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Motivation

Bead-spring model

a: Kuhn length; bond length
L=Na: total contour length;

N: number of monomers

Wormlike chain

'IJﬁ
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L persistence length (a=2).)
L: total contour length;

N=L/a: number of segments




Motivation
Wormlike-chain model

L: total contour length

L: persistence length

<u(t) : u(”)> = 67|1*1/|L/,1

Nl

Rodlike limit Flexible limit




Motivation

Cross-polarization experiment
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Motivation

Cross polarization image

Molecular distribution

u-dependence: orientational ordering
(nematic)

r-dependence: positional ordering
(spatial inhomogeneity)

Singularity in the distribution function ---
defect




Continuum chain model

Wormlike chain model describes a semiflexible polymer chain by a
continuum space curve.

@ r(s): a location parameter;
@ u(s): a direction parameter;
@ u(s) satisfies u(s) = dr(s)/ds and |u(s)| = 1.
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Continuum wormlike chain model

L is the total length and )\ is persistence length. The ratio
describes the flexibility of the chain and satisfies

—|s—=5|L
A )

< u(s),u(s") >= exp(

@ Gaussian chain is flexible with A << L;
@ Wormlike chain is semi-flexible with A ~ L;
@ rod is rigid with A >> L.
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Self-consistent field theory (SCFT)
The mean field W is introduced to summarize the universal

interaction between segments. W can be described by density
distribution p, but p is determined by field W conversely.

W = Wlp]

p = p[W]




Self-consistent field theory (SCFT)

@ g(r,u;s): probability distribution function of find segment s
locating at position r and pointing at u.

L
0sq(r,u;s) = [-W(r,u) — Lu- V|, + ﬁvﬁ

@ The partition function of the wormlike chain

Jq(r,u;s), (1)

Q= /drduq(r, u;s =1). (2)

@ p(r,u) is the density distribution, N is the number of chains.
p(r,u) = %fol dsq(r,u; s)g(r, —u;1 —s), [drdup(r,u) = N.
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Self-consistent field theory (SCFT)

The reduced free energy of the system is
BF = NIn(N/Q) — /drduW(r,u)p(r, u)
L2
+ 2/drdu/du’p(r,u)|u x u'|p(r,u). (3)

The minimization of the energy with respect to p(r,u) gives

6(86;') =0= W(r,u) = L2/du/]u x u'|p(r,u).
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The procedure of SCFT

1.
2.

give an initial guess for W(r,u);
calculate g(r,u; s) from solving MDE

9
0s
obtain @ and p(r,u)

Q= / drdug(r,u,1),

N 1
p(r,u) = Q/o dsq(r,u; s)qg(r, —u; 1 —s);

. update field W(r,u) with

W(r,u) = L2/du’|u x u'|p(r, u);

come to step 2 until W(r,u) convergers.

q(r,u;s) = [-W(r,u) — Lu- V|, + L Vz]q(r u;s);
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Outline

© Rods confined in a rectangle
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Rods situation with L/A =0

N rods confined in a rectangle with side lengths a and b. Set r to

be (x,y) € [0, a] x [0, b] and u to be (cos@,sinf) with 6 € [0, 2x].
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Due to the above steps of the SCFT, finding the solutions of the
MDE turns to be an important step. W(r,u) # 0

i_q(nu;s) =[-W(r,u) — Lu- V|, +5 . Vz]q(r u;s);
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Rods situation with L/A =0

That is 5 V2g(r,u;s) = 0 and u(s) = dr(s)/ds

0sq(x,y,0;s) = [-Lcos00, — Lsin00, — W(x,y,0)]q(x,y,0;s),

B.C.
q(0,y,6;5) =0, gq(ay,0;s)=0, s#0,
q(x,0,0;s) =0, q(x,b,0;s)=0, s#0,
q(x,y,0;s) = q(x,y,2m;s),
I.C.

q(x,y,0;0) = 1.

Upwind scheme is used to solve the problem.

52



Numerical schemes

Operator splitting:
a5 =l + el + Hyale + Hwallfy. (4)

Here Hyy = —AsW,; «x and the operators le and Itly yield

0 g+l —L cos Gk%(qui - q;’flld. ), (left wind) cos @ >0,
q:: ;. = ’ ’ . .
x4,k —L cos Qk%(q;’jllj kK~ Cl,”f,%), (right wind) cos 0y < 0.

n+1

0 _ | —Lsin Gk%}s/(qui - qu_lLk), (left wind) sinfy >0,
yijk =

—Lsin Hkﬁ—;(qﬂj;ll’k — ql”jr;), (right wind)sinf, < 0
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Mass distribution

2
¢Wm—AfUm@M

1
f(r,u) = P,é?/o dsq(r,u;s)g(r,—u; 1 —s).

Order parameters

2

smn=A 46 cos(20)F (x. y. 6)/B(x, ).
27

n&mzl d0sin(20)F (x. y. 0)/S(x. ).

A(x,y) = \/S2(x,y) + T2(x,y).
Light intensity for a-crossed-polarizer

" df[sin(20 — 20))*f(x, y, 6)

Ia(Xa}/) = Z 0

@ Location where A(x, y) = 0 is taken as defect points.
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Three most relevant, dimensionless parameters that control the
type of resulting nematic patterns in these systems.
@ b/a: the aspect ratio of a confining rectangle, where a and b
are the short- and long-side lengths.
@ a/L: the box-rod size ratio, where L is the length of a rodlike
particle, define the confinement geometry.
o [?p = 1%n/ab: determines the degree of orientational ordering
in a system consisting of n sterically repelling particles.
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Figurel: a= b
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Figure2: a= b
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@ blue point — -1/2 defect
yellow point — -1 defect
green point +— 1/2 defect
orange point — 1 defect
The total values of defects add up to -1 for each structure.

@ The system displays both density and orientational field
defects by contrasting ¢(x, y) and A(x, y).

@ When a/L becomes small,

the two defects in (D) and (L) will draw closer to each other;

the middle two defects in (Ul) will vanish then the structure
turns into (U).



Discovery

@ Tsakonas et al [APL,2007] reported light intensity images
observed by crossed polarizers, which is nearly identical to

Iz 45 5z /165 13 /8 of (D) and (U).
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Numerical results: a # b
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Numerical results: a # b
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Discovery

@ Some of the above structures have been seen from
experiments (black figures).
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Some figures are from following authors’ works: Louis Cortes, Bela
Mulder, Wolfgang Losert, Apala Majumdar, et al.
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Phase diagram
Phase diagram in terms of a/L and L?p for b/a =1,1.2,2,3.

20,
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(a) b/a=1.0

(b) bla=1.2
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Stable and metastable

@ Structures in figurel [except T’ and O] are always stable or
metastable in most parameters region(L?p > 5,a/L > 5);

e T', 0, and structures in figure2 can only exist when L?p is
low(< 6) and a/L is high(2 8);
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Stable and metastable for figurel

o Phase diagram for L2p = 10 fixed and the probabilities for
appearance of metastable states.
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Stable and metastable for figurel

o Phase diagram for L?p = 6 fixed and the probabilities for
appearance of metastable states.
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Stable and metastable for figure2

o Phase diagram for [2p = 6.0 fixed and the probabilities for
appearance of metastable states.
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Outline

© A single chain confined between hard walls
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Problem description for a single chain

To analyze the behavior of one wormlike polymer sterically
confined between two parallel, structureless walls, separated by a
distance H when changing H, L, X .

As it is a singe chain, no field W. Solve the MDE in confined
region.

(8
/ /1

ol
/

Two special cases: strong confinement(H << \) and weak
confinement(H >> ).
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Numerical schemes
Consider MDE equation: ~ W/(r,u) =0

aasq(r,u; s) = (—Lu-V,+L[(u-V )u] -V, + 5Vﬁ)q(r, u;s). (5)

Set u = cosf x + sinf cos p y + sinfsin p z, where x = x/H.
e §e0,7],p €0,27],

@ y,z: translation invariance; x: rotational invariance.

34 /52



Numerical schemes

0 L o L 1 9,. .0
gq(x,ﬁ,s) = <_C0596x + 5@%( 086)> q(x,0;s).
(6)
I.C.
q(x,0:0) =
B.C.

q(0,0;s) =0, if6 €[0,7/2) and s # 0,
q(1,0;s) =0, if0 € (w/2,7] and s #0,

gq(x, m;s) =0.

q(x,0;s) =0, 50

9
a6
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Numerical schemes
Operator splitting:

019(x,6;s) = _L cos QQQ(X,Q;S),

7
H Ox (7)
L 1 0 0
0;s) = ———— [ sinf— 0;
qu(X? YS) 2)\ S|n989 <5|n089q(x7 YS)> Y (8)
then , ,
q(x,0;s + h) = e2%1eM%2e201g(x, 0; 5). 9)
@ Upwind scheme of Oy:
n+1 n n+1 n+1
4Gk — 9k L Ak — 91k . _
T Re T g Qk—AX , (left wind) 0y € [0,7/2];
1 n 1 1
qﬁ: ~ 9k _ _A 0s 6 qﬁ-rl,k B qu:

Ae g Cosk——"1 " (right wind) 0y € [r/2,7].
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Numerical schemes

@ Operator O,: central difference scheme.

L 19 (sm@8 (X,H;s)),

O2q(x. 0;) = 2\ sin 6 90 007
d
when 6 0, 5555 < 0o, fim 555 = lim 4 = lim 2.
1 0 0 _ costq d?q _ d2q
im( =5 3g(sin0359)) = im(=—0 =5 + 55) = lim(2=7).
We get

2

L
0,q(x,0;s) = N a?
2

OZq(X70;S) = X@q

(x,0;s) (0 —0),

(x,6;s) (0 — 7).
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Numerical schemes

The central difference scheme of O5 :

0 € (0,m):
n+1 n+1 n+1 n+1 n+1
qjt ~ 9k L1 1 = _(sinf,. 1 qJIJrl — qu sinf, . JI j’tfl)
As  2X\sinfc A6 kt2 ) k A6 ’
0=0,
an’+1 _ qj P L anﬁl _ 2qn+1 4 qn+1
As D\ AL
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Numerical Results

Mass distribution p(x) = %a

Direction distribution p(§) = -L2u0)ex
Then consider

@ Fix L,\ and decrease H.

@ Fix A\,H and increase L.

@ Fix H,L and increase \.

= T p(x.0)dxdo "
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Fix L,\ and decrease H
Picture of p(x):
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Picture of p(x):
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Picture of p(6):
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Fix \,H and increase L.

Picture of p(x):
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Picture of p(x):

plxH)

¢ 01 0z 03 04 05 06 07 08 03 1
wH

44 /52



Picture of

i)

p(0):
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Fix H,L and increase A\

Picture of p(x):
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Picture of p(x):
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Picture of p(0):
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Numerical results

When decreasing H only,or increasing L only,or increasing A only,

@ the density of the chain in the middle of the walls increases
first and then decreases.

@ the orientation of the chain is more likely parallelling to the
walls.
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Numerical results

Reasons:

@ The increase of the density: the chain is compressed and
getting to the middle as H decreases.

@ The decrease of the density: when H ~ \/2L), the chain is
mainly behaved as the Gauss chain and the size is minimum.
Going on decreasing H(or increasing L,or increasing \), the
chain is mainly behaved as the wormlike chain. The excluded
volume interaction lead to the increase of the size.

@ The orientation is not only parallelling, but also at a small
angle to the walls: for the inflexibility of the chain.



Outline

@ Conclusion
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Conclusion

@ Rods confined in a rectangle: 23 different structures
@ A single chain confined between hard walls

@ Further problems: mathematical analysis
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