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Introduction

Notation

Consider an elastic body occupying a domain Ω ⊂ Rn in its reference
configuration. Let ϕ ∈W 1,2(Ω,Rn) be a deformation of the body,
with det(∇ϕ) > 0, subject to the mixed displacement/traction
condition

ϕ|∂ΩD
= f ,

∂Ω = ∂ΩD ∪ ∂ΩT , ∂ΩD ∩ ∂ΩT = ∅.

Ω

∂ΩT

∂ΩD

ϕ(Ω)

ϕ(∂ΩT )

f (∂ΩD)

ϕ
z
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Introduction

Hyperelasticity

We assume the material is Hyperelastic, so we can associate an
energy with each deformation ϕ given by

E [ϕ] =

∫
Ω
W (x ,∇ϕ(x)) dx ,

where W : Ω×Mn×n
+ → R is the Stored Energy Function.

We shall consider necessary conditions for ϕ ∈W 1,2(Ω,Rn) to be a
strong or weak local minimiser.

Incompressible Elasticity includes the restriction det(∇ϕ) = 1, and
W : Ω×Mn×n

1 → R.
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Background

Weak local minimisers

If ϕ is a sufficiently smooth solution to the Euler Lagrange equations,
a further necessary condition for it to be a weak local minimiser is
that the second variation at ϕ

δ2E [ϕ](u) =

∫
Ω
C [∇u,∇u] dx

is nonnegative for all variations u ∈W 1,2
∂ΩD

(Ω,Rn), where

C ij
αβ = ∂2W (x ,∇ϕ(x))

∂Fiα∂Fjβ
.
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Background

The Complementing Condition

Let x0 ∈ ∂ΩT , and let ν be the unit normal at x0. Write

Hν = {x ∈ Rn | x · ν < 0}, and C0 = ∂2W (x0,∇ϕ(x0))
∂F 2 . Consider the

boundary-value problem:

div (C0[∇u]) = 0 in Hν

C0[∇u]ν = 0 on ∂Hν .
(1)

Definition

We say the boundary-value problem (1) satisfies the complementing
condition if the only bounded solutions of the form

u = Re(f (x · ν)ei(x ·τ)), τ ⊥ ν (2)

for (1) are trivial.
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Background

Agmon’s Condition

Consider the related boundary-value problem:

div (C0[∇u]) = α2u in Hν

C0[∇u]ν = 0 on ∂Hν .
(3)

Definition

We say the boundary-value problem (1) satisfies Agmon’s condition if the
only bounded solutions of the form (2) for (3) with α 6= 0 are trivial.

Definition

The boundary-value problem (1) satisfies the strong complementing
condition if it satisfies the complementing condition and Agmon’s
condition.
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Background

Quasiconvexity at the Boundary

Definition

For a free boundary point x0 ∈ ∂ΩT with normal ν, a standard boundary
domain is a bounded domain Dν ⊂ Hν , such that the interior Γ of
∂Dν ∩ ∂Hν is non-empty.

Definition

The stored energy function W is quasiconvex at the boundary at ϕ (see
Ball and Marsden [1984]) if for all free boundary points x0 ∈ ∂ΩT with
normal ν, and any standard boundary domain Dν ⊂ Rn,∫

Dν

W (x0,∇ϕ(x0) +∇ψ(x)) dx ≥
∫
Dν

W (x0,∇ϕ(x0)) dx ,

for all ψ ∈W 1,∞
∂Dν\Γ(Dν ,Rn)
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Biot Instability

Biot Instability

Biot [1963] looked for instabilities when n = 2, in an incompressible,
Neo-Hookean material occupying Hν , with ν = e2, by seeking
solutions to the linearized equations around the homogeneous
deformation

ϕ =

(
λ1x1

λ2x2

)
λ1λ2 = 1.

x1

x2

λ1λ2

Predicts surface instabilities at a compression ratio of λ1
λ2
≈ 0.544.
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Biot Instability

Generalisation to Isotropic Materials

Biot’s original result follows if one were to formally check for failure of
the complementing condition for a Neo-Hookean, incompressible
stored-energy function:

W inc(∇ϕ) =
µ

2
|∇ϕ|2︸ ︷︷ ︸

Neo-Hookean part

− p(x)det
(
(∇ϕ)− 1

)
︸ ︷︷ ︸

Lagrange multiplier

.

with the incompressibility condition det(∇ϕ) = 1.
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Biot Instability

Theorem

Ball [1984] Let W : D → R be isotropic, and let Φ : (0,∞)n → R be the
symmetric function given by W (F ) = Φ(v1, . . . , vn) ∀F ∈ Mn×n

+ , where
v1, . . . , vn are the principal stretches of F . Then if F = diag(v1, . . . , vn),
G ∈ Mn×n, and Φ ∈ C 2((0,∞)n), then

∂2W (F )

∂F 2
[G ,G ] =

n∑
i ,j=1

Φ,ij(v)GiiGjj

+
∑
i 6=j

viΦ,i (v)− vjΦ,j(v)

v2
i − v2

j

G 2
ij +

vjΦ,i (v)− viΦ,j(v)

v2
i − v2

j

GijGji .
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Biot Instability

Generalisation to Isotropic Materials

With the aid of this result, for a general isotropic, incompressible
stored-energy function, instability occurs when

α(r3 − 2r2 − r)− 2βr − Φ22r
2 + 2Φ12r − Φ11 = 0,

where r = λ2
λ1

, α = λ2Φ2−λ1Φ1

λ2
2−λ2

1
, and β = λ2Φ1−λ1Φ2

λ2
2−λ2

1
.
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Biot Instability

Generalisation to Isotropic Materials

We can compare this condition to the following: The homogeneous
deformation ϕ = (λ1x1, λ2x2)T is a weak local minimiser only if

α(Φ11Φ22 − Φ2
12) + (α2 − β2)

√
Φ11Φ22 ≥ 0

Obtained by using Riccati Equations and a clever use of null
lagrangians, applied to an isotropic, compressible material (see Mielke
and Sprenger [1998]).
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Biot Instability

Gent and Cho [1999]

Instabilities in the form of surface creasing have been observed to
occur at a ratio of approximately 0.65, before wrinkling could occur.
See Gent and Cho [1999].

x1

x2

x1

x2

λ2
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Work in Progress

Crease Formation

Case study: Creasing in rubber elastomers under extreme
circumstances

Figure: A sulcus on the interior of a rubber diaphragm
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Work in Progress
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