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• Let K be a number field, that is, a finite extension field over Q.
Let OK be the ring of integers in K . Let K (C) be the set of all
embeddings K into C. For σ ∈ K (C), σ̄ is defined to be
σ̄(x) = σ(x) (x ∈ K ), where is the complex conjugation. Let us
consider the following equivalence relation ∼ on K (C):

σ ∼ τ ⇐⇒ σ = τ or τ̄ .

We set s = #(K (C)/∼)− 1.

Theorem (Dirichlet unit theorem)

The group O×
K consisting of the units in OK is a finitely generated

abelian group of rank s.
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Proof. Let us consider a map L : O×
K → RK(C) given by

L(x)σ = log |σ(x)|. For a compact subset B in RK(C), the set
{x ∈ O×

K | L(x) ∈ B} is finite (∵ every coefficients of∏
σ∈K(C)(T − σ(x)) is bounded and belongs to Z ). Thus we can

easily check that O×
K is finitely generated.

Obviously the image of L is contained in the subspace

Ξ0
K =

{
(ξσ) ∈ RK(C)

∣∣∣∣∣ ∑
σ

ξσ = 0, ξσ = ξσ̄ (∀σ)

}

of dimension s. Thus the crucial point of the proof of the Dirichlet
unit theorem is to show that, for any ξ ∈ Ξ0

K , there are
a1, . . . , ar ∈ R and x1, . . . , xr ∈ O×

K such that
a1L(x1) + · · ·+ arL(xr ) = ξ.
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We set

ΞK :=
{
(ξσ) ∈ RK(C) | ξσ = ξσ̄ (∀σ)} ,

D̂iv(OK ) := Div(OK )× ΞK ,

D̂iv(OK )R := (Div(OK )⊗Z R)× ΞK ,

K×
R := K× ⊗Z R,

M f
K := the set of all maximal ideals of OK (finite places),

M∞
K = K (C) (infinite places),

MK = M f
K ∪M∞

K .
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For D =
(∑

p∈M f
K
ap[p], (ξσ)σ∈M∞

K

)
∈ D̂iv(OK )R, we define D ≥ 0

and d̂eg(D) to be

D ≥ 0
def⇐⇒ ap ≥ 0 (∀p), ξσ ≥ 0 (∀σ)

and

d̂eg(D) :=
∑
p∈M f

K

ap log#(OK/p) +
1

2

∑
σ∈M∞

K

ξσ.
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For x ∈ K×, we set

(̂x) :=
(
(x),− log |x |2

)
,

where
(
− log |x |2

)
σ
:= − log |σ(x)|2. Note that d̂eg((̂x)) = 0 by

the product formula. Moreover, this gives a homomorphism

(̂·) : K× → D̂iv(X ), which naturally extends to the homomorphism

(̂·) : K×
R → D̂iv(X )R

given by ̂(xa11 · · · xarr ) = a1(̂x1) + · · ·+ ar (̂xr ) (a1, . . . , ar ∈ R).
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Theorem (Arakelov geometric version of the Dirichlet unit theorem)

If d̂eg(D) ≥ 0 for D ∈ D̂iv(OK )R (i.e. D is pseudo-effective), then

there is φ ∈ K×
R such that D + (̂φ) ≥ 0.

Indeed, the above theorem implies the Dirichlet unit theorem. For
ξ ∈ Ξ0

K , we set Dξ = (0, ξ). By the above theorem, there is

φ ∈ K×
R such that (̂φ) + Dξ ≥ 0. As (̂φ) + Dξ ≥ 0 and

d̂eg((̂φ) + Dξ) = 0, we have (̂φ) + Dξ = (0, 0). Moreover, we can
find a1, . . . , ar ∈ R and x1, . . . , xr ∈ K× such that φ = xa11 · · · xarr
and a1, . . . , ar are linearly independent over Q.
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We set (xj) =
∑l

k=1 αjkpk , where αjk ∈ Z and p1, . . . , pl are
distinct maximal ideals in OK . Then

0 = a1(x1)+ · · ·+ ar (xr ) =

 r∑
j=1

ajαj1

 p1+ · · ·+

 r∑
j=1

ajαjl

 pl .

Thus αjk = 0 for all j , k, which means that x1, . . . , xr ∈ O×
K .

Further, ξσ +
∑r

i=1 ai (− log |σ(xi )|2) = 0 for all σ, which implies
that ξ = 2a1L(x1) + · · ·+ 2arL(xr ). �

Remark

The analogue of the above theorem on a smooth projective curve
does not hold in general. Indeed, let C be a smooth projective
curve of genus g ≥ 1 over C and D a divisor of degree 0 on C
such that the order of OC (D) in Pic0(C ) is infinite. Then there is
no φ ∈ Rat(C )× ⊗ R with D + (φ) ≥ 0.
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• Let X be a d-dimensional, projective, smooth and geometrically
integral variety over K . Let D be an R-Cartier divisor on X , that is,

D ∈ Div(X )⊗ R.

• For σ ∈ M∞
K = K (C), we set Kσ := K ⊗σ

K C with respect to σ.
Note that Kσ is naturally isomorphic to C via a⊗σ z 7→ σ(a)z .
Moreover, we set Xσ := X ×K Kσ. Note that Xσ = X ×σ

K Spec(C)
with respect to σ : K ↪→ C. We set X an

σ := Xσ(C).

• Let g : X an
σ \ Supp(D)anσ → R be a continuous function. We say

g is a D-Green function of C 0-type on X an
σ if there are an affine

open covering X =
⋃
Ui of X and a local equation fi of D on Ui

such that g + log |fi |2σ extends to a continuous function on (Ui )
an
σ

for all i .
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• For p ∈ M f
K , the valuation vp of K at p is given by

vp(f ) = #(OK/p)
− ordp(f ).

Let Kp be the completion of K with respect to vp. We set

Xp := X ×Spec(K) Spec(Kp),

which is also a projective, smooth and geometrically integral
variety over Kp.

• Let X an
p be the analytification of Xp in the sense of Berkovich.

Let g : X an
p \ Supp(D)anp → R be a continuous function. We say g

is a D-Green function of C 0-type on X an
p if there are an affine open

covering X =
⋃

Ui of X and a local equation fi of D on Ui such
that g + log |fi |2p extends to a continuous function on (Ui )

an
p for all

i .
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• Let ÔK ,p be the completion of OK at p. Let Xp be a model of

Xp over Spec(ÔK ,p), that is, Xp is a projective and flat integral

scheme over Spec(ÔK ,p) such that the generic fiber of

Xp → Spec(ÔK ,p) is Xp. Let (Xp)◦ be the central fiber of

Xp → Spec(ÔK ,p). By using the valuative criterion, we have the
natural map

r : X an
p → (Xp)◦,

which is called the reduction map.
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• We assume that there is an R-Cartier divisors Dp on Xp such
that

Dp ∩ Xp = Dp = (the pullback of D via Xp → X ).

The pair (Xp,Dp) is called a model of (Xp,Dp) over Spec(ÔK ,p).
For x ∈ X an

p \ Supp(D)anp , let f be a local equations of Dp at
ξ = r(x). We define g(Xp,Dp)(x) to be

g(Xp,Dp)(x) := − log |f (x)|2.

It is easy to see that g(Xp,Dp) is a D-Green function of C 0-type on
X an
p . We call it the Green function induced by the model (Xp,Dp).
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• A pair D = (D, g) of an R-Cartier divisor D on X and a
collection of Green functions

g = {gp}p∈MK
∪ {gσ}σ∈M∞

K

is called an adelic arithmetic R-Cartier divisor of C 0-type on X if
the following conditions are satisfied:

1 For each p ∈ MK , gp is a D-Green function of C 0-type on
X an
p . In addition, there are a non-empty open set U of

Spec(OK ), a model XU of X over U and an R-Cartier divisor
DU on XU such that DU ∩ X = D and gp is a D-Green
function induced by the model (XU ,DU) for all p ∈ U ∩MK .

2 For each σ ∈ M∞
K , gσ is a D-Green function of C 0-type on

X an
σ . Moreover, the function {gσ}σ∈M∞

K
is an F∞-invariant,

that is, for all σ ∈ M∞
K , gσ̄ ◦F∞ = gσ, where F∞ : Xσ → Xσ̄ is

an anti-holomorphic map induced by the complex conjugation.
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• For simplicity, a collection of Green functions

g = {gp}p∈M f
K
∪ {gσ}σ∈M∞

K

is often expressed by the following symbol:

g =
∑
p∈M f

K

gp[p] +
∑

σ∈M∞
K

gσ[σ].

We denote the space of all adelic arithmetic R-Cartier divisors of
C 0-type on X by D̂iv

a

C0(X )R.
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• Let Rat(X )×R := Rat(X )× ⊗Z R. For ϕ ∈ Rat(X )×R , we set

(̂ϕ) :=

(ϕ),
∑
p∈MK

(− log |ϕ|2p)[p] +
∑

σ∈M∞
K

(− log |ϕ|2σ)[σ]

 .

Let D = (D, g) be an arithmetic R-divisor of C 0-type on X .

D ≥ 0
def⇐⇒ D ≥ 0 and gv ≥ 0 for all v ∈ MK .

We set

Ĥ0(X ,D) := {φ ∈ Rat(X )× | D + (̂φ) ≥ 0} ∪ {0}

and

v̂ol(D) := lim sup
n→∞

log#Ĥ0(X , nD)

nd+1/(d + 1)!
.
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• D is big
def⇐⇒ v̂ol(D) > 0.

• D is pseudo-effective
def⇐⇒ D + A is big for all big arithmetic

R-divisors A of C 0-type.

In the case where d = 0, we have the following:
• D is big ⇐⇒ d̂eg(D) > 0.

• D is pseudo-effective ⇐⇒ d̂eg(D) ≥ 0.
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Definition

We say D has the Dirichlet property if D + (̂ϕ) ≥ 0 for some
ϕ ∈ Rat(X )×R .

Fundamental question

Are the following conditions (1) and (2) equivalent ?

1 D is pseudo-effective.

2 D has the Dirichlet property.

Obviously (2) implies (1).

• If D + (̂ϕ) ≥ 0, then, for v ∈ MK , x 7→ (|ϕ|v exp(−gv/2))(x) is
continuous. We denote |ϕ|v exp(−gv/2) by |ϕ|gv . Moreover,
‖ϕ‖gv := supx∈X an

v
{|ϕ|gv (x)}
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Theorem

In the following cases, D has the Dirichlet property.

1 (the Dirichlet unit theorem) X = Spec(K ) and D is
pseudo-effective.

2 (Moriwaki) D is pseudo-effective and D is numerically trivial.

3 (Burgos, Moriwaki, Philippon and Sombra) X is a toric
variety, D is pseudo-effective and D is of toric type (i.e. D is
a toric divisor and g is invariant under the SdimX -action).
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• Let P2
Z = Proj(Z[T0,T1,T2]), D = {T0 = 0} and zi = Ti/T0 for

i = 1, 2: Let us fix a sequence aaa = (a0, a1, a2) of positive numbers.
We define a D-Green function gaaa on P2(C) and an arithmetic
divisor Daaa on P2

Z to be

gaaa := log(a0 + a1|z1|2 + a2|z2|2) and Daaa := (D, gaaa).

Let ϑaaa : R3
≥0 → R be a function given by

ϑaaa(x0, x1, x2) :=
1

2
(−x0 log x0 − x1 log x1 − x2 log x2

+ x0 log a0 + x1 log a1 + x2 log a2),

and let Θaaa := {(x1, x2) ∈ ∆2 | ϑaaa(1− x1 − x2, x1, x2) ≥ 0}, where
∆2 :=

{
(x1, x2) ∈ R2

≥0 | x1 + x2 ≤ 1
}
(Newton-Okounkov body of

O(D) at (1 : 0 : 0)).
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• We set Hi = {Ti = 0} for i = 0, 1, 2. The we have the following
(1) – (4):

(1) For (x1, x2) ∈ ∆2,{
D + (zx11 zx22 ) = (1− x1 − x2)H0 + x1H1 + x2H2,

gaaa + (− log |zx11 zx22 |2) ≥ 2ϑaaa(1− x1 − x2, x1, x2).

(2) v̂ol(Daaa) = 3!

∫
Θaaa

ϑaaa(1− x1 − x2, x1, x2)dx1dx2.

(3) Daaa is big ⇐⇒ a0 + a1 + a2 > 1.
(4) Daaa is pseudo-effective ⇐⇒ a0 + a1 + a2 ≥ 1.

Thus, if Daaa is pseudo-effective, then the Dirichlet property holds.

Indeed, if a0 + a1 + a2 = 1, then Daaa + ̂(za11 za22 ) ≥ 0 because
ϑaaa(a0, a1, a2) = 0.
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• Let x ∈ X (K ) and v ∈ MK . We denote the residue field of the
image of x : Spec(K ) → X by K (x). Let {φ1, . . . , φn} be the set
of all Kv -algebra homomorphisms K (x)⊗K Kv → K v . For each
i = 1, . . . , n, let wi be the K v -valued point of Xv given by the
composition of morphisms

Spec(K v )
φa
i−−−−→ Spec(K (x)⊗K Kv )

x×idKv−−−−→ Xv .

We denote {w1, . . . ,wn} by Ov (x).

• For w ∈ Xv (K v ), we define wan ∈ X an
v to be

wan :=

{
w if v = σ ∈ K (C),
the unique extension of vp of Kp if v = p ∈ M f

K .
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• Let S be a subset of X (K ) and v ∈ MK . We define the essential
support Suppees(S)

an
v of S at v to be

Suppess(S)
an
v :=

⋂
Y(X

⋃
x∈S\Y (K)

{wan | w ∈ Ov (x)},

where Y runs over all proper closed subscheme of X . It is not
difficult to see that if we set Sv =

⋃
x∈S{wan | w ∈ Ov (x)}, then

Suppees(S)
an
v =

⋂
Z(Xv

{wan | w ∈ Sv \ Z (K v )}.
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• For x ∈ X (K ), if x 6∈ Supp(D), we define the height of x with
respect to D to be

hD(x) :=
1

[K (x) : K ]

∑
v∈MK

∑
w∈Ov (x)

1

2
gv (w

an).

In general, replacing D by D + (̂φ) with x 6∈ Supp(D + (φ)), we
can define it. Moreover, for λ ∈ R,

X (K )D≤λ := {x ∈ X (K ) | hD(x) ≤ λ}.

Atsushi MORIWAKI (Joint works with Huayi CHEN) Dirichlet property and dynamical system



Theorem (Nondenseness of nonpositive points)

1 If s ∈ Rat(X )×R with D + (̂s) ≥ 0, then

Suppess(X (K )D≤0)
an
v ∩ {x ∈ X an

v | |s|gv (x) < 1} = ∅

for all v ∈ MK .

2 We assume that D is ample. If D has the Dirichlet property,
then, for all v ∈ MK , there is no closed algebraic curve Cv in
Xv such that C an

v ⊆ Suppess(X (K )D≤0)
an
v .

Proof. (1) We set S = X (K )D≤0, Y = Supp(D + (s)) and

g ′
v = − log |s|2gv . Then g ′

v ≥ 0 for all v ∈ MK .
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First let us see that g ′
v (y) = 0 for all

y ∈
⋃

x∈S\Y (K){w
an | w ∈ Ov (x)}. Indeed, we choose

x ∈ S \ Y (K ) and w ∈ Ov (x) with y = wan. Then

0 ≥ 2[K (x) : K ]h
D+(̂s)

(x) =
∑
v∈MK

∑
w∈Ov (x)

g ′
v (w

an),

and hence the assertion follows.
Here we assume the contrary, that is,

Suppess(X (K )D≤0)
an
v ∩ {x ∈ X an

v | |s|gv (x) < 1} 6= ∅.

In particular, there is

y∞ ∈
⋃

x∈S\Y (K)

{wan | w ∈ Ov (x)} ∩ {x ∈ X an
v | |s|gv (x) < 1}.
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Thus we can find a sequence {ym} in X an
v such that

ym ∈
⋃

x∈S\Y (K){w
an | w ∈ Ov (x)} and limm→∞ ym = y∞. By the

previous assertion, |s|gv (ym) = 1 for all m, so that
|s|gv (y∞) = limm→∞ |s|gv (ym) = 1, which is a contradiction.

(2) We assume that there is a closed algebraic curve Cv in Xv such

that C an
v ⊆ Suppess(X (K )D≤0)

an
v , and hence

C an
v ∩ {x ∈ X an

v | |s|gv (x) < 1} = ∅ by (1). On the other hands,
Supp(D + (s))anv ⊆ {x ∈ X an

v | |s|gv (x) < 1}, so that
C an
v ∩ Supp(D + (s))anv = ∅. As D is ample,

Cv ∩ Supp(D + (s))v 6= ∅. This is a contradiction. �
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• Let f : X → X be an endomorphism of X . Let D be an R-divisor
on X such that f ∗(D) = dD + (φ) for some d ∈ R>1 and
φ ∈ Rat(X )×R .

Proposition

There is a unique family of D-Green functions g = {gv}v∈MK
of

C 0-type such that f ∗(D, g) = d(D, g) + (̂φ).

• The pair D = (D, g) is called the canonical compactification of
D. Note that if D is ample (i.e. there are ample Cartier divisors
D1, . . . ,Dr and a1, . . . , ar ∈ R>0 with D = a1D1 + · · ·+ arDr ),
then D is pseudo-effective (more precisely D is nef).
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• We assume that D is ample. For each v ∈ MK , we set{
Prep(f ) :=

{
x ∈ X (K ) | f n(x) = f m(x) for some n > m ≥ 0

}
,

Prep(fv ) :=
{
x ∈ Xv (K v ) | f nv (x) = f mv (x) for some n > m ≥ 0

}
.

We have the following necessary condition of the Dirichlet property
for D:

Theorem

If D has the Dirichlet property, then, for all v ∈ MK , there is no
closed algebraic curve Cv in Xv such that
C an
v ⊆ Suppess(Prep(f ))

an
v .
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Proof. Note that, for x ∈ Prep(f ), hD(x) = 0, so that

Prep(f ) ⊆ X (K )D≤0. Therefore,

Suppess(Prep(f ))
an
v ⊆ Suppess(X (K )D≤0)

an
v .

Therefore, the assertion follows from Nondenseness of nonpositive
points.
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Corollary

If D has the Dirichlet property, then Prep(fv )
an is not dense in X an

v

for all v ∈ MK .

Proof. We assume that Prep(fv )
an is dense in X an

v . Note that
Prep(fv ) =

⋃
x∈Prep(f )Ov (x). Thus Suppess(Prep(f ))

an
v = X an

v .
Therefore the assertion follows from the previous theorem. �
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• Let E be an elliptic curve over K . Let X = E/[±1] and
π : E → X the canonical morphism. Note that X ' P1

K .
Moreover, the homomorphism [2] : E → E (x 7→ 2x) descents to
an endomorphism X → X , that is, there is a morphism f : X → X
such that the following diagram is commutative:

E
[2]−−−−→ E

π

y yπ

X
f−−−−→ X

The endomorphism f is called a Lattés map.
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• Let D be an ample Cartier divisor on X . Then π∗(D) is
symmetric because π ◦ [−1] = π, so that
[2]∗(π∗(D)) = 4π∗(D) + (φ′) for some φ′ ∈ Rat(E )×, that is,
π∗(f ∗(D)− 4D) = (φ′). Therefore, if we set
φ = Norm(φ′)1/2 ∈ Rat(X )× ⊗Q, then f ∗(D) = 4D + (φ).

For σ ∈ M∞
K , Prep(fσ) is dense in Xσ because

π(Prep([2]σ)) ⊆ Prep(fσ) and Prep([2]σ) is dense in Eσ.

Therefore, the canonical compactification D does not have the
Dirichlet property.
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• Let E be an elliptic curve over Q and P1
Q := Proj(Q[x , y ]). Let

D1 be the Cartier divisor on E given by the 0-point of E , and
D2 = {x = 0} on P1

Q. Then [2]∗(D1) = 4D1 + (φ) for some

φ ∈ Rat(E )×. Let h : P1
Q → P1

Q be the morphism given by

h(x : y) = (x4 : y4). Then h∗(D2) = 4D2. We set

X := E × P1
Q, f : [2]× h, D := p∗1(D1) + p∗2(D2),

where p1 : X → R and p2 : X → P1
Q are the projections. Note that

f ∗(D) = 4D + (p∗1(φ)). Then we have the following:

1 For all v ∈ MK , Prep(fv )
an is not dense in X an

v .

2 For ∞ ∈ Q(C) (the canonical embedding Q ↪→ C),
Suppess(Prep(f ))

an
∞ = E (C)× {(x : 1) | |x | = 1}.

By the above (2), E (C)× {(1 : 1)} ⊆ Suppess(Prep(f ))
an
∞. Thus,

by the above theorem, the canonical compactification D does not
have the Dirichlet property.
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Problem

Here we do not assume the existence of the endmorphism
f : X → X. We assume that D is ample and D is pseudo-effective.
If, for all v ∈ MK , there is no algebraic curve Cv in Xv with
C an
v ⊆ Suppess(X (K )D≤0)

an
v , then does it follow that D has the

Dirichlet property?
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From now on, we consider a functional approach.

Let V be a vector subspace of D̂iv
a

C0(X )R with

V ⊇ {(̂ϕ) | ϕ ∈ Rat(X )×R}. Let V+ denote the subset of all
effective adelic arithmetic R-Cartier divisors in V . Let C◦ be a
subset of V verifying the following conditions :

1 for any D ∈ C◦ and λ > 0, one has λD ∈ C◦;

2 for any D0 ∈ C◦ and D ∈ V+, there exists ε0 > 0 such that
D0 + εD ∈ C◦ for any ε ∈ R with 0 ≤ ε ≤ ε0;

3 for any D ∈ C◦ and φ ∈ Rat(X )×R , one has D + (̂φ) ∈ C◦.
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Assume given a map µ : C◦ → R which verifies the following
properties :

1 there exists a positive number a such that µ(tD) = taµ(D)
for all adelic arithmetic R-Cartier divisor D ∈ C0 and t > 0;

2 for any D ∈ C◦ and φ ∈ Rat(X )×R , one has

µ(D + (̂φ)) = µ(D).

For D ∈ C◦ and E ∈ V+, we define ∇+
E
µ(D) to be

∇+
E
µ(D) = lim sup

ε→0+

µ(D + εE )− µ(D)

ε
,

which might be ±∞.
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In addition to (1) and (2), assume the following property:

3 there exists a map ∇µ : D̂iv
a

C0(X )+R × C◦ → R ∪ {±∞} such
that

∇µ(E ,D) = ∇+
E
µ(D) for E ∈ V+ and D ∈ C◦,

where D̂iv
a

C0(X )+R denotes the set of all effective adelic
arithmetic R-Cartier divisors.
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We set

C◦◦ :=

{
D ∈ C◦

∣∣∣∣∣ ∇µ(E 1,D) ≤ ∇µ(E 2,D) for all

E 1,E 2 ∈ D̂iv
a

C0(X )+R with E 1 ≤ E 2

}
.

For any v ∈ MK and fv ∈ C 0(X an
v ), an adelic arithmetic R-Cartier

divisor O(fv ) is defined to be

O(fv ) =


(
0, fv [v ]

)
if v ∈ MK ,(

0, 12 fv [v ] +
1
2F

∗
∞(fv )[v̄ ]

)
if v ∈ K (C).
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If D is an element in C◦◦, then the map ∇µ defines, for any
v ∈ MK ∪ K (C), a non-necessarily additive functional

Ψµ

D,v
: C 0(X an

v )+ −→ [0,+∞], Ψµ

D,v
(fv ) := ∇µ(O(fv ),D),

where C 0(X an
v )+ denotes the cone of non-negative continuous

functions on X an
v .

Definition

We define the support of Ψµ

D,v
to be the set Supp(Ψµ

D,v
) of all

x ∈ X an
v such that Ψµ

D,v
(fv ) > 0 for any non-negative continuous

function fv on X an
v verifying fv (x) > 0.

Note that Supp(Ψµ

D,v
) is closed in X an

v .
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Theorem

Let D be an element of C◦◦ with µ(D) = 0. If s is an element of

Rat(X )×R with D + (̂s) ≥ 0, then

Supp(Ψµ

D,v
) ∩ {x ∈ X an

v | |s|gv < 1} = ∅

for any v ∈ MK .

Proof. We set D ′ = D + (̂s) = (D ′, g ′) and fv = min{g ′
v , 1}.

Thus, as
0 ≤ O(fv ) ≤ D ′

and D ∈ C◦◦, one has

0 = ∇µ((0, 0),D) ≤ Ψµ

D,v
(fv ) = ∇µ(O(fv ),D)

≤ ∇µ(D
′,D) = ∇+

D′µ(D).
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On the other hand, by using the properties (1) and (2), one obtains

µ(D + εD ′)− µ(D) = µ(D + εD)− µ(D) = ((1 + ε)a − 1)µ(D),

and hence ∇+
D′µ(D) = aµ(D) = 0. Therefore, ΨD,vµ(fv ) = 0, so

that
Supp(Ψµ

D,v
) ∩ {x ∈ X an

v | fv (x) > 0} = ∅.

Note that g ′
v = − log |s|2gv . Thus, we can see that

{x ∈ X an
v | fv (x) > 0} = {x ∈ X an

v | |s|gv < 1},

as required. �
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We have the following examples of µ:

1 V := D̂iv
a

C0(X )R and C◦ := {D ∈ D̂iv
a

C0(X )R | D is big}. Let
ζ be an R-Cartier divisor on Spec(K ) with d̂eg(ζ) = 1. For
D ∈ C◦, we set

µasy
max(D) := sup{t ∈ R | D − tπ∗(ζ) has the Dirichlet property},

where π is the canonical morphism X → Spec(K ). Note that
the above definition does not depend on the choice of ζ.
µ(D) := µasy

max(D) is an example.

2 V := D̂iv
a

C0(X )R and C◦ := {D ∈ D̂iv
a

C0(X )R | D is big}.
µ(D) := v̂ol(D) is an example.

3 V = C◦ := {D ∈ D̂iv
a

C0(X )R | D is integrable}.
µ(D) := d̂eg(D

d+1
) is an example.
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Note the following facts:

Remark

If D is ample, D is nef and X (K )D≤0 is Zariski dense, then

Supp(Ψv̂ol
D,v

) ⊆ Supp(Ψµasy
max

D,v
) ⊆ Suppess(X (K )D≤0)

an
v .

for all v ∈ MK .

Problem

We assume that D is ample and µasy
max(D) = 0. If, for all v ∈ MK ,

there is no algebraic curve Cv in Xv with C an
v ⊆ Supp(Ψµasy

max

D,v
), then

does it follow that D has the Dirichlet property?
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Thank you for your attention.
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