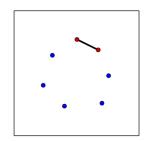


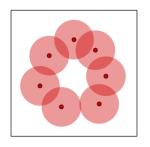


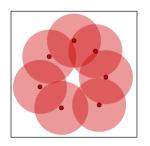


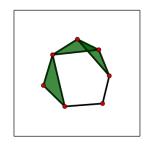


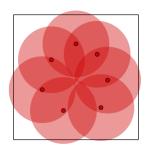


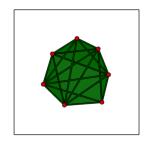












Persistence Diagrams

Persistent homological features - encoded as barcodes or persistent diagrams

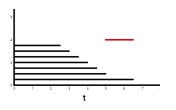


Figure: Barcode

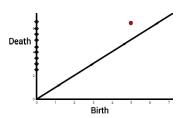
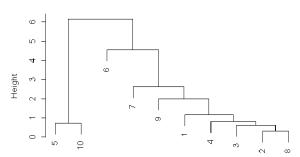


Figure: Persistence Diagram

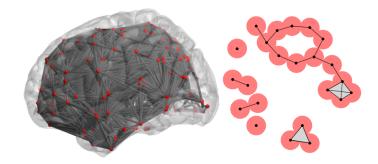
Interpretation of Connected Components

• Dim 0 features - hierarchical clustering

Cluster Dendrogram



Computing Topological Features for Brain Networks



Partial Least Squares (PLS) Regression

A dimensionality reduction technique that finds two sets of latent dimensions from datasets X and Y such that their **projections** on the latent dimensions are **maximally co-varying**.

- *X* features from brain imaging: correlations, topological features (zero mean)
- Y clinical measure of behavior: ADOS scores (zero mean)

PLS models the relations between X and Y by means of **score** vectors.

PLS Regression

- n number of data points
- X predictor/regressor $(n \times N)$, Y response $(n \times M)$
- PLS decompose X, Y such that:

$$X = TP^{T} + E$$
$$Y = UQ^{T} + F$$

Where

- T, U latent variables/score vectors $(n \times p)$, factor matrices
- $P(N \times p)$, $Q(M \times p)$ orthogonal loading matrices
- $E(n \times N)$, $F(n \times M)$ residuals/errors
- T, U are chosen such that projections of X, Y, that is, T and U, are maximally co-varying.

PLS Regression: the Algorithm

Iterative NIPALS¹ algorithm

Find first latent dimension
i.e. find vectors w, c such that

$$t = Xw$$
, $u = Yc$

have maximal covariance

Deflate previous latent dimensions from X, Y and repeat

Kernel form of NIPALS algorithm (kPLS)

- 1. Initialize random vector u
- 2. Repeat until convergence
 - (a) t = Ku/||Ku||
 - (b) $c = Y^{\dagger} t$
 - (c) u = Yc/||Yc||
- 3. Deflate $K = (I tt^T)K(I tt^T)$
- 4. Repeat to compute subsequent latent dimensions

- 87 Subjects: 30 Control, 57 ASD
- ADOS scores: 0 to 21
- 264 ROIs (Power regions)
- 264 × 264 correlation matrix.
- 34,716 distinct pairwise correlations per subject.

Experiments

- Given: Correlation matrices
- Map to metric space

$$d(x,y) = \sqrt{1 - \mathsf{Cor}(x,y)}$$

- Compute persistence diagrams
- Define inner product of persistence diagrams² (i.e. kernel): Given two persistence diagrams F, G

$$k_{\sigma}(F,G) = \frac{1}{8\pi\sigma} \sum_{p \in F} \sum_{q \in G} e^{-\frac{\|p-q\|^2}{8\sigma}} - e^{-\frac{\|p-\bar{q}\|^2}{8\sigma}}$$

where for every $q = (x, y) \in G$, $\bar{q} = (y, x)$

Experiments

Performed experiments with 3 kernels:

- 1. K^{Cor} Euclidean dot product of vectorized correlations
- 2. $K^{TDA} = w_0 K^{TDA_0} + (1 w_0) K^{TDA_1}$
 - K^{TDA_0} using only Dim 0 features
 - K^{TDA_1} using only Dim 1 features
- 3. $K^{TDA+Cor} = w_0 K^{TDA_0} + w_1 K^{TDA_1} + (1 w_0 w_1) K^{Cor}$

Baseline predictor - mean ADOS score

Experiments

- Leave one out cross validation over parameters
 - σ_0 , σ_1 (log₁₀ σ) from -8.0 to 6.0 by 0.2
 - w_0 , w_1 from 0.0 to 1.0 by 0.05
- k^{TDA} parameters: $\sigma_0 = -6.6$, $\sigma_1 = 1.8$, $w_1 = 0.95$
- $k^{TDA+Cor}$ parameters: $\sigma_0=-7.8$, $\sigma_1=2.8$, $w_0=0.1$, $w_1=0.4$
- Compute RMSE
- Permutation test for significance

Results

	RMSE	ADOS mean	$K^{ ext{TDA}}$	K ^{cor}
ADOS mean	6.4302	-	-	-
$K^{ ext{TDA}}$	6.3553	0.316	-	-
$\mathcal{K}^{\mathrm{cor}}$	6.0371	0.055	0.095	-
$K^{\mathrm{TDA+cor}}$	6.0156	0.048	0.075	0.288

Table: ADOS prediction results. Columns 2 to 4 are p-values for the permutation test of improvement of row method over column method.

Result Highlights:

Baseline RMSE: 6.4302

• K^{TDA+Cor}:

Only method statistically significant over baseline

• Permutation test p-value: 0.048

RMSE: 6.0156

Conclusion

- Augmenting correlations with topological features gives a better prediction of autism severity than using correlations alone
- (Hopefully) topological features derived from R-fMRI have the **potential** to explain the connection between functional brain networks and autism severity

Future Work

Many things to try

- Alternatives to correlation
- Different distance metric
- Different kernel
- Multi-site data
- Classification (combine with TDA features)

Reference

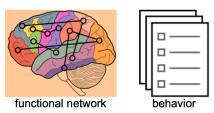
Kernel Partial Least Squares Regression for Relating Functional Brian Network Topology to Clinical Measures of Behavior

Authors: Eleanor Wong, Sourabh Palande, Bei Wang, Brandon Zielinski, Jeffrey Anderson and P. Thomas Fletcher

IEEE International Symposium on Biomedical Imaging (ISBI), 2016

Thank you!

Bei Wang Phillips beiwang@sci.utah.edu



Thanks to support by NSF grant IIS-1513616 and IIS-1251049 and NIH-1R01EB022876-01.