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Brittle and Cohesive-zone models

Setting: Ω represents the cross section of a cylindrical body in its reference

configuration, while u : Ω ⊂ R
2 → R represents the displacement (antiplane

shear): (x1, x2, x3) 7→ (x1, x2, u(x1, x2)).

Brittle model (Griffith 1920)

MS(u) :=

∫

Ω

|∇u|2 dx +H1(Su)

Cohesive model (Barenblatt 1959, Dugdale 1960)

E(u) :=

∫

Ω

|∇u|2 dx +

∫

Su

g([u]) dH1

g([u]) :=energy per unit area spent to create a crack with opening

[u] := u+ − u− (g nondecreasing, concave, bounded)



Aim of the work

⋆ Derive a cohesive-type model by homogenising a purely brittle

composite whose components have different elastic moduli but the

same toughness

⋆ Show that the cohesive-type model so obtained is not the "right one".



Γ-convergence

What is the Γ-convergence?

It is a tool to analyze the asymptotic behaviour of a sequence of minimum

problems of the form

mk = min{Fk(u) : u ∈ U},

where

• U is a normed space;

• Fk is a sequence of functionals on U.



Definition

We say that Fk Γ-converges to a functional F, if for every u ∈ U the

following conditions are satisfied:

i) Liminf inequality: for every sequence uk in U such that uk → u,

F(u) ≤ lim inf
k→+∞

Fk(uk);

ii) Recovery sequence: there exists a sequence uk in U such that uk → u

and

F(u) = lim
k→+∞

Fk(uk).



Main Property

Let uk be a minimum for Fk. If Fk Γ-converges to F and uk → u in U, then

• Fk(uk) → F(u);

• u is a solution of the minimum problem

m = min{F(u) : u ∈ U}.



Homogenization

We use this tool to describe composites, i.e., structures constituted by two or

more materials which are finely mixed at microscopic length scales.

Despite the high complexity of their microstructure, composites appear

essentially as homogeneous at macroscopic length scale.

This suggests that their effective properties be a kind of average made on the

respective properties of the constituents.

Homogenization: think a composite as a limit of a sequence of structures

whose heterogeneities become finer and finer, and extract the effective

property via the Γ-limit.



For instance, let

Fε(u) = α1

∫

Ω∩εP

|∇u|2 dx + α2

∫

Ω\εP

|∇u|2 dx

+β1H1(Su ∩ εP) + β2H1(Su \ εP),

where u ∈ SBV2(Ω), P ⊂ R
2 is a periodic set, and α1, α2, β1, β2 > 0 are

constants,

ε



For instance, let

Fε(u) = α1

∫

Ω∩εP

|∇u|2 dx + α2

∫

Ω\εP

|∇u|2 dx

+β1H1(Su ∩ εP) + β2H1(Su \ εP),

where u ∈ SBV2(Ω), P ⊂ R
2 is a periodic set, and α1, α2, β1, β2 > 0 are

constants. Fixed a sequence εk → 0, one gets as Γ-limit an integral/local

functional

F(u) =

∫

Ω

f (∇u) dx +

∫

Su

g(νu) dH1.

Under standard growth conditions, homogenisation in SBV preserves

independence of the amplitude [u].



Aim of the work

Without standar growth condition the situation is different. In particular it is

possible to obtain functionals having a cohesive behaviour

F(u) =

∫

Ω

f (∇u) dx +

∫

Su

g([u], νu) dH1.

Surprisingly, this happens with a very simple functional: the previous one

with α1 = β1 = β2 = 1 and α2 = ε (different elastic moduli but the same

toughness), and a basic geometry P.

The key: because the “softening factor”, at microscopic level it is possible to

approximate a pure jump with a stretch.

A strange phenomenon: the jump set of a recovery sequence strongly

depends on the amplitude of the jump of the limit.



Brittle materials with soft inclusions

ε

Ω ⊂ R
2 open, bounded

P = union of cells Q1 \ Q 1
4
,

P = open, connected, periodic

εε/4

Ω ∩ εP = stiff matrix

Ω \ εP = soft inclusions

Fε(u) :=

∫

Ω∩εP

|∇u|2 dx + ε

∫

Ω\εP

|∇u|2 dx +H1(Su) for u ∈ SBV2(Ω)

As ε → 0 we determine the macroscopic behaviour, via Γ-convergence (w.r.t. s-L1)



Homogenisation result

Fε(u) :=

∫

Ω∩εP

|∇u|2 dx + ε

∫

Ω\εP

|∇u|2 dx +H1(Su) for u ∈ SBV2(Ω)

Theorem (B.-Lazzaroni-Zeppieri, SIAM J. Math. Anal. 2016)

Given εk → 0, up to subsequences Fεk

Γ−→ F with

F(u) :=

∫

Ω

f (∇u) dx +

∫

Su

g([u], νu) dH1 for u ∈ GSBV2(Ω)

• f is the quadratic form given by a standard cell formula;

• g(·, ν) is nondecreasing, g(−t,−ν) = g(t, ν), and

min
{

3
4
+ c t2, 1

}

≤ g(t, ei) ≤ min
{

3
4
+
√

2 t , 1
}

for i = 1, 2
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Remarks on the limit model

Homogenised functional

F(u) :=

∫

Ω

f (∇u) dx +

∫

Su

g([u], νu) dH1 for u ∈ GSBV2(Ω)

min
{

3
4
+ c t2, 1

}

≤ g(t, ei) ≤ min
{

3
4
+
√

2 t , 1
}

for i = 1, 2

• g(0, ei) > 0 activation threshold

• g(t, ei) = 1 for large |t|

1

3
4

Cohesive-type behaviour: g depending nontrivially on [u], constant for large |[u]|



A simpler model: perforated domains

Fε(u) :=

∫

Ω∩εP

|∇u|2 dx + ε

∫

Ω\εP

|∇u|2 dx +H1(Su) for u ∈ SBV2(Ω)

ε

Ω ⊂ R
2 open, bounded

P = union of cells Q1 \ Q 1
4
,

P = open, connected, periodic

εε/4

Ω ∩ εP = stiff matrix

Ω \ εP = soft inclusions



A simpler model: perforated domains

F̂ε(u) :=

∫

Ω∩εP

|∇u|2 dx +H1(Su ∩Ω ∩ εP) for u ∈ SBV2(Ω ∩ Ω ∩ εP)

ε

Ω ⊂ R
2 open, bounded

P = union of cells Q1 \ Q 1
4
,

P = open, connected, periodic

εε/4

Ω ∩ εP = brittle domain

Ω \ εP = perforation



A simpler model: perforated domains

F̂ε(u) :=

∫

Ω∩εP

|∇u|2 dx +H1(Su ∩Ω ∩ εP) for u ∈ SBV2(Ω ∩ Ω ∩ εP)

See Focardi-Gelli-Ponsiglione 2009, Cagnetti-Scardia 2011, B.-Focardi

2011.

Theorem

For ε → 0 , F̂ε
Γ−→ F̂(u) :=

∫

Ω

f (∇u) dx +

∫

Su

ĝ(νu) dH1

where

{

c |ξ|2 ≤ f (ξ) ≤ L2(Q ∩ P)|ξ|2

c ≤ ĝ(ν) ≤L2(Q ∩ P)
=⇒ c MS ≤ F̂



F̂ε ≤ Fε ≤ MS =⇒ c MS ≤ Γ-lim inf Fε ≤ Γ-lim sup Fε ≤ MS,

Good estimate: there is integral representation of the Γ-limit of Fε.

Since

ĝ(e2) = F̂(u,Q),

the value of ĝ(e2) is simply given by the best way to “approximate in

energy” u := χ(−1/2,1/2)×(0,1/2), so

ĝ(e2) =
3
4
.

Therefore g(t, ν) ≥ ĝ(ν) in a sharp way:

min
{

3
4
+ c t2, 1

}

≤ g(t, e2) ≤ min
{

3
4
+
√

2 t , 1
}



F̂ε ≤ Fε ≤ MS =⇒ c MS ≤ Γ-lim inf Fε ≤ Γ-lim sup Fε ≤ MS,

Good estimate: there is integral representation of the Γ-limit of Fε.

Since

ĝ(e2) = F̂(u,Q),

the value of ĝ(e2) is simply given by the best way to “approximate in

energy” u := χ(−1/2,1/2)×(0,1/2), so

ĝ(e2) =
3
4
.

Therefore g(t, ν) ≥ ĝ(ν) in a sharp way:

min
{

3
4
+ c t2, 1

}

≤ g(t, e2) ≤ min
{

3
4
+
√

2 t , 1
}



Large crack-opening

To prove:

g(t, e2) ≤ min
{

3
4
+
√

2 t , 1
}

g(t, e2) = F(ut,Q) ≤ MS(ut,Q) = 1

Fεk
(uk,Q) = 1

where ut = uk = tχQ+

ut = t

ut = 0

 The “pure jump” is optimal for large values of t



Small crack-opening: bridging mechanism

To prove:

g(t, e2) ≤ min
{

3
4
+
√

2 t , 1
}

uk = t

uk = 0

c ε
ε/4

Optimising in c leads to c = t

2
√

2
, hence Fεk

(uk) ≃ 3
4
+
√

2 t



Small crack-opening: bridging mechanism

To prove:

g(t, e2) ≤ min
{

3
4
+
√

2 t , 1
}

Cost of an affine transition in the grey region

+ Cost of the jumps

summed up over all interfacial cells

Fεk
(uk) ≃

1

εk

(

εk

( t

c εk

)2 c

4
ε2

k + 2c εk +
3

4
εk

)

=
t2

4c
+ 2c +

3

4

uk = t

c ε

ε/4 uk = 0

Optimising in c leads to c = t

2
√

2
, hence Fεk

(uk) ≃ 3
4
+
√

2 t
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Small crack-opening: bridging mechanism

To prove:

g(t, e2) ≤ min
{

3
4
+
√

2 t , 1
}

Cost of an affine transition in the grey region

+ Cost of the jumps

summed up over all interfacial cells

Fεk
(uk) ≃

1

εk

(

εk
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c εk

)2 c

4
ε2
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3

4
εk

)

=
t2

4c
+ 2c +

3

4

uk = t

c ε

ε/4 uk = 0

Optimising in c leads to c = t

2
√

2
, hence Fεk

(uk) ≃ 3
4
+
√

2 t



Cohesive behaviour: Lower bound

g(t, e2) = F(ut,Q) = inf
{

lim inf Fεk
(uk,Q) : uk → ut

}

To prove:

lim inf Fεk
(uk,Q) ≥ min

{

3
4
+ c t2 , 1

}

∀ uk → ut

Strategy: Modify uk obtaining a new sequence wk such that

⋆ wk → ut = lim uk

⋆ lim inf Fεk
(wk,Q) ≤ lim inf Fεk

(uk,Q)

⋆ wk is εk-periodic and symmetric in the first variable

⋆ wk is piecewise affine outside a horizontal layer Lk of thickness ≃ εk

⋆ the energy of wk essentially concentrates in Lk and

lim inf Fεk
(wk, Lk) ≥ min

{

3
4
+ c t2 , 1

}



(a) (b)



Brittle materials with soft inclusions II

Ω ⊂ R
2 open, bounded

P = open, connected, periodic

Ω ∩ εP = the stiff matrix,

white

Ω \ εP = the soft inclusions,

gray.

Fε(u) :=

∫

Ω∩εP

|∇u|2 dx + ε

∫

Ω\εP

|∇u|2 dx +H1(Su) for u ∈ SBV2(Ω)

As ε → 0 we determine the macroscopic behaviour, via Γ-convergence (w.r.t. s-L1)



Homogenisation result II

Fε(u) :=

∫

Ω∩εP

|∇u|2 dx + ε

∫

Ω\εP

|∇u|2 dx +H1(Su) for u ∈ SBV2(Ω)

Theorem

Given εk → 0, up to subsequences Fεk

Γ−→ F with

F(u) :=

∫

Ω

f (∇u) dx +

∫

Su

g([u], νu) dH1 for u ∈ GSBV2(Ω)

• f is the quadratic form given by a standard cell formula;

• g(·, ν) is nondecreasing, g(−t,−ν) = g(t, ν)



Homogenisation result II

Fε(u) :=

∫

Ω∩εP

|∇u|2 dx + ε

∫

Ω\εP

|∇u|2 dx +H1(Su) for u ∈ SBV2(Ω)

Theorem

Given εk → 0, up to subsequences Fεk

Γ−→ F with

F(u) :=

∫

Ω

f (∇u) dx +

∫

Su

g([u], νu) dH1 for u ∈ GSBV2(Ω)

• g(t, e2) ≤ 1√
2
+ 2

√
2 t.

• g(t, e2) = 1 for large t.



Perforated domains again

ĝ(e2) =
1√
2

Figure: In red the “zig-zag” configuration.



Perforated domains again

Note that a zig-zag configuration is shorter than a straight line.



Small crack-opening: bridging mechanism

Proof that

g(t, e2) ≤ 1√
2
+ 2

√
2 t

Figure: In yellow the set where uk takes value t, in blue the set where uk is affine, and

in red the jump set Suk
.



Small crack-opening: bridging mechanism

The idea is that Fε ∼ F̂ε for small t.

Figure: In yellow the set where uk takes value t, in blue the set where uk is affine, and

in red the jump set Suk
.



Small crack-opening: bridging mechanism

The idea is that Fε ∼ F̂ε for small t.

Figure: In yellow the set where uk takes value t, in blue the set where uk is affine, and

in red the jump set Suk
.



Optimality of the previous costruction (as position)

Given a small η > 0, take t so small that

F(ut,Q) = g(t, e2) ≤ 1√
2
+ η.

Here ut := tχ(−1/2,1/2)×(0,1/2). Given a small ̺ > 0, define the sets T (on

the left) and Tεk
(on the right).

̺



Optimality of the previous costruction

The key is that “If we want to stay close to 1/
√

2 the jump set has to be close

to the diagonal”.

Theorem

Consider a recovery sequence uk for ut. Then

H1(Suk
∩ Tεk

) ≥ 1√
2
− η

4̺
.



Localization of the jump set

Look to the εP has a bundle of fiber lmε , i.e., εP =
⋃{lmε : m ∈ Mε}. Note

that the bundle undergos a sort of compression along the diagonal.

p1

p2

p3

p4

p5

p6

p7

Figure: In red a couple of fibers lm.



Localization of the jump set

The fibers have to be (asymptotically) cut.

In order to cut the bundle of fibers, the best choice is to make the cut in Tε.

Indeed, here the hard region εP is thin just 1/
√

2. On the other hand, outside

Tε the best choice is to make the cut along the diagonal part of the boundary

of Tε itself. Indeed, here the hard region εP is thin (1 + 4̺)/
√

2.

Therefore, the ratio of the costs between the optimal cuts outside and inside

Tε is 1 + 4̺.

̺



Large crack-opening: “soft is not so soft”

Theorem

Consider a sequence uk converging to ut, t large. Then

lim inf
k→+∞

Fεk
(uk,Q \ Tεk

) ≥ 1

2
− 4̺.

In particular, if uk is a recovery sequence for ut, H1(Suk
) in Tεk

cannot be

larger than 1/
√

2 (> 1/2 + 4̺).

Strategy: similar to the previous model.



Large crack-opening: “soft is not so soft”



Toughening phenomenon

Main Remark

Let t be small and uk be a recovery sequence for ut. Moreover, let t̃ be large

and ũk be a sequence converging to ũt. If Sũk
⊃ Suk

, then

lim inf
k→+∞

Fεk
(ũk,Q) &

1√
2
+

1

2
> 1.

• The bridging mechanism increases the tougheness of the material:

being energetically favorable when the amplitude of the crack is small,

it originates a deflection of the crack path towards the soft inclusion.

Because of the irreversibility of the crack process due to dissipation,

this deflection persists also when the amplitude of the crack is large and

a straight path should be energetically favorable with respect to the

deflected one.

• This behavior cannot be captured by the Γ-limit F, since it is obtained

by a minimization problem at microscopic level for any fixed amplitude

of the crack.



• A bridging mechanism in the homogenisation of brittle composites with

soft inclusions. Joint work with G. Lazzaroni and C. I. Zeppieri.

SIAM J. Math. Anal., 48 (2016).

• Toughening by crack deflection in the homogenization of brittle

composites with soft inclusions.

Arch. Ration. Mech. Anal. to appear.

http://cvgmt.sns.it/people/barchiesi/


