Algorithms & Software for Topological Data Analysis

Jan Reininghaus (Siemens Industry Software)

	1	2	3	4	5	6	7
1	\geq		1		1		
2		\angle	1			1	
3			\geq				1
4				\searrow	1	1	
5					$\overline{\ }$		1
6						\geq	1
7							$\overline{\ }$

Input data

_							
1	3	78	65	3	46	12	1
7	6	23	78	65	3	46	23
5	34	61	2	78	65	3	46
2	6	2	10	2	1	1	51
78	65	3	46	6	1	4	35
1	6	78	65	3	46	24	32
6	6	6	5	78	65	3	46
1	78	65	3	46	2	15	12

Input data

1.3	
3.2	
2.8	
6.1	
9.1	
8.3	
5.9	

	1	2	3	4	5	6	7	
1		1		1				
2						1		
3					1			
4						1		
5		1						
6					1			
7								

Boundary matrix + weights

Input data

	1	2	3	4	5	6	7
1		1		1			
2						1	
3					1		
4						1	
5		1					
6					1		
7							

Boundary matrix + weights

/	6	23	78	65	3	46	23
5	34	61	2	78	65	3	46
2	6	2	10	2	1	1	51
78	65	3	46	6	1	4	35
1	6	78	65	3	46	24	32
6	6	6	5	78	65	3	46
1	78	65	3	46	2	15	12

Input data

Boundary matrix + weights

15

+ weights

1.3

Input data

Boundary matrix + weights Filtration matrix + permutation maps

1 1

5 6

Input data

+ weights

Filtration matrix + permutation maps

+ weights

6 7

Reduced matrix

Input data

+ weights

+ permutation maps

Reduced matrix \rightarrow diagram ₂₀

Part 1: Phat - bitbucket.org/phat-code/phat

Joint work with: U. Bauer, M. Kerber, H. Wagner

	1	2	3	4	5	6	7	
1			1		1			
2			1			1		
3							1	
4				$\overline{\ }$	1	1		
5					\nearrow		1	
6							1	
7								

	1	2	3	4	5	6	7	
1			1		1			
2			1			1		3
3			\searrow				1	
4				\backslash	1	1		
5					\searrow		1	
6						\sum	1	
7							$\overline{\ }$	

	1	2	3	4	5	6	7	
1			1		1			
2			1			1		3
3			\searrow				1	
4				\searrow	1	1		5
5					\nearrow		1	
6						\nearrow	1	
7							$\overline{\ }$	

	1	2	3	4	5	6	7	
1			1		1	1		
2			1			1		3
3							1	
4				\backslash	1			5
5					\searrow		1	
6						\nearrow	1	
7								

Phat features

- Algorithms:
 - Standard
 - Row
 - Twist (best sequential performance/complexity ratio)
 - Chunk (parallel)
 - Spectral sequence (best parallel performance/complexity ratio)
 - Dualized versions of all above
- Column data structures:
 - vector_vector
 - vector_heap (best performance/complexity ratio)
 - vector_set
 - vector_list (purely educational)
 - sparse_pivot_column
 - heap_pivot_column
 - full_pivot_column
 - bit_tree_pivot_column (fastest, requires N memory)

Phat performance

	List	Vector	Set	Неар	A-Heap	A-Set	A-Full	A-Bit-Tree
standard	17.1	2.8	7.5	5.9	5.6	8.6	2.3	1.62
standard*	2580.0	168.0	17.3	13.5	14.6	16.0	3.9	0.57
twist	16.3	2.7	7.0	5.7	5.4	6.5	2.2	1.59
twist*	0.23	0.03	0.04	0.02	0.03	0.03	0.02	0.02
row	39.9	4.3	20.3	7.2	21.4	37.9	15.5	13.8
row*	0.25	0.06	0.06	0.05	0.08	0.09	0.05	0.05
chunk	0.63	0.19	0.6	0.50	0.35	0.5	0.24	0.24
chunk*	2.9	0.42	0.1	0.11	0.17	0.14	0.07	0.04
spectral	10.7	1.8	4.03	3.3	3.4	4.3	2.1	1.2
spectral*	0.35	0.03	0.05	0.04	0.04	0.04	0.02	0.01

Dataset: 3-skeleton of the Vietoris–Rips filtration of 64 points on a 2-sphere (7e5 columns)

	List	Vector	Set	Неар	A-Heap	A-Set	A-Full	A-Bit-Tree
twist*	2635.4	339.9	4.9	2.0	2.5	6.1	2.1	1.0
spectral*	2644.8	349.2	5.2	1.9	3.3	6.6	3.1	1.0

Dataset: 3-skeleton of the Vietoris–Rips filtration of 192 points on a 2-sphere (6e7 columns)

Phat performance

	List	Vector	Set	Неар	A-Heap	A-Set	A-Full	A-Bit-Tree
standard	141.1	16.1	23.9	17.5	19.4	21.5	10.8	10.7
standard*	460.2	39.6	27.5	18.8	20.8	22.8	14.0	9.8
twist	9.8	0.54	0.30	0.11	0.13	0.13	0.09	0.07
twist*	337.1	18.6	0.99	0.52	0.52	0.72	0.24	0.11
row	9.9	1.5	0.50	0.48	1.5	2.1	1.2	0.78
row*	350	43.8	1.0	0.93	24.5	44.0	15.5	7.0
chunk	1.8	0.19	0.19	0.12	0.09	0.09	0.08	0.08
chunk*	5.7	0.53	0.27	0.22	0.19	0.17	0.13	0.14
spectral	8.4	0.78	0.19	0.11	0.11	0.11	0.08	0.06
spectral*	339.2	21.9	0.90	0.65	0.74	0.74	0.35	0.12

Dataset: 64^3 image dat set (2e6 columns)

	List	Vector	Set	Неар	A-Heap	A-Set	A-Full	A-Bit-Tree
twist	2080.2	101.7	26.4	11.3	11.1	12.3	10.4	8.8
chunk spectral	894.5 1197.7	156.1 261.7	9.8 11.9	6.5 8.5	6.3 8.5	6.2 8.4	5.6 7.1	4.7 6.1

Dataset: 256^3 image dat set (1e8 columns)

Phat comparison

	Dionysus	JavaPlex	Perseus	Gudhi	Phat (simple)	Phat (opt)
Rips 64	2.6	4.4	18.0	0.15	0.02	0.01
Rips 192	359	465	(m)	9.8	2.0	1.0
Image 64 ³		163	11139		0.11	0.06
Image 256 ³		(m)	(m)		11.3	4.7

	Dionysus	JavaPlex	Perseus	Gudhi	Phat (simple)	Phat (opt)
Rips 64	60 MB	270 MB	718 MB	44 MB	53 MB	61 MB
Rips 192	4.9 GB	12.3 GB	(m)	3.1 GB	3.6 GB	3.8 GB
Image 64 ³		2.04 GB	1.5 GB		0.16 GB	0.16 GB
Image 256 ³		(m)	(m)		10.2 GB	10.3 GB

Part 2: Dipha - github.com/DIPHA/dipha

Joint work with: Ulrich Bauer, M. Kerber

Why Distributed?

- Fast algorithms and data structures: Twist + Bit-tree + Dualization
- \rightarrow Can process millions of simplices per second
- \rightarrow Bottlenecked by memory consumption
- Memory efficient approaches only for special cases

Why Distributed?

- Fast algorithms and data structures: Twist + Bit-tree + Dualization
- \rightarrow Can process millions of simplices per second
- \rightarrow Bottlenecked by memory consumption
- Memory efficient approaches only for special cases

IST Austria: 256 GB

VS.

50 x 64 GB = 3.2 TB

Why Distributed?

- Fast algorithms and data structures: Twist + Bit-tree + Dualization
- \rightarrow Can process millions of simplices per second
- \rightarrow Bottlenecked by memory consumption
- Memory efficient approaches only for special cases

Challenge: High latency (> 1000x)

Spectral Sequence Matrix Reduction

Pivot-to-Column Map

Pivot-to-Column Map

Pivot-to-Column Map

Pivot-to-Column Map

	Step 1	
I	Load cols 1-3	
II	Load cols 4-7	

	Step 1	Step 2
I	Load cols 1-3	Reduce to idx 1
II	Load cols 4-7	Reduce to idx 4

	Step 1	Step 2
I	Load cols 1-3	Reduce to idx 1
II	Load cols 4-7	Reduce to idx 4

	Step 1	Step 2	Step 3
T	Load cols 1-3	Reduce to idx 1	idle
П	Load cols 4-7	Reduce to idx 4	Reduce to idx 1

	Step 1	Step 2	Step 3
T	Load cols 1-3	Reduce to idx 1	idle
П	Load cols 4-7	Reduce to idx 4	Reduce to idx 1

	Step 1	Step 2
Ι	Load cols 1-3	Reduce to idx 1
II	Load cols 4-7	Reduce to idx 4

	Step 1	Step 2	Step 3
T	Load cols 1-3	Reduce to idx 1	Recv. unreduced cols from II
II	Load cols 4-7	Reduce to idx 4	Send. unreduced cols to I

	Step 1	Step 2	Step 3
T	Load cols 1-3	Reduce to idx 1	Recv. unreduced cols from II
	Load cols 4-7	Reduce to idx 4	Send. unreduced cols to I

	Step 1	Step 2	Step 3	Step 4
T	Load cols 1-3	Reduce to idx 1	Recv. unreduced cols from II	Reduce to idx 1
П	Load cols 4-7	Reduce to idx 4	Send. unreduced cols to I	idle

	Step 1	Step 2	Step 3	Step 4
Т	Load cols 1-3	Reduce to idx 1	Recv. unreduced cols from II	Reduce to idx 1
П	Load cols 4-7	Reduce to idx 4	Send. unreduced cols to I	idle

Distributed Computational Pipeline

5	34	61	2	78	65	3	46
2	6	2	10	2	1	1	51
78	65	3	46	6	1	4	35
1	6	78	65	3	46	24	32
6	6	6	5	78	65	3	46
1	78	65	3	46	2	15	12

Input data

1. Identical computational cost as *Spectral Sequence* algorithm

- 1. Identical computational cost as Spectral Sequence algorithm
- 2. Twist, fast column addition, and dualization are applicable

- 1. Identical computational cost as Spectral Sequence algorithm
- 2. Twist, fast column addition, and dualization are applicable
- 3. N nodes \rightarrow O(N) messages per node (\rightarrow latency insensitive)

- 1. Identical computational cost as Spectral Sequence algorithm
- 2. Twist, fast column addition, and dualization are applicable
- 3. N nodes \rightarrow O(N) messages per node (\rightarrow latency insensitive)
- 4. Only unreduced columns with high persistence get sent often
 (→ no communication bottleneck when using Gbit network)

- 1. Identical computational cost as Spectral Sequence algorithm
- 2. Twist, fast column addition, and dualization are applicable
- 3. N nodes \rightarrow O(N) messages per node (\rightarrow latency insensitive)
- 4. Only unreduced columns with high persistence get sent often
 (→ no communication bottleneck when using Gbit network)
- 5. Morse: 1024³ noise image (→ 8 billion columns) with 256 nodes:
 → 13 min, 3.2 GB Memory peak, 10 GB peak traffic per node pair (single machine would need ~640 GB RAM)

- 1. Identical computational cost as Spectral Sequence algorithm
- 2. Twist, fast column addition, and dualization are applicable
- 3. N nodes \rightarrow O(N) messages per node (\rightarrow latency insensitive)
- 4. Only unreduced columns with high persistence get sent often
 (→ no communication bottleneck when using Gbit network)
- 5. Morse: 1024³ noise image (→ 8 billion columns) with 256 nodes:
 → 13 min, 3.2 GB Memory peak, 10 GB peak traffic per node pair (single machine would need ~640 GB RAM)
- 6. Rips: 3000 points, dimension: 2 (→ 5 billion columns), with 380 nodes:
 → 20 min, 4 GB Memory peak

Part 3: Discrete Morse theory

Joint work with: D. Guenther, I. Hotz, H. Wagner

Х

Computing persistent homology using Morse theory

Discrete Morse theory intuition

Combinatorial gradient field \Leftrightarrow *acyclic matching* of the cell graph

Example

Data set size: 1120 x 1131 x 1552 (8 GB)

Total running time: ca. 5h

Memory requirement: 1.3 TB \rightarrow 24 GB

Critical points scaled by persistence of a distance field of a molecular surface (data courtesy: D. Baum)

The full cell complex is never represented explicitly

Part 4: Persistence-Scale-Space kernel

Joint work with: S. Huber, R. Kwitt, U. Bauer

Kernels

Definition

Given a set \mathcal{X} , a function $k \colon \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a kernel if there exists a Hilbert space \mathcal{H} , called feature space, and a map $\Phi \colon \mathcal{X} \to \mathcal{H}$, called feature map, such that $k(x, y) = \langle \Phi(x), \Phi(y) \rangle_{\mathcal{H}}$ for all $x, y \in \mathcal{X}$.

(Equivalently: k is a kernel if it is symmetric and positive definite)

Kernels

Definition

Given a set \mathcal{X} , a function $k \colon \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a kernel if there exists a Hilbert space \mathcal{H} , called feature space, and a map $\Phi \colon \mathcal{X} \to \mathcal{H}$, called feature map, such that $k(x, y) = \langle \Phi(x), \Phi(y) \rangle_{\mathcal{H}}$ for all $x, y \in \mathcal{X}$.

(Equivalently: k is a kernel if it is symmetric and positive definite)

Kernel induced pseudo-metric on \mathcal{X} :

$$d_k(x,y) = \sqrt{k(x,x) + k(y,y) - 2k(x,y)} = \|\Phi(x) - \Phi(y)\|_{\mathcal{H}}$$

Kernels

Definition

Given a set \mathcal{X} , a function $k \colon \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a kernel if there exists a Hilbert space \mathcal{H} , called feature space, and a map $\Phi \colon \mathcal{X} \to \mathcal{H}$, called feature map, such that $k(x, y) = \langle \Phi(x), \Phi(y) \rangle_{\mathcal{H}}$ for all $x, y \in \mathcal{X}$.

(Equivalently: k is a kernel if it is symmetric and positive definite)

Kernel induced pseudo-metric on \mathcal{X} :

$$d_k(x,y) = \sqrt{k(x,x) + k(y,y) - 2k(x,y)} = \|\Phi(x) - \Phi(y)\|_{\mathcal{H}}$$

Definition

We call k stable w.r.t. a metric d on \mathcal{X} if there is a constant C > 0 such that

$$d_k(x,y) \leq C \ d(x,y)$$

(Equivalently: k is stable if Φ is Lipschitz-continuous)

Why Stability?

Basic idea

An Unstable Kernel

Persistence diagram \Leftrightarrow multi-set of points in $\Omega = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 \ge x_1\}$

• Feature map: $\Phi: \mathcal{D} \to H^{-2}(\Omega) \colon D \mapsto \sum_{p \in D} \delta_p$

An Unstable Kernel

Persistence diagram \Leftrightarrow multi-set of points in $\Omega = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 \ge x_1\}$

- Feature map: $\Phi: \mathcal{D} \to H^{-2}(\Omega) \colon D \mapsto \sum_{p \in D} \delta_p$
- Corresponding kernel is not Wasserstein stable

$$d_{W,p}(F,G) = \left(\inf_{\gamma} \sum_{x \in F} \|x - \gamma(x)\|_{\infty}^{p}\right)^{\frac{1}{p}}$$

An Unstable Kernel

Persistence diagram \Leftrightarrow multi-set of points in $\Omega = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 \ge x_1\}$

- Feature map: $\Phi: \mathcal{D} \to H^{-2}(\Omega) \colon D \mapsto \sum_{p \in D} \delta_p$
- Corresponding kernel is not Wasserstein stable

$$d_{W,p}(F,G) = \left(\inf_{\gamma} \sum_{x \in F} \|x - \gamma(x)\|_{\infty}^{p}\right)^{\frac{1}{p}}$$

- Use $\sum_{p\in D} \delta_p\,$ as initial condition for diffusion process
- Dirichlet boundary condition \rightarrow stability

A Stable Multi-Scale Kernel

Definition

For a given persistence diagram D, we consider the solution $u: \Omega \times \mathbb{R}_{\geq 0} \to \mathbb{R}, (x, t) \mapsto u(x, t)$ of the partial differential equation

$$\Delta_{\times} u = \partial_{t} u \qquad \text{in } \Omega \times \mathbb{R}_{>0}, \qquad (1)$$

$$u = 0 \qquad \text{on } \partial\Omega \times \mathbb{R}_{\geq 0}, \qquad (2)$$

$$u = \sum_{p \in D} \delta_{p} \qquad \text{on } \Omega \times \{0\}. \qquad (3)$$

The feature map $\Phi_{\sigma} \colon \mathcal{D} \to L_2(\Omega)$ at scale $\sigma > 0$ is defined as

$$\Phi_{\sigma}(D) = \left. u \right|_{t=\sigma} \tag{4}$$

This map yields the persistence scale space kernel k_{σ} on \mathcal{D} as

$$k_{\sigma}(F,G) = \langle \Phi_{\sigma}(F), \Phi_{\sigma}(G) \rangle_{L_{2}(\Omega)}.$$
(5)

$$u(x,t) = rac{1}{4\pi t} \sum_{p \in D} e^{-rac{\|x-p\|^2}{4t}} - e^{-rac{\|x-\overline{p}\|^2}{4t}}$$

$$u(x,t) = \frac{1}{4\pi t} \sum_{p \in D} e^{-\frac{\|x-p\|^2}{4t}} - e^{-\frac{\|x-\overline{p}\|^2}{4t}}$$

Kernel Evaluation

$$\Phi_{\sigma}(D): \Omega \to \mathbb{R}, \quad x \mapsto \frac{1}{4\pi\sigma} \sum_{p \in D} e^{-\frac{\|x-p\|^2}{4\sigma}} - e^{-\frac{\|x-\overline{p}\|^2}{4\sigma}}$$
(7)

$$\begin{split} k_{\sigma}(F,G) &= \int_{\Omega} \Phi_{\sigma}(F) \Phi_{\sigma}(G) \, dx \\ &= \frac{1}{2} \int_{\mathbb{R}^2} \Phi_{\sigma}(F) \Phi_{\sigma}(G) \, dx \\ &= \frac{1}{2} \frac{1}{\left(4\pi\sigma\right)^2} \sum_{\substack{p \in F \\ q \in G}} \int_{\mathbb{R}^2} \left(e^{-\frac{\|x-p\|^2}{4\sigma}} - e^{-\frac{\|x-\bar{p}\|^2}{4\sigma}} \right) \cdot \left(e^{-\frac{\|x-\bar{q}\|^2}{4\sigma}} - e^{-\frac{\|x-\bar{q}\|^2}{4\sigma}} \right) \, dx \\ &= \frac{1}{8\pi\sigma} \sum_{\substack{p \in F \\ q \in G}} e^{-\frac{\|p-\bar{q}\|^2}{8\sigma}} - e^{-\frac{\|p-\bar{q}\|^2}{8\sigma}}. \end{split}$$

1-Wasserstein Stability

Theorem

The kernel k_{σ} is 1-Wasserstein stable.

Proof:

$$\begin{aligned} \|\Phi_{\sigma}(F) - \Phi_{\sigma}(G)\|_{L_{2}(\Omega)} \\ &\leq \left\|\sum_{u \in F} (N_{u} - N_{\overline{u}}) - (N_{\gamma(u)} - N_{\overline{\gamma(u)}})\right\|_{L_{2}(\mathbb{R}^{2})} \\ &\leq 2\sum_{u \in F} \|N_{u} - N_{\gamma(u)}\|_{L_{2}(\mathbb{R}^{2})} \\ &\leq \frac{1}{\sigma\sqrt{8\pi}} \sum_{u \in F} \|u - \gamma(u)\|_{2} \\ &\leq \frac{1}{2\sigma\sqrt{\pi}} \sum_{u \in F} \|u - \gamma(u)\|_{\infty} \\ &= \frac{1}{2\sigma\sqrt{\pi}} d_{W,1}(F,G) \end{aligned}$$

p-Wasserstein Stability

• A kernel k is additive if $k(E \cup F, G) = k(E, G) + k(F, G)$

• A kernel k is **non-trivial** if there exists F, G s.t. $k(F, G) \neq 0$

Theorem

A non-trivial additive kernel k on \mathcal{D} is not stable w.r.t. $d_{W,p}$ for any 1 .

Proof: Compare rates of growth:

$$d_{k_{\sigma}}\left(\bigcup_{i=1}^{n} F, \emptyset\right) = n\sqrt{k(F,F)}$$

$$d_{W,p}\left(\bigcup_{i=1}^{n} F, \emptyset\right) = d_{W,p}(F, \emptyset) \cdot \begin{cases} \sqrt[q]{n} & \text{if } p < \infty, \\ 1 & \text{if } p = \infty \end{cases}$$

Numerical Experiments – Shapes

SHREC 2014 real: 400 meshes from 40 humans in 10 different poses Filtration: Heat Kernel Signature

HKS <i>t</i> _i	k^L	k_{σ}	Δ
t_1	45.2 ± 5.8	48.8 ± 4.9	+3.5
<i>t</i> ₂	31.0 ± 4.8	46.5 ± 5.3	+15.5
<i>t</i> ₃	30.0 ± 7.3	37.8 ± 8.2	+7.8
t_4	41.2 ± 2.2	50.2 ± 5.4	+9.0
t5	46.2 ± 5.8	62.5 ± 2.0	+16.2
t ₆	33.2 ± 4.1	58.0 ± 4.0	+24.7
t7	31.0 ± 5.7	62 .7 ± 4.6	+31.7
t ₈	51.7 ± 2.9	57.5 ± 4.2	+5.8
t9	36.0 ± 5.3	41.2 ± 4.9	+5.2
<i>t</i> ₁₀	2.8 ± 0.6	27.8 ± 5.8	+25.0

Numerical Experiments – Textures

Outex-TC-00000: 240 textures (24 classes, 10 samples each) Filtration: Complete-Local-Binary-Pattern filter

CLBP Operator	k^L	k_{σ}	Δ
CLBP-S	58.0 ± 2.3	69.2 ± 2.7	+11.2
CLBP-M	45.2 ± 2.5	55.1 ± 2.5	+9.9
CLBP-S (SVM- χ^2)		76.1 ± 2.2	
CLBP-M (SVM- χ^2)		76.7 ± 1.8	

Part 4: Conclusion

$$k_{\sigma}(F,G) = \frac{1}{8\pi\sigma} \sum_{\substack{p \in F \\ q \in G}} e^{-\frac{\|p-q\|^2}{8\sigma}} - e^{-\frac{\|p-\overline{q}\|^2}{8\sigma}}.$$

- Exact evaluation in O(n^2)
- Approximate evaluation in O(n)

Summary

- Part 1: Phat fast matrix reduction algorithms: phat@github
- Part 2: Dipha distributed computation: dipha@github
- Part 3: Discrete Morse theory large image data
- Part 4: A kernel for topological machine learning