Surface Instabilities in Nonlinear Elasticity

Joel Cawte

University of Bath

27th November, 2017

Introduction

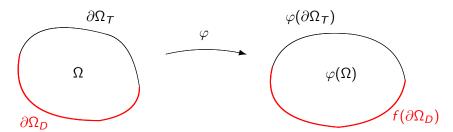
- 2 Background
- Biot Instability
- 4 Work in Progress

Notation

• Consider an elastic body occupying a domain $\Omega \subset \mathbb{R}^n$ in its reference configuration. Let $\varphi \in W^{1,2}(\Omega,\mathbb{R}^n)$ be a deformation of the body, with $\det(\nabla \varphi) > 0$, subject to the mixed displacement/traction condition

$$\varphi|_{\partial\Omega_D} = f,$$

$$\partial\Omega = \partial\Omega_D \cup \partial\Omega_T, \qquad \partial\Omega_D \cap \partial\Omega_T = \emptyset.$$



Hyperelasticity

ullet We assume the material is Hyperelastic, so we can associate an energy with each deformation φ given by

$$E[\varphi] = \int_{\Omega} W(x, \nabla \varphi(x)) \, dx,$$

where $W: \Omega \times \mathrm{M}^{n \times n}_+ \to \mathbb{R}$ is the Stored Energy Function.

- We shall consider necessary conditions for $\varphi \in W^{1,2}(\Omega, \mathbb{R}^n)$ to be a strong or weak local minimiser.
- Incompressible Elasticity includes the restriction $\det(\nabla \varphi) = 1$, and $W: \Omega \times \mathrm{M}_1^{n \times n} \to \mathbb{R}$.

Weak local minimisers

• If φ is a sufficiently smooth solution to the Euler Lagrange equations, a further necessary condition for it to be a weak local minimiser is that the second variation at φ

$$\delta^2 E[\varphi](u) = \int_{\Omega} C[\nabla u, \nabla u] \, \mathrm{d}x$$

is nonnegative for all variations $u \in W^{1,2}_{\partial\Omega_D}(\Omega,\mathbb{R}^n)$, where

$$C_{\alpha\beta}^{ij} = \frac{\partial^2 W(x, \nabla \varphi(x))}{\partial F_{i\alpha} \partial F_{i\beta}}.$$

The Complementing Condition

• Let $x_0 \in \partial \Omega_T$, and let ν be the unit normal at x_0 . Write $H_{\nu} = \{x \in \mathbb{R}^n \mid x \cdot \nu < 0\}$, and $C_0 = \frac{\partial^2 W(x_0, \nabla \varphi(x_0))}{\partial F^2}$. Consider the boundary-value problem:

$$\operatorname{div}(C_0[\nabla u]) = 0 \quad \text{in } H_{\nu}$$

$$C_0[\nabla u]\nu = 0 \quad \text{on } \partial H_{\nu}.$$
(1)

Definition

We say the boundary-value problem (1) satisfies the *complementing* condition if the only bounded solutions of the form

$$u = \operatorname{Re}(f(x \cdot \nu)e^{i(x \cdot \tau)}), \qquad \tau \perp \nu$$
 (2)

for (1) are trivial.

Agmon's Condition

Consider the related boundary-value problem:

$$\operatorname{div}(C_0[\nabla u]) = \alpha^2 u \quad \text{in } H_{\nu}$$

$$C_0[\nabla u]\nu = 0 \quad \text{on } \partial H_{\nu}.$$
(3)

Definition

We say the boundary-value problem (1) satisfies *Agmon's condition* if the only bounded solutions of the form (2) for (3) with $\alpha \neq 0$ are trivial.

Definition

The boundary-value problem (1) satisfies the *strong complementing condition* if it satisfies the complementing condition and Agmon's condition.

Quasiconvexity at the Boundary

Definition

For a free boundary point $x_0 \in \partial \Omega_T$ with normal ν , a standard boundary domain is a bounded domain $D_{\nu} \subset H_{\nu}$, such that the interior Γ of $\partial D_{\nu} \cap \partial H_{\nu}$ is non-empty.

Definition

The stored energy function W is quasiconvex at the boundary at φ (see Ball and Marsden [1984]) if for all free boundary points $x_0 \in \partial \Omega_T$ with normal ν , and any standard boundary domain $D_{\nu} \subset \mathbb{R}^n$,

$$\int_{D_{\nu}} W(x_0, \nabla \varphi(x_0) + \nabla \psi(x)) dx \ge \int_{D_{\nu}} W(x_0, \nabla \varphi(x_0)) dx,$$

for all $\psi \in W^{1,\infty}_{\partial D_{
u} \setminus \Gamma}(D_{
u},\mathbb{R}^n)$

Biot Instability

• Biot [1963] looked for instabilities when n=2, in an incompressible, Neo-Hookean material occupying H_{ν} , with $\nu=e_2$, by seeking solutions to the linearized equations around the homogeneous deformation

$$\varphi = \left(\begin{array}{c} \lambda_1 x_1 \\ \lambda_2 x_2 \end{array}\right)$$

$$\lambda_1\lambda_2=1.$$

• Predicts surface instabilities at a compression ratio of $\frac{\lambda_1}{\lambda_2} \approx 0.544$.

Biot Instability

• Biot [1963] looked for instabilities when n=2, in an incompressible, Neo-Hookean material occupying H_{ν} , with $\nu=e_2$, by seeking solutions to the linearized equations around the homogeneous deformation

$$\varphi = \begin{pmatrix} \lambda_1 x_1 \\ \lambda_2 x_2 \end{pmatrix}$$

$$\lambda_1 \lambda_2 = 1.$$

• Predicts surface instabilities at a compression ratio of $\frac{\lambda_1}{\lambda_2} \approx 0.544$.

Generalisation to Isotropic Materials

 Biot's original result follows if one were to formally check for failure of the complementing condition for a Neo-Hookean, incompressible stored-energy function:

$$W^{inc}(\nabla \varphi) = \underbrace{\frac{\mu}{2} |\nabla \varphi|^2}_{\text{Neo-Hookean part}} - \underbrace{p(x) \text{det}((\nabla \varphi) - 1)}_{\text{Lagrange multiplier}}.$$

with the incompressibility condition $\det(\nabla \varphi) = 1$.

Theorem

Ball [1984] Let $W: D \to \mathbb{R}$ be isotropic, and let $\Phi: (0, \infty)^n \to \mathbb{R}$ be the symmetric function given by $W(F) = \Phi(v_1, \ldots, v_n) \ \forall F \in M_+^{n \times n}$, where v_1, \ldots, v_n are the principal stretches of F. Then if $F = \operatorname{diag}(v_1, \ldots, v_n)$, $G \in M^{n \times n}$, and $\Phi \in C^2((0, \infty)^n)$, then

$$\frac{\partial^{2}W(F)}{\partial F^{2}}[G,G] = \sum_{i,j=1}^{n} \Phi_{,ij}(v)G_{ii}G_{jj}
+ \sum_{i\neq j} \frac{v_{i}\Phi_{,i}(v) - v_{j}\Phi_{,j}(v)}{v_{i}^{2} - v_{j}^{2}}G_{ij}^{2} + \frac{v_{j}\Phi_{,i}(v) - v_{i}\Phi_{,j}(v)}{v_{i}^{2} - v_{j}^{2}}G_{ij}G_{ji}.$$

Generalisation to Isotropic Materials

 With the aid of this result, for a general isotropic, incompressible stored-energy function, instability occurs when

$$\alpha(r^3 - 2r^2 - r) - 2\beta r - \Phi_{22}r^2 + 2\Phi_{12}r - \Phi_{11} = 0,$$

where
$$r=rac{\lambda_2}{\lambda_1}$$
, $\alpha=rac{\lambda_2\Phi_2-\lambda_1\Phi_1}{\lambda_2^2-\lambda_1^2}$, and $\beta=rac{\lambda_2\Phi_1-\lambda_1\Phi_2}{\lambda_2^2-\lambda_1^2}$.

Generalisation to Isotropic Materials

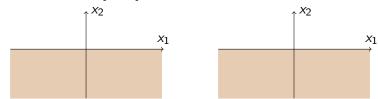
• We can compare this condition to the following: The homogeneous deformation $\varphi = (\lambda_1 x_1, \lambda_2 x_2)^T$ is a weak local minimiser only if

$$\alpha(\Phi_{11}\Phi_{22} - \Phi_{12}^2) + (\alpha^2 - \beta^2)\sqrt{\Phi_{11}\Phi_{22}} \ge 0$$

 Obtained by using Riccati Equations and a clever use of null lagrangians, applied to an isotropic, compressible material (see Mielke and Sprenger [1998]).

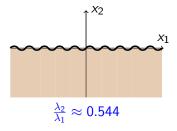
Gent and Cho [1999]

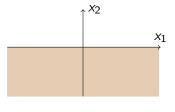
 Instabilities in the form of surface creasing have been observed to occur at a ratio of approximately 0.65, before wrinkling could occur.
 See Gent and Cho [1999].



Gent and Cho [1999]

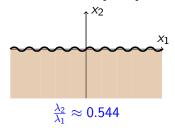
 Instabilities in the form of surface creasing have been observed to occur at a ratio of approximately 0.65, before wrinkling could occur.
 See Gent and Cho [1999].

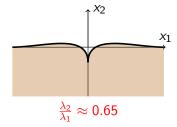




Gent and Cho [1999]

 Instabilities in the form of surface creasing have been observed to occur at a ratio of approximately 0.65, before wrinkling could occur. See Gent and Cho [1999].





Crease Formation

Case study: Creasing in rubber elastomers under extreme circumstances

Figure: A sulcus on the interior of a rubber diaphragm

References

- J.M. Ball. Differentiability properties of symmetric and isotropic functions. Duke Math. J. 51 (1984) 699-728.
- J.M. Ball and J.E. Marsden. Quasiconvexity at the boundary, positivity of the second variation and elastic stability. Arch. Rational Mech. Anal. 86 (1984) 251-277
- M.A. Biot. Surface instability of rubber in compression. Appli. Sci. Res. 12 (1963) 168-182.
- A.N. Gent and I.S. Cho. Surface instabilities in compressed or bent rubber blocks. *Rubber Chem. Technol.* **72** (1999) 253-262.
- A. Mielke and P. Sprenger. Quasiconvexity at the boundary and a simple variational formulation of Agmon's condition. *Journal of Elasticity* 51 (1998) 23-41.