> Masahico Saito

Gene segmen interactions and graphs

Examples

Applying TDA to graphs

Outputs

Graph Based Analysis for Gene Segment Interactions In a Scrambled Genome

> Masahico Saito University of South Florida

BIRS, May 7 - 12, 2017

Coauthors: Mustafa Hajij, Nataša Jonoska, Denys Kukushkin Collaborator: Laura Landweber, Columbia U.

(Supported in part by NIH R01GM109459-01)

> Masahico Saito

Gene segmen interactions and graphs

Examples

Applying TD, to graphs

Outputs

Plan:

1 Representing interactions of gene segments by graphs

- 2 Examples of graphs thus obtained
- 3 Applying TDA to a data set consisting of graphs through graph properties

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

4 Outputs

	Outline
Graph Based Analysis for Gene Segment Interactions In a Scrambled Genome	1 Care correct interactions and success
Masahico Saito	1 Gene segment interactions and graphs
Gene segment interactions and graphs	2 Examples
Examples	3 Applying TDA to graphs
Applying TDA to graphs Outputs	4 Outputs

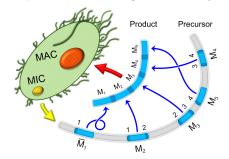
▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Cilliates

Graph Based Analysis for Gene Segment Interactions In a Scrambled Genome

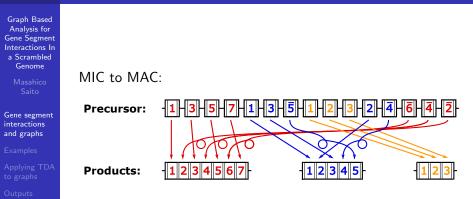
> Masahico Saito

Gene segment interactions and graphs


Examples

Applying TD/ to graphs

Outputs


Oxytricha trifallax, a species of ciliate, undergoes massive genome rearrangements.

Landweber Lab sequenced the whole genome of Oxytricha trifallax.

Micronucleus (MIC) : used for mating/conjugation Macronucleus (MAC) : functional Gene assembly : from MIC to MAC MDS (MAC Destined Sequence) : segments headed to MAC IES (Internally Eliminated Sequence) : junk DNA, eliminated

Rearrangement of gene segments in *Oxytricha trifallax*

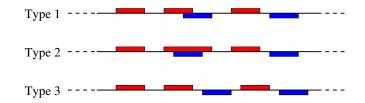
MDSs from different MAC genes interleave in the MIC contig.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Interaction types of gene segments

Graph Based Analysis for Gene Segment Interactions In a Scrambled Genome


> Masahico Saito

Gene segment interactions and graphs

Examples

Applying TE to graphs

Outputs

Three types of interactions of gene segments:

Type 1: Overlapping

Type 2 : Containment

Type 3 : Interleaving

Seven possible combination types of interaction: Overlapping and interleaving, etc.

Representing gene interactions by graphs

Graph Based Analysis for Gene Segment Interactions In a Scrambled Genome

> Masahico Saito

Gene segment interactions and graphs

Examples

Applying TD to graphs

Outputs

H: a MIC "contig" $\iff G = G(H) = (V, E)$ a graph

g : a MAC gene \iff vertex v(g)

A (colored and directed) edge e from $v(g_1)$ to $v(g_2)$

 $\iff g_1 \text{ interacts with } g_2$

Eg. g_1 is contained in $g_2 \iff$ an edge from $v(g_1)$ to $v(g_2)$

Colors of edges represent a combination type of interactions (7 colors)

(About 70 MIC chromosomes, about 283 isomorphism classes of graphs, about 16,000 MAC chromosomes.)

Outline

Graph Based Analysis for Gene Segment Interactions In a Scrambled Genome

> Masahico Saito

Gene segmen interactions and graphs

Examples

Applying TDA to graphs

Outputs

Gene segment interactions and graphs

2 Examples

Applying TDA to graphs

4 Outputs

Graph Based Analysis for Gene Segment Interactions In a Scrambled Genome

> Masahico Saito

Gene segmen interactions and graphs

Examples

Applying TD to graphs

Outputs

Sample graphs in the largest cluster

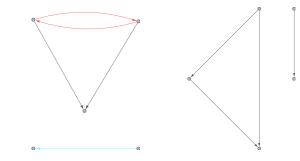


Figure : ctg7180000087289

Figure : ctg7180000069936

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Graph Based Analysis for Gene Segment Interactions In a Scrambled Genome

> Masahico Saito

Gene segmen interactions and graphs

Examples

Applying TDA to graphs

Outputs

Sample graphs in the largest cluster (cont.)

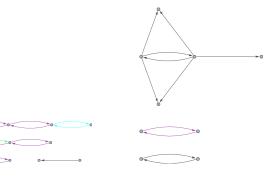


Figure : ctg7180000087650

Figure : ctg7180000069209

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Graph Based Analysis for Gene Segment Interactions In a Scrambled Genome

> Masahico Saito

Gene segmen interactions and graphs

Examples

Applying TD to graphs

Outputs

Two in a small component

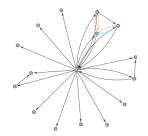


Figure : ctg7180000088096

-0-

0

Figure : ctg7180000067742

>0

+0

Graph Based Analysis for Gene Segment Interactions In a Scrambled Genome

> Masahico Saito

Gene segmen interactions and graphs

Examples

Applying TD to graphs

Outputs

Singleton components

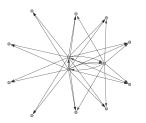
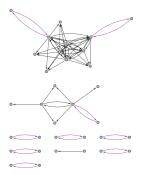



Figure : ctg7180000067761 joins the large component at d = 11

Figure :

ctg7180000067223 joins the large comonent last at d = 24

(日) (個) (目) (目) (目) (目)

\cap	+	line
U	uu	ime

> Masahico Saito

Gene segmen interactions and graphs

Examples

Applying TDA to graphs

Outputs

Gene segment interactions and graphs

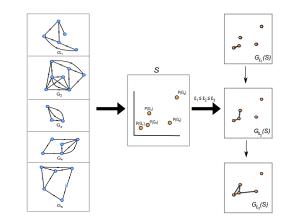
2 Examples

3 Applying TDA to graphs

Outputs

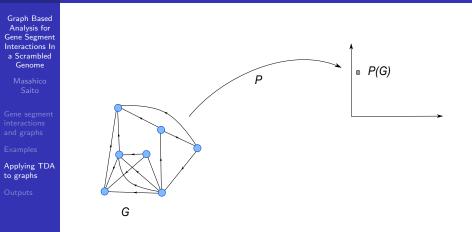
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

From graphs to point-cloud to filtration


Masahico Saito

Gene segmer interactions and graphs

Examples


Applying TDA to graphs

Outputs

Left : the set of graphs that represents the contigs. Middle : Represent graphs as points in a c Euclidean space. Right : Construct a filtration on the point-cloud.

From graphs to point-cloud

Associate to every graph G a feature vector P(G), a point in a Euclidean space, that represents the graph G.

From graphs to point-cloud

Graph Based Analysis for Gene Segment Interactions In a Scrambled Genome

> Masahico Saito

Gene segmen interactions and graphs

Examples

Applying TDA to graphs

Outputs

The vector P(G) is defined as follows.

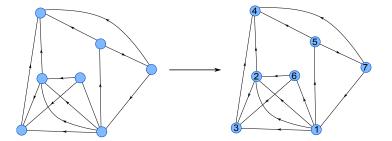
Global Features Vector: $P_g(G) = \langle V(G), E(G), CN(G) \rangle$ V(G) : # of vertices, E(G) # of edges $P_g(G)$ CN(G) : the size of the largest clique in G.

Valence Features Vector: $P_{\nu}(G)$: the valency of the vertices ordered decreasingly.

The Clique Vector: $P_c(G)$: # of cliques containing the vertex, in the same order of vertices of $P_v(G)$.

 $d = \max(valency)$ Concatenate 0s if $|P_v(G)| < d$

 $P(G) \in \mathbb{R}^{2d+3}$: concatenation of $P_g(G), P_v(G), P_c(G)$.


Masahico Saito

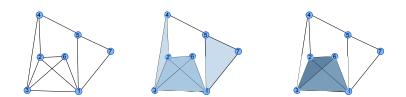
Gene segmer interactions and graphs

Examples

Applying TDA to graphs

Outputs

 $P_{v}(G) = <6, 5, 4, 4, 3, 3, 3 >$


Masahico Saito

Gene segmer interactions and graphs

Examples

Applying TDA to graphs

Outputs

(1,1,1,1,1,1,1) (5,4,4,3,3,3,2)

(4,3,3,1,1,3,1)

(1,1,1,0,0,1,0)

 $P_c(G) = <11, 9, 9, 5, 5, 8, 4>$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

\cap		1
U	uτ	line

> Masahico Saito

Gene segmen interactions and graphs

Examples

Applying TDA to graphs

Outputs

Gene segment interactions and graphs

2 Examples

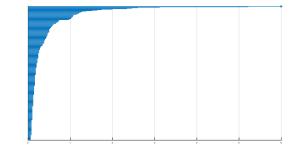
Applying TDA to graphs

4 Outputs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - の≪

Barcodes of connected components

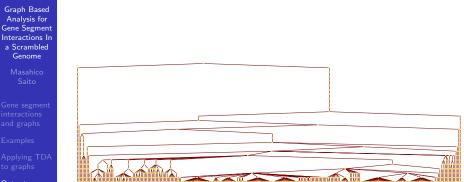
Graph Based Analysis for Gene Segment Interactions In a Scrambled Genome


> Masahico Saito

Gene segmen interactions and graphs

Examples

Applying TDA to graphs


Outputs

The barcode diagram describing the birth and death of the connected components.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Tree diagram of merging components

Outputs

Tree diagram representing merging components

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

> Masahico Saito

Gene segmen interactions and graphs

Examples

Applying TDA to graphs

Outputs

Thank you !

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

æ