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Introduction

Notation

o Consider an elastic body occupying a domain  C R” in its reference
configuration. Let ¢ € W2(Q,R") be a deformation of the body,
with det(V) > 0, subject to the mixed displacement/traction

condition
vloa, = f,
0 = 0Qp U T, OQp NOT = 0.
oQr ©(00271)
2
—_—
o0p f(0Qp)
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Hyperelasticity

@ We assume the material is Hyperelastic, so we can associate an
energy with each deformation ¢ given by

Elg] = /Q W(x, Vi(x)) dx,

where W : Q x M*" — R is the Stored Energy Function.

@ We shall consider necessary conditions for ¢ € W12(Q,R") to be a
strong or weak local minimiser.

e Incompressible Elasticity includes the restriction det(Vy) = 1, and
W:QxM™" —R.
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Background

Weak local minimisers

If ¢ is a sufficiently smooth solution to the Euler Lagrange equations,
a further necessary condition for it to be a weak local minimiser is
that the second variation at ¢

52E[p](v) / C[Vu, Vu] dx

W;éD (©,IR"), where

is nonnegative for all variations u €

Cli — PW(xVe(x)
af 8F;a6Fj§ .
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The Complementing Condition

o Let xg € 907, and let v be the unit normal at xg. Write
2
H,={xeR"|x-v <0}, and G = %. Consider the
boundary-value problem:
div (G[Vu]) =0 in H, 1)
Go[Vuly =0 on OH,.

Definition
We say the boundary-value problem (1) satisfies the complementing

condition if the only bounded solutions of the form

u=Re(f(x-v)e™), 7+ 1u (2)

for (1) are trivial.
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Background

Agmon’s Condition

@ Consider the related boundary-value problem:

div (G[Vu]) = @®u  in H,
G[Vuly =0 on OH,.

Definition
We say the boundary-value problem (1) satisfies Agmon'’s condition if the
only bounded solutions of the form (2) for (3) with a # 0 are trivial.

Definition
The boundary-value problem (1) satisfies the strong complementing
condition if it satisfies the complementing condition and Agmon's

condition.
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Quasiconvexity at the Boundary

Definition

For a free boundary point xp € 9Q+ with normal v, a standard boundary
domain is a bounded domain D, C H,, such that the interior ' of

0D, N OH, is non-empty.

Definition

The stored energy function W is quasiconvex at the boundary at ¢ (see
Ball and Marsden [1984]) if for all free boundary points xg € Q1 with
normal v, and any standard boundary domain D, C R",

5 W (x0, Vo(xo) + Vio(x)) dx > 5 W (xo, V(x)) dx,

for all ¢ € W<, (D, R")
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Biot Instability

Biot Instability

@ Biot [1963] looked for instabilities when n = 2, in an incompressible,
Neo-Hookean material occupying H,, with v = ey, by seeking
solutions to the linearized equations around the homogeneous

deformation

[ Axa
Y= /\2X2
AMAr = 1.

@ Predicts surface instabilities at a compression ratio of % ~ 0.544.
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Biot Instability

@ Biot [1963] looked for instabilities when n = 2, in an incompressible,

Neo-Hookean material occupying H,, with v = ey, by seeking
solutions to the linearized equations around the homogeneous

deformation
X2

_ [ Aixa p—
Y= A2X2 )\21 >\1

A1 =1

@ Predicts surface instabilities at a compression ratio of % ~ 0.544.
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Biot Instability

Generalisation to Isotropic Materials

@ Biot’s original result follows if one were to formally check for failure of
the complementing condition for a Neo-Hookean, incompressible
stored-energy function:

: jz
W (Vo) = SIVe? = p(x)det((Vip) — 1)
—_—
Neo-Hookean part Lagrange multiplier

with the incompressibility condition det(Vy) = 1.
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Biot Instability

Theorem

Ball [1984] Let W : D — R be isotropic, and let ® : (0,00)" — R be the
symmetric function given by W(F) = ®(vy,...,v,) VF € M7*", where
Vi,...,Vy are the principal stretches of F. Then if F = diag(vi,...,v,),
G € M™", and d € C?((0,00)"), then

P W(F)
WQWQ*Z¢UG@
ij=1
vi® i(v) — vj® j(v) vi® i(v) — v;® ;(v)
YT G GG
i i J i J
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Biot Instability

Generalisation to Isotropic Materials

o With the aid of this result, for a general isotropic, incompressible
stored-energy function, instability occurs when

a(r® —2r* = r) = 2Br — ®opr® + 2®15r — P13 =0,

A2 _ %My _ PP
A 0= TS and = ST,

where r =
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Biot Instability

Generalisation to Isotropic Materials

@ We can compare this condition to the following: The homogeneous
deformation ¢ = (A1xy, )\2x2)T is a weak local minimiser only if

(D112 — d2,) + (a? — 32)/P11d2n > 0

@ Obtained by using Riccati Equations and a clever use of null
lagrangians, applied to an isotropic, compressible material (see Mielke
and Sprenger [1998]).
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Biot Instability

Gent and Cho [1999]

@ Instabilities in the form of surface creasing have been observed to
occur at a ratio of approximately 0.65, before wrinkling could occur.
See Gent and Cho [1999].
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Gent and Cho [1999]

@ Instabilities in the form of surface creasing have been observed to
occur at a ratio of approximately 0.65, before wrinkling could occur.

See Gent and Cho [1999].
X2 X2
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Crease Formation

@ Case study: Creasing in rubber elastomers under extreme
circumstances

Figure: A sulcus on the interior of a rubber diaphragm
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Work in Progress
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