Dirichlet property and dynamical system

Atsushi MORIWAKI (Joint works with Huayi CHEN)

Kyoto University

February 12, 2017

Atsushi MORIWAKI (Joint works with Huayi CHEN) Dirichlet property and dynamical system

• Let K be a number field, that is, a finite extension field over \mathbb{Q} . Let O_K be the ring of integers in K. Let $K(\mathbb{C})$ be the set of all embeddings K into \mathbb{C} . For $\sigma \in K(\mathbb{C})$, $\overline{\sigma}$ is defined to be $\overline{\sigma}(x) = \overline{\sigma(x)}$ ($x \in K$), where $\overline{}$ is the complex conjugation. Let us consider the following equivalence relation \sim on $K(\mathbb{C})$:

$$\sigma \sim \tau \iff \sigma = \tau \text{ or } \bar{\tau}.$$

We set
$$s = \#(K(\mathbb{C})/{\sim}) - 1$$
.

Theorem (Dirichlet unit theorem)

The group O_K^{\times} consisting of the units in O_K is a finitely generated abelian group of rank s.

向下 イヨト イヨト

Proof. Let us consider a map $L: O_K^{\times} \to \mathbb{R}^{K(\mathbb{C})}$ given by $L(x)_{\sigma} = \log |\sigma(x)|$. For a compact subset B in $\mathbb{R}^{K(\mathbb{C})}$, the set $\{x \in O_K^{\times} \mid L(x) \in B\}$ is finite (\because every coefficients of $\prod_{\sigma \in K(\mathbb{C})} (T - \sigma(x))$) is bounded and belongs to \mathbb{Z}). Thus we can easily check that O_K^{\times} is finitely generated. Obviously the image of L is contained in the subspace

$$\Xi_{K}^{0} = \left\{ (\xi_{\sigma}) \in \mathbb{R}^{K(\mathbb{C})} \; \middle| \; \sum_{\sigma} \xi_{\sigma} = 0, \; \xi_{\sigma} = \xi_{\bar{\sigma}} \; (\forall \sigma) \right\}$$

of dimension *s*. Thus the crucial point of the proof of the Dirichlet unit theorem is to show that, for any $\xi \in \Xi_K^0$, there are $a_1, \ldots, a_r \in \mathbb{R}$ and $x_1, \ldots, x_r \in O_K^{\times}$ such that $a_1 \mathcal{L}(x_1) + \cdots + a_r \mathcal{L}(x_r) = \xi$.

伺 と く き と く き と

We set

$$\begin{cases} \Xi_{\mathcal{K}} := \{(\xi_{\sigma}) \in \mathbb{R}^{\mathcal{K}(\mathbb{C})} \mid \xi_{\sigma} = \xi_{\bar{\sigma}} \; (\forall \sigma)\} \;,\\ \widehat{\mathsf{Div}}(O_{\mathcal{K}}) := \mathsf{Div}(O_{\mathcal{K}}) \times \Xi_{\mathcal{K}},\\ \widehat{\mathsf{Div}}(O_{\mathcal{K}})_{\mathbb{R}} := (\mathsf{Div}(O_{\mathcal{K}}) \otimes_{\mathbb{Z}} \mathbb{R}) \times \Xi_{\mathcal{K}},\\ \mathcal{K}_{\mathbb{R}}^{\times} := \mathcal{K}^{\times} \otimes_{\mathbb{Z}} \mathbb{R},\\ \mathcal{M}_{\mathcal{K}}^{f} := \text{the set of all maximal ideals of } O_{\mathcal{K}} \; (\text{finite places}),\\ \mathcal{M}_{\mathcal{K}}^{\infty} = \mathcal{K}(\mathbb{C}) \; (\text{infinite places}),\\ \mathcal{M}_{\mathcal{K}} = \mathcal{M}_{\mathcal{K}}^{f} \cup \mathcal{M}_{\mathcal{K}}^{\infty}. \end{cases}$$

(ロ) (四) (E) (E) (E)

990

For
$$\overline{D} = \left(\sum_{\mathfrak{p} \in M_{K}^{f}} a_{\mathfrak{p}}[\mathfrak{p}], (\xi_{\sigma})_{\sigma \in M_{K}^{\infty}}\right) \in \widehat{\mathsf{Div}}(O_{K})_{\mathbb{R}}$$
, we define $\overline{D} \ge 0$
and $\widehat{\mathsf{deg}}(\overline{D})$ to be

$$\overline{D} \geq 0 \quad \stackrel{\mathsf{def}}{\Longleftrightarrow} \quad a_\mathfrak{p} \geq 0 \; (orall \mathfrak{p}), \; \xi_\sigma \geq 0 \; (orall \sigma)$$

 and

$$\widehat{\mathsf{deg}}(\overline{D}) := \sum_{\mathfrak{p} \in M_K^f} a_\mathfrak{p} \log \#(O_K/\mathfrak{p}) + rac{1}{2} \sum_{\sigma \in M_K^\infty} \xi_\sigma.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

For $x \in K^{\times}$, we set

$$\widehat{(x)} := ((x), -\log |x|^2),$$

where $(-\log |x|^2)_{\sigma} := -\log |\sigma(x)|^2$. Note that $\widehat{\operatorname{deg}}(\widehat{(x)}) = 0$ by the product formula. Moreover, this gives a homomorphism $\widehat{(\cdot)} : K^{\times} \to \widehat{\operatorname{Div}}(X)$, which naturally extends to the homomorphism

$$\widehat{(\cdot)}: \mathcal{K}^{ imes}_{\mathbb{R}} o \widehat{\mathsf{Div}}(X)_{\mathbb{R}}$$

ゆ く み き と く き と

given by $(x_1^{\widehat{a_1}\cdots x_r^{a_r}}) = a_1(\widehat{x_1}) + \cdots + a_r(\widehat{x_r}) \ (a_1, \ldots, a_r \in \mathbb{R}).$

Theorem (Arakelov geometric version of the Dirichlet unit theorem) If $\widehat{\deg}(\overline{D}) \ge 0$ for $\overline{D} \in \widehat{\text{Div}}(O_K)_{\mathbb{R}}$ (i.e. \overline{D} is pseudo-effective), then there is $\phi \in K_{\mathbb{R}}^{\times}$ such that $\overline{D} + (\widehat{\phi}) \ge 0$.

Indeed, the above theorem implies the Dirichlet unit theorem. For $\xi \in \Xi_{K}^{0}$, we set $\overline{D}_{\xi} = (0, \xi)$. By the above theorem, there is $\phi \in K_{\mathbb{R}}^{\times}$ such that $(\widehat{\phi}) + \overline{D}_{\xi} \ge 0$. As $(\widehat{\phi}) + \overline{D}_{\xi} \ge 0$ and $\widehat{\deg}((\widehat{\phi}) + \overline{D}_{\xi}) = 0$, we have $(\widehat{\phi}) + \overline{D}_{\xi} = (0, 0)$. Moreover, we can find $a_{1}, \ldots, a_{r} \in \mathbb{R}$ and $x_{1}, \ldots, x_{r} \in K^{\times}$ such that $\phi = x_{1}^{a_{1}} \cdots x_{r}^{a_{r}}$ and a_{1}, \ldots, a_{r} are linearly independent over \mathbb{Q} .

We set $(x_j) = \sum_{k=1}^{I} \alpha_{jk} \mathfrak{p}_k$, where $\alpha_{jk} \in \mathbb{Z}$ and $\mathfrak{p}_1, \ldots, \mathfrak{p}_I$ are distinct maximal ideals in O_K . Then

$$0 = a_1(x_1) + \cdots + a_r(x_r) = \left(\sum_{j=1}^r a_j \alpha_{j1}\right) \mathfrak{p}_1 + \cdots + \left(\sum_{j=1}^r a_j \alpha_{jl}\right) \mathfrak{p}_l.$$

Thus $\alpha_{jk} = 0$ for all j, k, which means that $x_1, \ldots, x_r \in O_K^{\times}$. Further, $\xi_{\sigma} + \sum_{i=1}^r a_i (-\log |\sigma(x_i)|^2) = 0$ for all σ , which implies that $\xi = 2a_1 L(x_1) + \cdots + 2a_r L(x_r)$.

Remark

The analogue of the above theorem on a smooth projective curve does not hold in general. Indeed, let C be a smooth projective curve of genus $g \ge 1$ over \mathbb{C} and D a divisor of degree 0 on C such that the order of $\mathscr{O}_C(D)$ in $\operatorname{Pic}^0(C)$ is infinite. Then there is no $\phi \in \operatorname{Rat}(C)^{\times} \otimes \mathbb{R}$ with $D + (\phi) \ge 0$.

イロト イポト イヨト イヨト

• Let X be a d-dimensional, projective, smooth and geometrically integral variety over K. Let D be an \mathbb{R} -Cartier divisor on X, that is,

$D \in \operatorname{Div}(X) \otimes \mathbb{R}.$

• For $\sigma \in M_K^{\infty} = K(\mathbb{C})$, we set $K_{\sigma} := K \otimes_K^{\sigma} \mathbb{C}$ with respect to σ . Note that K_{σ} is naturally isomorphic to \mathbb{C} via $a \otimes^{\sigma} z \mapsto \sigma(a)z$. Moreover, we set $X_{\sigma} := X \times_K K_{\sigma}$. Note that $X_{\sigma} = X \times_K^{\sigma} \operatorname{Spec}(\mathbb{C})$ with respect to $\sigma : K \hookrightarrow \mathbb{C}$. We set $X_{\sigma}^{an} := X_{\sigma}(\mathbb{C})$.

• Let $g: X_{\sigma}^{an} \setminus \text{Supp}(D)_{\sigma}^{an} \to \mathbb{R}$ be a continuous function. We say g is a *D*-Green function of C^0 -type on X_{σ}^{an} if there are an affine open covering $X = \bigcup U_i$ of X and a local equation f_i of D on U_i such that $g + \log |f_i|_{\sigma}^2$ extends to a continuous function on $(U_i)_{\sigma}^{an}$ for all i.

(日本) (日本) (日本)

• For $\mathfrak{p} \in M_K^f$, the valuation $v_\mathfrak{p}$ of K at \mathfrak{p} is given by

$$v_{\mathfrak{p}}(f) = \#(O_{\mathcal{K}}/\mathfrak{p})^{-\operatorname{ord}_{\mathfrak{p}}(f)}$$

Let $K_{\mathfrak{p}}$ be the completion of K with respect to $v_{\mathfrak{p}}$. We set

$$X_{\mathfrak{p}} := X imes_{\operatorname{\mathsf{Spec}}(K)} \operatorname{\mathsf{Spec}}(K_{\mathfrak{p}}),$$

which is also a projective, smooth and geometrically integral variety over K_{p} .

• Let $X_{\mathfrak{p}}^{an}$ be the analytification of $X_{\mathfrak{p}}$ in the sense of Berkovich. Let $g: X_{\mathfrak{p}}^{an} \setminus \operatorname{Supp}(D)_{\mathfrak{p}}^{an} \to \mathbb{R}$ be a continuous function. We say g is a *D*-Green function of C^0 -type on $X_{\mathfrak{p}}^{an}$ if there are an affine open covering $X = \bigcup U_i$ of X and a local equation f_i of D on U_i such that $g + \log |f_i|_{\mathfrak{p}}^2$ extends to a continuous function on $(U_i)_{\mathfrak{p}}^{an}$ for all i.

ヨト イヨト イヨト

• Let $\hat{O}_{K,\mathfrak{p}}$ be the completion of O_K at \mathfrak{p} . Let $\mathscr{X}_{\mathfrak{p}}$ be a model of $X_{\mathfrak{p}}$ over $\operatorname{Spec}(\hat{O}_{K,\mathfrak{p}})$, that is, $\mathscr{X}_{\mathfrak{p}}$ is a projective and flat integral scheme over $\operatorname{Spec}(\hat{O}_{K,\mathfrak{p}})$ such that the generic fiber of $\mathscr{X}_{\mathfrak{p}} \to \operatorname{Spec}(\hat{O}_{K,\mathfrak{p}})$ is $X_{\mathfrak{p}}$. Let $(\mathscr{X}_{\mathfrak{p}})_{\circ}$ be the central fiber of $\mathscr{X}_{\mathfrak{p}} \to \operatorname{Spec}(\hat{O}_{K,\mathfrak{p}})$. By using the valuative criterion, we have the natural map

$$r: X_{\mathfrak{p}}^{an} o (\mathscr{X}_{\mathfrak{p}})_{\circ},$$

which is called the reduction map.

• We assume that there is an $\mathbb R ext{-Cartier}$ divisors $\mathscr D_\mathfrak p$ on $\mathscr X_\mathfrak p$ such that

$$\mathscr{D}_\mathfrak{p}\cap X_\mathfrak{p}=D_\mathfrak{p}=(\mathsf{the} \;\mathsf{pullback}\;\mathsf{of}\;D\;\mathsf{via}\;X_\mathfrak{p} o X).$$

The pair $(\mathscr{X}_{\mathfrak{p}}, \mathscr{D}_{\mathfrak{p}})$ is called a model of $(X_{\mathfrak{p}}, D_{\mathfrak{p}})$ over Spec $(\hat{O}_{K,\mathfrak{p}})$. For $x \in X_{\mathfrak{p}}^{an} \setminus \text{Supp}(D)_{\mathfrak{p}}^{an}$, let f be a local equations of $\mathscr{D}_{\mathfrak{p}}$ at $\xi = r(x)$. We define $g_{(\mathscr{X}_{\mathfrak{p}}, \mathscr{D}_{\mathfrak{p}})}(x)$ to be

$$g_{(\mathscr{X}_{\mathfrak{p}},\mathscr{D}_{\mathfrak{p}})}(x) := -\log |f(x)|^2.$$

It is easy to see that $g_{(\mathscr{X}_{\mathfrak{p}}, \mathscr{D}_{\mathfrak{p}})}$ is a *D*-Green function of C^0 -type on $X_{\mathfrak{p}}^{an}$. We call it the Green function induced by the model $(\mathscr{X}_{\mathfrak{p}}, \mathscr{D}_{\mathfrak{p}})$.

ヨット イヨット イヨッ

• A pair $\overline{D} = (D,g)$ of an \mathbb{R} -Cartier divisor D on X and a collection of Green functions

$$g = \{g_{\mathfrak{p}}\}_{\mathfrak{p}\in M_{K}} \cup \{g_{\sigma}\}_{\sigma\in M_{K}^{\infty}}$$

is called an adelic arithmetic \mathbb{R} -Cartier divisor of C^0 -type on X if the following conditions are satisfied:

- For each p∈ M_K, g_p is a D-Green function of C⁰-type on X^{an}_p. In addition, there are a non-empty open set U of Spec(O_K), a model X_U of X over U and an ℝ-Cartier divisor D_U on X_U such that D_U ∩ X = D and g_p is a D-Green function induced by the model (X_U, D_U) for all p∈ U ∩ M_K.
- **②** For each *σ* ∈ *M[∞]_K*, *g_σ* is a *D*-Green function of *C*⁰-type on *X^{an}_σ*. Moreover, the function {*g_σ*}_{*σ*∈*M[∞]_K* is an *F_∞*-invariant, that is, for all *σ* ∈ *M[∞]_K*, *g_σ* ∘ *F_∞* = *g_σ*, where *F_∞* : *X_σ* → *X_σ* is an anti-holomorphic map induced by the complex conjugation.}

• • = • • = •

• For simplicity, a collection of Green functions

$$g = \{g_{\mathfrak{p}}\}_{\mathfrak{p}\in M_{K}^{f}} \cup \{g_{\sigma}\}_{\sigma\in M_{K}^{\infty}}$$

is often expressed by the following symbol:

$$g = \sum_{\mathfrak{p} \in \mathcal{M}_{K}^{f}} g_{\mathfrak{p}}[\mathfrak{p}] + \sum_{\sigma \in \mathcal{M}_{K}^{\infty}} g_{\sigma}[\sigma].$$

We denote the space of all adelic arithmetic \mathbb{R} -Cartier divisors of C^0 -type on X by $\widehat{\text{Div}}_{C^0}^a(X)_{\mathbb{R}}$.

• Let $\operatorname{Rat}(X)^{\times}_{\mathbb{R}} := \operatorname{Rat}(X)^{\times} \otimes_{\mathbb{Z}} \mathbb{R}$. For $\varphi \in \operatorname{Rat}(X)^{\times}_{\mathbb{R}}$, we set

$$\widehat{(arphi)} := \left((arphi), \sum_{\mathfrak{p} \in \mathcal{M}_{\mathcal{K}}} (-\log |arphi|^2_{\mathfrak{p}})[\mathfrak{p}] + \sum_{\sigma \in \mathcal{M}_{\mathcal{K}}^{\infty}} (-\log |arphi|^2_{\sigma})[\sigma]
ight).$$

Let $\overline{D} = (D, g)$ be an arithmetic \mathbb{R} -divisor of C^0 -type on X.

$$\overline{D} \geq 0 \iff D \geq 0$$
 and $g_v \geq 0$ for all $v \in M_K$.

We set

$$\hat{H}^0(X,\overline{D}):=\{\phi\in \mathsf{Rat}(X)^ imes\mid\overline{D}+(\widehat{\phi})\geq 0\}\cup\{0\}$$

and

$$\widehat{\operatorname{vol}}(\overline{D}) := \limsup_{n \to \infty} \frac{\log \# \hat{H}^0(X, n\overline{D})}{n^{d+1}/(d+1)!}.$$

回り くほり くほり ……ほ

- \overline{D} is big $\stackrel{\text{def}}{\iff} \widehat{\text{vol}}(\overline{D}) > 0.$
- \overline{D} is pseudo-effective $\stackrel{\text{def}}{\iff} \overline{D} + \overline{A}$ is big for all big arithmetic \mathbb{R} -divisors \overline{A} of C^0 -type.

In the case where d = 0, we have the following:

- \overline{D} is big $\iff \operatorname{deg}(\overline{D}) > 0$.
- \overline{D} is pseudo-effective $\iff \widehat{\operatorname{deg}}(\overline{D}) \ge 0$.

Definition

We say \overline{D} has the Dirichlet property if $\overline{D} + (\widehat{\varphi}) \ge 0$ for some $\varphi \in \operatorname{Rat}(X)_{\mathbb{R}}^{\times}$.

Fundamental question

Are the following conditions (1) and (2) equivalent ?

- D is pseudo-effective.
- **2** \overline{D} has the Dirichlet property.

Obviously (2) implies (1).

• If $\overline{D} + (\widehat{\varphi}) \ge 0$, then, for $v \in M_K$, $x \mapsto (|\varphi|_v \exp(-g_v/2))(x)$ is continuous. We denote $|\varphi|_v \exp(-g_v/2)$ by $|\varphi|_{g_v}$. Moreover, $\|\varphi\|_{g_v} := \sup_{x \in X_v^{an}} \{|\varphi|_{g_v}(x)\}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

In the following cases, \overline{D} has the Dirichlet property.

- (the Dirichlet unit theorem) X = Spec(K) and D is pseudo-effective.
- **2** (Moriwaki) \overline{D} is pseudo-effective and D is numerically trivial.
- (Burgos, Moriwaki, Philippon and Sombra) X is a toric variety, D is pseudo-effective and D is of toric type (i.e. D is a toric divisor and g is invariant under the S^{dim X}-action).

向下 イヨト イヨト

• Let $\mathbb{P}^2_{\mathbb{Z}} = \operatorname{Proj}(\mathbb{Z}[T_0, T_1, T_2])$, $D = \{T_0 = 0\}$ and $z_i = T_i/T_0$ for i = 1, 2: Let us fix a sequence $\mathbf{a} = (a_0, a_1, a_2)$ of positive numbers. We define a *D*-Green function $g_{\mathbf{a}}$ on $\mathbb{P}^2(\mathbb{C})$ and an arithmetic divisor $\overline{D}_{\mathbf{a}}$ on $\mathbb{P}^2_{\mathbb{Z}}$ to be

$$g_{\boldsymbol{a}} := \log(a_0 + a_1|z_1|^2 + a_2|z_2|^2)$$
 and $\overline{D}_{\boldsymbol{a}} := (D, g_{\boldsymbol{a}}).$

Let $\vartheta_{\mathbf{a}}: \mathbb{R}^3_{\geq 0} \to \mathbb{R}$ be a function given by

$$\begin{split} \vartheta_{\mathbf{a}}(x_0, x_1, x_2) &:= \frac{1}{2} (-x_0 \log x_0 - x_1 \log x_1 - x_2 \log x_2 \\ &+ x_0 \log a_0 + x_1 \log a_1 + x_2 \log a_2), \end{split}$$

and let $\Theta_{a} := \{(x_1, x_2) \in \Delta_2 \mid \vartheta_{a}(1 - x_1 - x_2, x_1, x_2) \ge 0\}$, where $\Delta_2 := \{(x_1, x_2) \in \mathbb{R}^2_{\ge 0} \mid x_1 + x_2 \le 1\}$ (Newton-Okounkov body of $\mathscr{O}(D)$ at (1:0:0)).

伺 とう ヨン うちょう

(ロ) (四) (E) (E) (E)

(ロ) (四) (E) (E) (E)

<ロ> (四) (四) (三) (三) (三)

æ

- We set $H_i = \{T_i = 0\}$ for i = 0, 1, 2. The we have the following (1) (4):
- (1) For $(x_1,x_2)\in\Delta_2$,

$$\begin{cases} D + (z_1^{x_1} z_2^{x_2}) = (1 - x_1 - x_2)H_0 + x_1H_1 + x_2H_2, \\ g_{\textbf{a}} + (-\log|z_1^{x_1} z_2^{x_2}|^2) \ge 2\vartheta_{\textbf{a}}(1 - x_1 - x_2, x_1, x_2). \end{cases}$$

(2)
$$\widehat{\text{vol}}(\overline{D}_{a}) = 3! \int_{\Theta_{a}} \vartheta_{a}(1 - x_{1} - x_{2}, x_{1}, x_{2}) dx_{1} dx_{2}.$$

(3) \overline{D}_{a} is big $\iff a_{0} + a_{1} + a_{2} > 1.$
(4) \overline{D}_{a} is pseudo-effective $\iff a_{0} + a_{1} + a_{2} \ge 1.$
Thus, if \overline{D}_{a} is pseudo-effective, then the Dirichlet property holds.
Indeed, if $a_{0} + a_{1} + a_{2} = 1$, then $\overline{D}_{a} + (\widehat{z_{1}^{a_{1}} z_{2}^{a_{2}}}) \ge 0$ because $\vartheta_{a}(a_{0}, a_{1}, a_{2}) = 0.$

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

• Let $x \in X(\overline{K})$ and $v \in M_K$. We denote the residue field of the image of $x : \operatorname{Spec}(\overline{K}) \to X$ by K(x). Let $\{\phi_1, \ldots, \phi_n\}$ be the set of all K_v -algebra homomorphisms $K(x) \otimes_K K_v \to \overline{K}_v$. For each $i = 1, \ldots, n$, let w_i be the \overline{K}_v -valued point of X_v given by the composition of morphisms

$$\operatorname{Spec}(\overline{K}_{\nu}) \xrightarrow{\phi_i^a} \operatorname{Spec}(K(x) \otimes_K K_{\nu}) \xrightarrow{x \times \operatorname{id}_{K_{\nu}}} X_{\nu}.$$

We denote $\{w_1, \ldots, w_n\}$ by $O_v(x)$.

• For $w \in X_{\nu}(\overline{K}_{\nu})$, we define $w^{an} \in X_{\nu}^{an}$ to be

$$w^{an} := \begin{cases} w & \text{if } v = \sigma \in K(\mathbb{C}), \\ \text{the unique extension of } v_{\mathfrak{p}} \text{ of } K_{\mathfrak{p}} & \text{if } v = \mathfrak{p} \in M_{K}^{f}. \end{cases}$$

伺 と く き と く き と

• Let S be a subset of $X(\overline{K})$ and $v \in M_K$. We define the essential support $\operatorname{Supp}_{ees}(S)_v^{an}$ of S at v to be

$$\mathsf{Supp}_{ess}(S)^{an}_{v} := \bigcap_{Y \subsetneq X} \bigcup_{x \in S \setminus Y(\overline{K})} \{ w^{an} \mid w \in O_{v}(x) \},$$

where Y runs over all proper closed subscheme of X. It is not difficult to see that if we set $S_v = \bigcup_{x \in S} \{w^{an} \mid w \in O_v(x)\}$, then

$$\operatorname{Supp}_{ees}(S)_v^{an} = \bigcap_{Z \subsetneq X_v} \overline{\{w^{an} \mid w \in S_v \setminus Z(\overline{K}_v)\}}.$$

伺 とう ヨン うちょう

• For $x \in X(\overline{K})$, if $x \notin \text{Supp}(D)$, we define the height of x with respect to \overline{D} to be

$$h_{\overline{D}}(x) := \frac{1}{[K(x):K]} \sum_{v \in M_K} \sum_{w \in O_v(x)} \frac{1}{2} g_v(w^{an}).$$

In general, replacing \overline{D} by $\overline{D} + (\widehat{\phi})$ with $x \notin \text{Supp}(D + (\phi))$, we can define it. Moreover, for $\lambda \in \mathbb{R}$,

$$X(\overline{K})^{\overline{D}}_{\leq \lambda} := \{x \in X(\overline{K}) \mid h_{\overline{D}}(x) \leq \lambda\}.$$

ヨト イヨト イヨト

Theorem (Nondenseness of nonpositive points)

• If $s \in \operatorname{Rat}(X)_{\mathbb{R}}^{\times}$ with $\overline{D} + (\widehat{s}) \ge 0$, then

 $\operatorname{Supp}_{ess}(X(\overline{K})^{\overline{D}}_{\leq 0})^{an}_{v} \cap \{x \in X^{an}_{v} \mid |s|_{g_{v}}(x) < 1\} = \emptyset$

for all $v \in M_K$.

② We assume that *D* is ample. If \overline{D} has the Dirichlet property, then, for all *v* ∈ *M*_K, there is no closed algebraic curve *C*_v in X_v such that $C_v^{an} \subseteq \text{Supp}_{ess}(X(\overline{K})\overline{C}_0)_v^{an}$.

Proof. (1) We set $S = X(\overline{K})^{\overline{D}}_{\leq 0}$, Y = Supp(D + (s)) and $g'_{v} = -\log |s|^{2}_{g_{v}}$. Then $g'_{v} \geq 0$ for all $v \in M_{\mathcal{K}}$.

First let us see that
$$g'_{v}(y) = 0$$
 for all $y \in \bigcup_{x \in S \setminus Y(\overline{K})} \{w^{an} \mid w \in O_{v}(x)\}$. Indeed, we choose $x \in S \setminus Y(\overline{K})$ and $w \in O_{v}(x)$ with $y = w^{an}$. Then
 $0 \ge 2[K(x) : K]h_{\overline{D}+(\widehat{s})}(x) = \sum_{v \in M_{K}} \sum_{w \in O_{v}(x)} g'_{v}(w^{an}),$

and hence the assertion follows. Here we assume the contrary, that is,

$$\operatorname{Supp}_{ess}(X(\overline{K})_{\leq 0}^{\overline{D}})_{v}^{an} \cap \{x \in X_{v}^{an} \mid |s|_{g_{v}}(x) < 1\} \neq \emptyset.$$

In particular, there is

$$y_{\infty} \in \overline{\bigcup_{x \in S \setminus Y(\overline{K})} \{w^{an} \mid w \in O_{v}(x)\}} \cap \{x \in X_{v}^{an} \mid |s|_{g_{v}}(x) < 1\}.$$

白 ト イヨト イヨト

Thus we can find a sequence $\{y_m\}$ in $X_{y_n}^{an}$ such that $y_m \in \bigcup_{x \in S \setminus Y(\overline{K})} \{ w^{an} \mid w \in O_v(x) \}$ and $\lim_{m \to \infty} y_m = y_\infty$. By the previous assertion, $|s|_{g_{u}}(y_{m}) = 1$ for all m, so that $|s|_{g_v}(y_\infty) = \lim_{m \to \infty} |s|_{g_v}(y_m) = 1$, which is a contradiction. (2) We assume that there is a closed algebraic curve C_{ν} in X_{ν} such that $C_{\nu}^{an} \subseteq \operatorname{Supp}_{ess}(X(\overline{K})_{\leq 0}^{\overline{D}})_{\nu}^{an}$, and hence $C_{\nu}^{an} \cap \{x \in X_{\nu}^{an} \mid |s|_{\sigma_{\nu}}(x) < 1\} = \emptyset$ by (1). On the other hands, $\operatorname{Supp}(D+(s))_{u}^{an} \subset \{x \in X_{u}^{an} \mid |s|_{\sigma_{u}}(x) < 1\}, \text{ so that}$ $C^{an}_{u} \cap \text{Supp}(D+(s))^{an}_{u} = \emptyset$. As D is ample, $C_{\nu} \cap \text{Supp}(D + (s))_{\nu} \neq \emptyset$. This is a contradiction.

向下 イヨト イヨト

• Let $f: X \to X$ be an endomorphism of X. Let D be an \mathbb{R} -divisor on X such that $f^*(D) = dD + (\phi)$ for some $d \in \mathbb{R}_{>1}$ and $\phi \in \operatorname{Rat}(X)^{\times}_{\mathbb{R}}$.

Proposition

There is a unique family of D-Green functions $g = \{g_v\}_{v \in M_K}$ of C^0 -type such that $f^*(D,g) = d(D,g) + (\widehat{\phi})$.

• The pair $\overline{D} = (D,g)$ is called the canonical compactification of D. Note that if D is ample (i.e. there are ample Cartier divisors D_1, \ldots, D_r and $a_1, \ldots, a_r \in \mathbb{R}_{>0}$ with $D = a_1D_1 + \cdots + a_rD_r$), then \overline{D} is pseudo-effective (more precisely \overline{D} is nef).

向下 イヨト イヨト

• We assume that D is ample. For each $v \in M_K$, we set

$$\begin{cases} \mathsf{Prep}(f) := \left\{ x \in X(\overline{K}) \mid f^n(x) = f^m(x) \text{ for some } n > m \ge 0 \right\}, \\ \mathsf{Prep}(f_v) := \left\{ x \in X_v(\overline{K}_v) \mid f_v^n(x) = f_v^m(x) \text{ for some } n > m \ge 0 \right\}. \end{cases}$$

We have the following necessary condition of the Dirichlet property for \overline{D} :

Theorem

If \overline{D} has the Dirichlet property, then, for all $v \in M_K$, there is no closed algebraic curve C_v in X_v such that $C_v^{an} \subseteq \text{Supp}_{ess}(\text{Prep}(f))_v^{an}$.

伺 ト イミト イミト

Proof. Note that, for $x \in \text{Prep}(f)$, $h_{\overline{D}}(x) = 0$, so that $\text{Prep}(f) \subseteq X(\overline{K})_{\leq 0}^{\overline{D}}$. Therefore,

$$\mathsf{Supp}_{ess}(\mathsf{Prep}(f))^{an}_{v}\subseteq\mathsf{Supp}_{ess}(X(\overline{K})^{\overline{D}}_{\leq 0})^{an}_{v}.$$

Therefore, the assertion follows from Nondenseness of nonpositive points.

伺下 イヨト イヨト

3

Corollary

If \overline{D} has the Dirichlet property, then $Prep(f_v)^{an}$ is not dense in X_v^{an} for all $v \in M_K$.

Proof. We assume that $\operatorname{Prep}(f_v)^{an}$ is dense in X_v^{an} . Note that $\operatorname{Prep}(f_v) = \bigcup_{x \in \operatorname{Prep}(f)} O_v(x)$. Thus $\operatorname{Supp}_{ess}(\operatorname{Prep}(f))_v^{an} = X_v^{an}$. Therefore the assertion follows from the previous theorem.

伺 ト イヨト イヨト

• Let E be an elliptic curve over K. Let $X = E/[\pm 1]$ and $\pi : E \to X$ the canonical morphism. Note that $X \simeq \mathbb{P}^1_K$. Moreover, the homomorphism $[2] : E \to E$ $(x \mapsto 2x)$ descents to an endomorphism $X \to X$, that is, there is a morphism $f : X \to X$ such that the following diagram is commutative:

The endomorphism f is called a Lattés map.

通 とう ほうとう ほうど

• Let *D* be an ample Cartier divisor on *X*. Then $\pi^*(D)$ is symmetric because $\pi \circ [-1] = \pi$, so that $[2]^*(\pi^*(D)) = 4\pi^*(D) + (\phi')$ for some $\phi' \in \operatorname{Rat}(E)^{\times}$, that is, $\pi^*(f^*(D) - 4D) = (\phi')$. Therefore, if we set $\phi = \operatorname{Norm}(\phi')^{1/2} \in \operatorname{Rat}(X)^{\times} \otimes \mathbb{Q}$, then $f^*(D) = 4D + (\phi)$.

For $\sigma \in M_K^{\infty}$, $\operatorname{Prep}(f_{\sigma})$ is dense in X_{σ} because $\pi(\operatorname{Prep}([2]_{\sigma})) \subseteq \operatorname{Prep}(f_{\sigma})$ and $\operatorname{Prep}([2]_{\sigma})$ is dense in E_{σ} .

Therefore, the canonical compactification \overline{D} does not have the Dirichlet property.

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

• Let *E* be an elliptic curve over \mathbb{Q} and $\mathbb{P}^1_{\mathbb{Q}} := \operatorname{Proj}(\mathbb{Q}[x, y])$. Let D_1 be the Cartier divisor on *E* given by the 0-point of *E*, and $D_2 = \{x = 0\}$ on $\mathbb{P}^1_{\mathbb{Q}}$. Then $[2]^*(D_1) = 4D_1 + (\phi)$ for some $\phi \in \operatorname{Rat}(E)^{\times}$. Let $h : \mathbb{P}^1_{\mathbb{Q}} \to \mathbb{P}^1_{\mathbb{Q}}$ be the morphism given by $h(x : y) = (x^4 : y^4)$. Then $h^*(D_2) = 4D_2$. We set

$$X := E \times \mathbb{P}^1_{\mathbb{Q}}, \quad f : [2] \times h, \quad D := p_1^*(D_1) + p_2^*(D_2),$$

where $p_1: X \to R$ and $p_2: X \to \mathbb{P}^1_{\mathbb{Q}}$ are the projections. Note that $f^*(D) = 4D + (p_1^*(\phi))$. Then we have the following:

- For all $v \in M_K$, $\operatorname{Prep}(f_v)^{an}$ is not dense in X_v^{an} .
- **②** For ∞ ∈ Q(C) (the canonical embedding Q → C), Supp_{ess}(Prep(f))^{an}_∞ = E(C) × {(x : 1) | |x| = 1}.

By the above (2), $E(\mathbb{C}) \times \{(1:1)\} \subseteq \text{Supp}_{ess}(\text{Prep}(f))_{\infty}^{an}$. Thus, by the above theorem, the canonical compactification \overline{D} does not have the Dirichlet property.

Problem

Here we do not assume the existence of the endmorphism $f: X \to X$. We assume that D is ample and \overline{D} is pseudo-effective. If, for all $v \in M_K$, there is no algebraic curve C_v in X_v with $C_v^{an} \subseteq \operatorname{Supp}_{ess}(X(\overline{K})_{\leq 0}^{\overline{D}})_v^{an}$, then does it follow that \overline{D} has the Dirichlet property? From now on, we consider a functional approach.

Let V be a vector subspace of $\widehat{\text{Div}}_{C^0}^a(X)_{\mathbb{R}}$ with $V \supseteq \{(\widehat{\varphi}) \mid \varphi \in \text{Rat}(X)_{\mathbb{R}}^{\times}\}$. Let V_+ denote the subset of all effective adelic arithmetic \mathbb{R} -Cartier divisors in V. Let C_\circ be a subset of V verifying the following conditions :

- for any $\overline{D} \in C_{\circ}$ and $\lambda > 0$, one has $\lambda \overline{D} \in C_{\circ}$;
- (a) for any $\overline{D}_0 \in C_\circ$ and $\overline{D} \in V_+$, there exists $\varepsilon_0 > 0$ such that $\overline{D}_0 + \varepsilon \overline{D} \in C_\circ$ for any $\varepsilon \in \mathbb{R}$ with $0 \le \varepsilon \le \varepsilon_0$;
- $\textbf{ o for any } \overline{D} \in \mathcal{C}_{\circ} \text{ and } \phi \in \mathsf{Rat}(X)_{\mathbb{R}}^{\times} \text{, one has } \overline{D} + (\widehat{\phi}) \in \mathcal{C}_{\circ}.$

Assume given a map $\mu: {\it C}_{\rm o} \to \mathbb{R}$ which verifies the following properties :

In there exists a positive number a such that µ(tD) = t^aµ(D) for all adelic arithmetic ℝ-Cartier divisor D ∈ C₀ and t > 0;

For $\overline{D}\in \mathit{C}_{\circ}$ and $\overline{\mathit{E}}\in \mathit{V}_{+}$, we define $abla_{\overline{\mathit{E}}}^{+}\mu(\overline{D})$ to be

$$\nabla^+_{\overline{E}}\mu(\overline{D}) = \limsup_{\epsilon \to 0+} \frac{\mu(\overline{D} + \epsilon\overline{E}) - \mu(\overline{D})}{\epsilon},$$

• • = • • = •

which might be $\pm\infty$.

In addition to (1) and (2), assume the following property:

③ there exists a map ∇_{μ} : $\widehat{\text{Div}}_{C^0}^a(X)_{\mathbb{R}}^+ \times C_{\circ} \to \mathbb{R} \cup \{\pm \infty\}$ such that

$$\nabla_{\mu}(\overline{E},\overline{D})=\nabla^{+}_{\overline{E}}\mu(\overline{D}) \quad \text{for } \overline{E}\in V_{+} \text{ and } \overline{D}\in C_{\circ},$$

ヨト イヨト イヨト

where $\widehat{\text{Div}}_{C^0}^a(X)_{\mathbb{R}}^+$ denotes the set of all effective adelic arithmetic \mathbb{R} -Cartier divisors.

We set

$$\mathcal{C}_{\circ\circ} := \left\{ \overline{D} \in \mathcal{C}_{\circ} \ \left| \begin{array}{c} \nabla_{\mu}(\overline{E}_{1},\overline{D}) \leq \nabla_{\mu}(\overline{E}_{2},\overline{D}) \text{ for all} \\ \overline{E}_{1},\overline{E}_{2} \in \widehat{\text{Div}}_{\mathcal{C}^{0}}^{\circ}(X)_{\mathbb{R}}^{+} \text{ with } \overline{E}_{1} \leq \overline{E}_{2} \end{array} \right\}.$$

For any $v \in M_K$ and $f_v \in C^0(X_v^{an})$, an adelic arithmetic \mathbb{R} -Cartier divisor $\overline{O}(f_v)$ is defined to be

$$\overline{O}(f_{v}) = \begin{cases} \left(0, f_{v}[v]\right) & \text{if } v \in M_{K}, \\ \left(0, \frac{1}{2}f_{v}[v] + \frac{1}{2}F_{\infty}^{*}(f_{v})[\bar{v}]\right) & \text{if } v \in K(\mathbb{C}). \end{cases}$$

白 ト く ヨ ト く ヨ ト

If \overline{D} is an element in C_{∞} , then the map ∇_{μ} defines, for any $v \in M_{\mathcal{K}} \cup \mathcal{K}(\mathbb{C})$, a non-necessarily additive functional

$$\Psi^{\mu}_{\overline{D},v}: C^{0}(X^{an}_{v})_{+} \longrightarrow [0,+\infty], \quad \Psi^{\mu}_{\overline{D},v}(f_{v}):= \nabla_{\mu}(\overline{O}(f_{v}),\overline{D}),$$

where $C^0(X_v^{an})^+$ denotes the cone of non-negative continuous functions on X_v^{an} .

Definition

We define the support of $\Psi^{\mu}_{\overline{D},v}$ to be the set $\text{Supp}(\Psi^{\mu}_{\overline{D},v})$ of all $x \in X^{an}_{v}$ such that $\Psi^{\mu}_{\overline{D},v}(f_{v}) > 0$ for any non-negative continuous function f_{v} on X^{an}_{v} verifying $f_{v}(x) > 0$.

Note that $\operatorname{Supp}(\Psi^{\mu}_{\overline{D},v})$ is closed in X^{an}_{v} .

向下 イヨト イヨト

Theorem

Let \overline{D} be an element of C_{∞} with $\mu(\overline{D}) = 0$. If s is an element of $\operatorname{Rat}(X)_{\mathbb{R}}^{\times}$ with $\overline{D} + (\widehat{s}) \ge 0$, then

$$\operatorname{\mathsf{Supp}}(\Psi^{\mu}_{\overline{D},\nu}) \cap \{x \in X^{\operatorname{\mathsf{an}}}_{\nu} \mid |s|_{g_{\nu}} < 1\} = arnothing$$

for any $v \in M_K$.

Proof. We set $\overline{D}' = \overline{D} + (s) = (D', g')$ and $f_v = \min\{g'_v, 1\}$. Thus, as

$$0 \leq \overline{O}(f_v) \leq \overline{D}'$$

and $\overline{D} \in \mathcal{C}_{\circ\circ}$, one has

$$egin{aligned} 0 &=
abla_{\mu}((0,0),\overline{D}) \leq \Psi^{\mu}_{\overline{D},
u}(f_{
u}) =
abla_{\mu}(\overline{O}(f_{
u}),\overline{D}) \ &\leq
abla_{\mu}(\overline{D}',\overline{D}) =
abla^{+}_{\overline{D}'}\mu(\overline{D}). \end{aligned}$$

On the other hand, by using the properties (1) and (2), one obtains

$$\mu(\overline{D} + \epsilon \overline{D}') - \mu(\overline{D}) = \mu(\overline{D} + \epsilon \overline{D}) - \mu(\overline{D}) = ((1 + \epsilon)^{\mathfrak{s}} - 1)\mu(\overline{D}),$$

and hence $\nabla^+_{\overline{D}'}\mu(\overline{D}) = a\mu(\overline{D}) = 0$. Therefore, $\Psi_{\overline{D},\nu^{\mu}}(f_{\nu}) = 0$, so that

$$\mathsf{Supp}(\Psi^{\mu}_{\overline{D},v}) \cap \{x \in X^{an}_v \mid f_v(x) > 0\} = \varnothing.$$

Note that $g_{\nu}' = -\log |s|_{g_{\nu}}^2$. Thus, we can see that

$$\{x \in X_v^{an} \mid f_v(x) > 0\} = \{x \in X_v^{an} \mid |s|_{g_v} < 1\},\$$

as required.

We have the following examples of μ :

• $V := \widehat{\text{Div}}_{C^0}^a(X)_{\mathbb{R}}$ and $C_\circ := \{\overline{D} \in \widehat{\text{Div}}_{C^0}^a(X)_{\mathbb{R}} \mid D \text{ is big}\}$. Let ζ be an \mathbb{R} -Cartier divisor on Spec(K) with $\widehat{\text{deg}}(\zeta) = 1$. For $\overline{D} \in C_\circ$, we set

 $\mu^{\mathrm{asy}}_{\max}(\overline{D}) := \sup\{t \in \mathbb{R} \mid \overline{D} - t\pi^*(\zeta) \text{ has the Dirichlet property}\},$

向下 イヨト イヨト

where π is the canonical morphism $X \to \operatorname{Spec}(K)$. Note that the above definition does not depend on the choice of ζ . $\mu(\overline{D}) := \mu_{\max}^{\operatorname{asy}}(\overline{D})$ is an example. **2** $V := \widehat{\operatorname{Div}}_{C^0}^a(X)_{\mathbb{R}}$ and $C_\circ := \{\overline{D} \in \widehat{\operatorname{Div}}_{C^0}^a(X)_{\mathbb{R}} \mid D \text{ is big}\}$. $\mu(\overline{D}) := \widehat{\operatorname{vol}}(\overline{D})$ is an example. **3** $V = C_\circ := \{\overline{D} \in \widehat{\operatorname{Div}}_{C^0}^a(X)_{\mathbb{R}} \mid \overline{D} \text{ is integrable}\}$.

$$\mu(\overline{D}) := \widehat{\operatorname{deg}}(\overline{D}^{a+1})$$
 is an example.

Note the following facts:

Remark

If D is ample, \overline{D} is nef and $X(\overline{K})_{\leq 0}^{\overline{D}}$ is Zariski dense, then

$$\mathsf{Supp}(\Psi_{\overline{D},v}^{\widehat{\mathsf{vol}}}) \subseteq \mathsf{Supp}(\Psi_{\overline{D},v}^{\mu_{\mathsf{max}}^{\mathsf{asy}}}) \subseteq \mathsf{Supp}_{ess}(X(\overline{K})_{\leq 0}^{\overline{D}})_v^{\mathsf{an}}$$

for all $v \in M_K$.

Problem

We assume that D is ample and $\mu_{\max}^{asy}(\overline{D}) = 0$. If, for all $v \in M_K$, there is no algebraic curve C_v in X_v with $C_v^{an} \subseteq \text{Supp}(\Psi_{\overline{D},v}^{asy})$, then does it follow that \overline{D} has the Dirichlet property?

Thank you for your attention.

Atsushi MORIWAKI (Joint works with Huayi CHEN) Dirichlet property and dynamical system

ヨット イヨット イヨッ