Phase Transition Dynamics in Geophysical Fluid Dynamics

Tian Ma and Shouhong Wang Supported in part by NSF, ONR and Chinese NSF http://www.indiana.edu/~fluid

Outline

- I. Introduction to Dynamical Transition Theory
- II. Phase Transitions of Thermodynamic Systems
- III. Dynamic Transitions in GFD and Climate Dynamics
- IV. Non-Markovian Parameterizing Manifolds and Closures of SPDE BIRS workshop: Nonlinear and Stochastic Problems in Atmospheric and Oceanic Prediction, Nov. 2017

I. Introduction to Dynamic Transition Theory

Basic models in

- _ classical, geophysical and astrophysical fluid dynamics
- _ statistical physics
- _ chemical reactions
- _ biological and ecological models

can all be put into dissipative dynamical systems as follows:

(1)
$$\frac{du}{dt} = L_{\lambda}u + G(u,\lambda)$$

where u is the order parameter, λ is the control parameter of the system, L_{λ} is a linear operator, and $G(u, \lambda)$ is the nonlinear operator.

Phase Transition

- It is a universal phenomena in most, if not all, natural systems.
- It refers to the transition of the system from one state to another, as the control parameter crosses certain critical threshold.

Unified definition of phase transitions (Ma-Wang)

Let $\beta_1(\lambda), \beta_2(\lambda), \dots \in \mathbb{C}$ be eigenvalues of L_{λ} . If

$$\operatorname{Re}\beta_{i}(\lambda) \begin{cases} < 0 & \text{if } \lambda < \lambda_{0}, \\ = 0 & \text{if } \lambda = \lambda_{0}, \\ > 0 & \text{if } \lambda > \lambda_{0} \end{cases} \qquad 1 \leq i \leq m, \\ > 0 & \text{if } \lambda > \lambda_{0} \end{cases}$$
$$\operatorname{Re}\beta_{j}(\lambda_{0}) < 0 \qquad \qquad m+1 \leq j, \end{cases}$$

then the system (1) always undergoes a dynamic transition as λ crosses λ_0 , and λ_0 is the critical threshold/point.

Note: The above definition was a theorem on dynamic transition we have proved; see [Ma-Wang, Phase Transition Dynamics, 555pp, 2013, Springer].

This theorem ensures the validity of the above definition.

Principle of Phase Transition Dynamics (Ma-Wang):

Phase transitions of all dissipative systems can be classified into three categories: continuous, catastrophic, and random:

$$\begin{split} \lim_{\lambda \to \lambda_0} u_{\lambda} &= \bar{u} & \text{continuous transition} \\ \lim_{\lambda \to \lambda_0} u_{\lambda} &\neq \bar{u} & \text{catastrophic transition} \\ \text{both} & \lim_{\lambda \to \lambda_0} u_{\lambda} &= \bar{u} \text{ and } \lim_{\lambda \to \lambda_0} u_{\lambda} \neq \bar{u} \text{ happen} & \text{random transition} \end{split}$$

Here \bar{u} is the basic state, and u_{λ} are the transition states (physically, transition states correspond to local attractors).

Note:

- The above principle is ensured by the dynamic transition theorem in Phase Transition Dynamics book.
- This is a universal principle, applicable to phase transitions of all dissipative systems in Nature. It cannot be derived from classical bifurcation theory.
- It offers a guiding principle for studying phase transitions of natural systems.
- The dynamic transition theory provides a systematic approach for classifying and determining the detailed information of the transition.

II. Phase Transitions of Thermodynamical Systems

Thermodynamic Systems (Ma-Wang, 2017)

- A thermodynamic system is described by order parameters (state functions), control parameters, and thermodynamic potential, which is a functional of the order parameters.
- All thermodynamic potentials are expressed in terms of conjugate pairs. The most commonly considered conjugate thermodynamic variables are
 - 1) the temperature T and the entropy S, and
 - 2) f the generalized force and X the generalized displacement. Typical examples of (f, X) include (the pressure p, the volume V), (applied magnetic field H, magnetization M), (applied electric field E, electric polarization P).

Potential-Descending Principle (MW17a)

For each thermodynamic system, there are order parameters $u = (u_1, \dots, u_N)$, control parameters λ , and the thermodynamic potential functional $F(u; \lambda)$. For a non-equilibrium state $u(t; u_0)$ of the system with initial state $u(0, u_0) = u_0$,

- 1) the potential $F(u(t; u_0); \lambda)$ is decreasing: $\frac{d}{dt}F(u(t; u_0); \lambda) < 0 \qquad \forall t > 0;$
- 2) the order parameters $u(t; u_0)$ have a limit: $\lim_{t \to \infty} u(t; u_0) = \bar{u};$
- 3) there is an open and dense set \mathcal{O} of initial data in the space of state functions, such that for any $u_0 \in \mathcal{O}$, the corresponding \overline{u} is a minimum of F, which is called an equilibrium of the thermodynamic system:

$$\delta F(\bar{u};\lambda) = 0.$$

1. The potential-descending principle leads to both the first and second laws of thermodynamics

For the equilibrium state, PDP says that $\frac{\delta}{\delta u}F(\bar{u};\lambda)=0$, and then

$$dF(\bar{u},\lambda) = \frac{\delta}{\delta u} F(\bar{u};\lambda) \delta u + \frac{\partial F}{\partial \lambda} d\lambda = \frac{\partial F(\bar{u};\lambda)}{\partial \lambda} d\lambda,$$

which is the *first law of thermodynamics*.

For a given non-equilibrium thermodynamic state u(t), the PDP tells us that

$$\frac{dF}{dt} = \frac{\delta}{\delta u} F(u(t);\lambda) \frac{du}{dt} < 0 \quad \Longrightarrow \frac{\delta}{\delta u} F(u(t);\lambda) du < 0.$$

Hence

$$dF(u(t),\lambda) = \frac{\delta}{\delta u} F(u(t);\lambda) du + \frac{\partial F}{\partial \lambda} d\lambda < \frac{\partial F}{\partial \lambda} d\lambda,$$

which is the second law of thermodynamics.

2. *PDP is a first principle of statistical mechanics.* Namely, PDP leads to all three distributions: Maxwell-Boltzmann distribution, the Bose-Einstein distribution, the Fermi-Dirac distribution.

3. Let $F(u, \lambda)$ be the thermodynamic potential of a thermodynamic system with order parameters u and control parameters λ . Then PDP gives rise to the following dynamic equation:

(2)
$$\frac{du}{dt} = -\delta F(u,\lambda).$$

4. Irreversibility in Thermodynamic Systems

 PDP offers a clear description of the irreversibility of thermodynamical systems. Consider a non-equilibrium initial state u₀, the PDP amounts to saying that the potential is decreasing:

$$\frac{d}{dt}F(u(t;u_0);\lambda) < 0 \qquad \forall t > 0.$$

This shows that the state of the system $u(t; u_0)$ will never return to its initial state u_0 in the future time. This is exactly the irreversibility.

• Entropy S is a state function, which is the solution of basic thermodynamic equations. Thermodynamic potential is a higher level physical quantity than entropy, and consequently, is the correct physical quantity, rather than the entropy, for describing irreversibility for all thermodynamic systems.

Classical Notions of Phase Transitions:

• Ehrenfest (1933): Phase transitions are defined in terms of singularities, at the critical threshold, of such thermodynamic observable parameters as heat capacity, magnetic susceptibility, etc., which are observable.

Classification (n-th order transition): Phase transitions are classified based on the behavior of the thermodynamic potentials, and were labeled by the n-th order derivative of the free energy that is discontinuous at the transition.

- Landau's definition (1940): The transition state of the system beaks the symmetry of the basic state \bar{u} . Landau's transition is of second-order.
- Topological order definition (1971, Thouless-Haldane-Kosterlitz, 2016 Nobel in Phys.): The topological structure of u_{λ} in the physical space differs from that of the basic state. This transition is of 3rd-order or higher-order.

Basic Theorem of Thermodynamic Phase Transitions (Ma-Wang, 2013)

- For the phase transition of a thermodynamic system, there exist only first-order, second-order and third-order phase transitions.
- Moreover the following relations between the Ehrenfest classification and the dynamical classification hold true:

second-order	\iff	continuous
first-order	←	catastrophic
either first or third-order	←	random
first-order	\longrightarrow	either catastrophic or random
third-order	\longrightarrow	random with asymmetric fluctuations.

Remarks

- This theorem can only be derived using the dynamic transition theory.
- In classical thermodynamics, there is no theory to determine the Ehrenfest classification.
- In the theorem, the 1st and 2nd-order transitions on the left-hand side can only be verified and determined by experiments, while the right-hand side is rigorously determined by the dynamic transition theory.
- The 3rd-order transition cannot be determined by thermodynamic parameters, and the topological-order is sometimes used experimentally for this purpose.
- The dynamic transition theory offers an easy theoretical approach to completely determine 3rd-order transitions.

III. Dynamic Transitions in GFD and Climate Dynamics

The theory has been applied to a wide range of problems in nonlinear sciences, leading to a number of **physical predictions**:

- Classical Fluid Dynamics: Bénard convection, Taylor problem, and Taylor-Couette-Poiseuille flows (mechanism of the formation of the Taylor vortices)
- <u>Geophysical Fluid Dynamics and Climate Dynamics</u>: rotating Boussinesq equations (joint with C. Hsia), double-diffusive models (joint with J. Bona & C. Hsia), thermohaline circulation, ENSO (metastable states oscillation theory),
- Equilibrium phase transitions: Gas-liquid transition (the nature and theory of the critical point), ferromagnetism (asymmetry principle of fluctuations), binary systems, superconductivity, and superfluidity

_ Pattern formation and Topological Phase Transitions:

- Benard convection
- Taylor-Couette-Poiseuille flows and formation of Taylor vortices
- formation and mechanism of different patterns in Marengoni flow (with H. Dijkstra and T. Sengul),
- quantum phase transitions work in progress

Baroclinic instabiltiy and transitions:

The nondimensional two-layer quasi-geostrophic model (Pedlosky, 1970):

$$(3) \quad \left[\frac{\partial}{\partial t} + \frac{\partial\psi_1}{\partial x}\frac{\partial}{\partial y} - \frac{\partial\psi_1}{\partial y}\frac{\partial}{\partial x}\right] \left[\Delta\psi_1 + F(\psi_2 - \psi_1) + \beta y\right] = -r\Delta\psi_1 + \frac{1}{Re}\Delta^2\psi_1,$$

$$(4) \quad \left[\frac{\partial}{\partial t} + \frac{\partial\psi_2}{\partial x}\frac{\partial}{\partial y} - \frac{\partial\psi_2}{\partial y}\frac{\partial}{\partial x}\right] \left[\Delta\psi_2 + F(\psi_1 - \psi_2) + \beta y\right] = -r\Delta\psi_2 + \frac{1}{Re}\Delta^2\psi_2,$$

where Re is the Reynolds number, r is friction coefficient, β is the planetary vorticity factor, F is the Froude number, and the basic (shear-type) flow [Mak 85, Cai-Mak 87] is $\psi_1^{(0)} = -Uy$, $\psi_2^{(0)} = Uy$.

Let
$$\psi = \frac{1}{2}(\psi_1 + \psi_2)$$
, $\theta = \frac{1}{2}(\psi_1 - \psi_2) + Uy$.

Domain; $\mathcal{R} = (0, 2\pi\gamma^{-1}) \times (0, \pi)$, with γ being the wavenumber of the lowest zonal harmonic.

BC: (ψ, θ) are periodic in x (zonal), and free-slip in y (meridional).

For $2F > \gamma^2 + 1$, let $\lambda_{k,l} = \gamma^2 k^2 + l^2$, and the **critical shear** U_c be defined by

$$\begin{split} \boldsymbol{U}_{c}^{2} &= \mathcal{U}^{2}(\hat{k}, \hat{l}) \stackrel{\text{def}}{=} \min_{\substack{k,l \geq 1 \\ \lambda_{k,l} < 2F}} \mathcal{U}^{2}(k, l) \\ \mathcal{U}^{2}(k, l) &= \frac{1}{2F - \lambda_{k,l}} \left(\frac{F^{2} \beta^{2}}{\lambda_{k,l} (F + \lambda_{k,l})^{2}} + \frac{\lambda_{k,l} (\frac{1}{Re} \lambda_{k,l} + r)^{2}}{\gamma^{2} k^{2}} \right). \end{split}$$

Transition number:

$$b = (2F - \lambda_{\hat{k},\hat{l}})(\gamma^{2}\hat{k}^{2} - \hat{l}^{2}) + 2\hat{l}^{2}\lambda_{\hat{k},\hat{l}}$$

which captures the nonlinear interactions and dictates the types of transitions.

Theorem [Cai-Hernandez-Ong-Wang, 2017]

- 1. Let $2F \leq \gamma^2 + 1$. Then for system (2) and (3), the basic shear flow always stable for any shear strength U.
- 2. Let $2F > \gamma^2 + 1$. If the transition number b > 0, then the system undergoes a continuous transition to a stable periodic orbit as U crosses U_c :

$$\psi(x, y, t) = \rho \gamma \hat{k} U_c \sin\left(\omega t + \gamma \hat{k} x\right) \sin \hat{l} y + O(|U - U_c|),$$
(5)
$$\theta(x, y, t) = \rho \left(\frac{1}{Re} \lambda_{\hat{k}, \hat{l}} + r\right) \cos\left(\omega t + \gamma \hat{k} x\right) \sin \hat{l} y$$

$$+ \rho \frac{\gamma \hat{k} \beta F}{\lambda_{\hat{k}, \hat{l}} (F + \lambda_{\hat{k}, \hat{l}})} \sin\left(\omega t + \gamma \hat{k} x\right) \sin \hat{l} y + O(|U - U_c|),$$

where

(6)

$$\rho^{2} = \frac{4(2F - \lambda_{\hat{k},\hat{l}})(\frac{1}{Re}\lambda_{0,2\hat{l}} + r)(U - U_{c})}{\gamma^{2}\hat{k}^{2}F[(2F - \lambda_{\hat{k},\hat{l}})(\gamma^{2}\hat{k}^{2} - \hat{l}^{2}) + 2\hat{l}^{2}\lambda_{\hat{k},\hat{l}}](\frac{1}{Re}\lambda_{\hat{k},\hat{l}} + r)}, \\ \omega = \frac{\gamma\hat{k}\beta}{F + \lambda_{\hat{k},\hat{l}}} + O\left(|U - U_{c}|^{3/2}\right).$$

3. Let $2F > \gamma^2 + 1$. If transition number b < 0, then the system undergoes a catastrophic transition as U crosses U_c . Also, the system bifurcates to an unstable periodic solution of the form similar to the above for $U < U_c$.

Note: If $\gamma = 1$, the transition number b > 0 is always positive and the system always undergoes a continuous dynamic transition leading spatiotemporal oscillations.

This suggests that a continuous transition to spatiotemporal patterns is preferable for the shear flow associated with baroclinic instability.

- The 3D continuously stratified rotating Boussinesq equations are fundamental equations in GFD;
- Dynamics associated with their basic zonal shear flows play a crucial role in understanding many important GFD processes, such as the meridional overturning oceanic circulation and the geophysical baroclinic instability;

The linearized eigenvalue problem around the basic shear flow u = (Uz, 0, 0) involves variable coefficients;

 We are developing computer-assisted method, combining the dynamic transition theory and numerical computation, to capture the stable and unstable modes, and their nonlinear interactions; see [Dijkstra-Sengul-Shen-Wang '15, Sengul-Wang '17], Marco Hernandez, Quan Wang, ...

IV. Non-Markovian Parameterizing Manifolds and Closures of SPDE

- M. D. Chekroun, H. Liu, and S. Wang: "Approximation of Invariant Manifolds: Stochastic Manifolds for Nonlinear SPDEs I." SpringerBriefs in Mathematics. Springer, New York, xv+127 pp., 2015.
- M. D. Chekroun, H. Liu, and S. Wang: "Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations: Stochastic Manifolds for Nonlinear SPDEs II." SpringerBriefs in Mathematics. Springer, New York, xvii+129 pp., 2015.
- M. D. Chekroun, H. Liu, J. McWilliams, and S. Wang: Closures for stochastic partial differential equations driven by degenerate noise, 66pp. in preparation.

The SPDEs considered

We will be mainly concerned with SPDEs that can be written into the abstract form

$$du = (L_{\lambda}u + B(u, u)) dt + dW_t, \ u \in \mathcal{H}.$$
(3)

- Typically, $L_{\lambda} = -A + P_{\lambda}$ where P_{λ} is a **bounded linear operator** depending continuously on λ (from $D(A) \subset \mathcal{H}_{\alpha} \subset \mathcal{H}$), and -A is sectorial, and $\operatorname{Re}(\sigma(-A)) < 0$.
- The nonlinearity $B: \mathcal{H}_{\alpha} \times \mathcal{H}_{\alpha} \to \mathcal{H}$ is a bilinear mapping with $\alpha \in [0, 1)$.
- Here the noise is degenerate and takes the form

$$W_t(\omega) = \sum_{k=1}^N \sigma_k W_t^k(\omega) e_k(x), \qquad t \in \mathbb{R}, \ x \in \mathcal{O}, \ \sigma_k \ge 0, \ \omega \in \Omega.$$
(4)

Our goal

Given a low-dimensional reduced phase space, e.g. $\mathcal{H}^{c} = \operatorname{span}\{e_{1}, \dots, e_{m}\}$, we aim at determining *m*-dimensional closure systems able to mimic the main (or certain) features of the SPDE dynamics. In practice, *m* corresponds to a cutoff wavenumber k_{c} .

Our approach

■ Given a decomposition H^c ⊕ H^s = H, we seek for parameterizations of the high modes, i.e. for mapping h : H^c → H^s (possibly random), that will obey key statistical constraints with respect to the ergodic invariant measure when it exists (Hairer, Mattingly,...). In a first attempt, let us look for deterministic high-mode parameterizations of the form

$$h(\xi) := \sum_{n=m+1}^{\infty} \Phi_n(\xi) e_n, \ \xi \in \mathcal{H}^{\mathfrak{c}}.$$

Guidance from the ergodic theory of SPDEs (Hairer, Mattingly, Flandoli,...)

Assume that the SPDE (3) admits an (unique) ergodic invariant measure μ . Let us introduce the normalized parameterization defect (over [0, T]) associated with Φ_n , namely

$$\mathcal{Q}_n(T;\omega) = \frac{\int_0^T \left| \langle u_{\mathfrak{s}}(t;\omega), \boldsymbol{e}_n \rangle - \Phi_n(u_{\mathfrak{c}}(t;\omega)) \right|^2 \mathrm{d}t}{\int_0^T |\langle u_{\mathfrak{s}}(t;\omega), \boldsymbol{e}_n \rangle|^2 \mathrm{d}t}, \ \omega \in \Omega$$

Then for each $n \ge m + 1$, and "any" solution u of Eq. (3), $\lim_{T \to \infty} Q_n(T; \omega)$ exists \mathbb{P} -a.s., and

$$\lim_{T\to\infty}\mathcal{Q}_n(T;\omega)=C_n\int_{(\xi,\zeta)\in\mathcal{H}^\mathfrak{c}\times\mathcal{H}^\mathfrak{s}}|\langle\zeta,\boldsymbol{e}_n\rangle-\Phi_n(\xi)|^2\,\mathrm{d}\mu\,,\quad\mathbb{P}\text{-a.s.}$$

where

$$C_n = \left(\int_{(\xi,\zeta)\in\mathcal{H}^{\mathfrak{c}}\times\mathcal{H}^{\mathfrak{s}}} |\langle \zeta, \boldsymbol{e}_n \rangle|^2 \,\mathrm{d}\mu\right)^{-1}.$$

Variational perspective

- Intuitively one wants $\lim_{T\to\infty} Q_n(T;\omega) < 1$ P-a.s. for as much as possible e_n -modes, $n \ge m+1 \implies$ one wants a parameterizing manifold (PM).
- The extreme case in which for all n ≥ m + 1, Q_n = 1, corresponds to the Galerkin approximation (i.e. no high-mode parameterizations) whereas the case Q_n = 0 (for all n) includes inertial manifolds or other slow manifolds, when they exist!
- One are thus naturally inclined to look for solutions to the following sequence of variational problems

$$\min_{\Phi_n} \int_{(\xi,\zeta)\in\mathcal{H}^{\mathfrak{c}}\times\mathcal{H}^{\mathfrak{s}}} |\langle \zeta, e_n \rangle - \Phi_n(\xi)|^2 \, \mathrm{d}\mu, \ n \ge m+1.$$

• One can prove by using the general disintegration theorem of probability measures that the optimal parameterization (when Φ_n is taken in $L^2_{\mu_c}(\mathcal{H}^{\mathfrak{c}}, \mathcal{H}^{\mathfrak{s}})$)

$$h^*(\xi) = \int_{\mathcal{H}^s} \zeta \, \mathrm{d} \mu_{\boldsymbol{\xi}}(\zeta), \ \xi \in \mathcal{H}^{\mathfrak{c}},$$

denotes the optimal Markovian high-mode parameterization. Here, μ_{ξ} denotes the disintegrated probability measure on the high-mode space $\mathcal{H}^{\mathfrak{s}}$ and that is conditioned on the low-mode variable ξ in $\mathcal{H}^{\mathfrak{c}}$.

Recall that

$$\mu(B \times F) = \int_{F} \mu_{\xi}(B) \, \mathrm{d}\mu_{\mathfrak{c}}(\xi), \ B \times F \in \mathcal{B}(\mathcal{H}^{\mathfrak{s}}) \otimes \mathcal{B}(\mathcal{H}^{\mathfrak{c}})$$

where μ_{c} is the *push-forward* of the measure μ by Π_{c} , *i.e.* $\mu_{c}(F) = \mu(\Pi_{c}^{-1}(F))$.

Mode-dependent minimization problems

With this purpose in mind, given a reduced phase space $\mathcal{H}^{\mathfrak{c}} := \operatorname{span}\{e_1, \cdots, e_m\}$, and a fully resolved solution $u(t, \omega)$ of (3) available over a training interval [0, T] for a noise realization ω , we propose to solve $n \ge m + 1$ the following multiscale minimization problem

$$\min_{\tau} \int_0^T \left| u_n(t,\omega) - u_n^{(1)} [u_{\mathfrak{c}}(t,\omega)](\tau,\theta_{-\tau}\omega) \right|^2 \mathrm{d}t,\tag{5a}$$

where $u_n^{(1)}[\xi](\tau, \theta_{-\tau}\omega)$ is the sol., at t = 0 and for the **noise realization** ω , of $du^{(1)} = L u^{(1)}(s) ds + d\Pi W$ $s \in [-\tau, 0]$

$$du_{c}^{(1)} = L_{c}u_{c}^{(1)}(s) ds + d\Pi_{c}W_{s}, \quad s \in [-\tau, 0],$$
(5b)

$$du_n^{(1)} = \left[\beta_n u_n^{(1)}(s) + \Pi_n B\left(u_c^{(1)}(s-\tau), u_c^{(1)}(s-\tau)\right)\right] ds + d\Pi_n W_{s-\tau}, \ s \in [0,\tau],$$
(5c)

with
$$u_{\mathfrak{c}}^{(1)}(s,\omega)|_{s=0} = \xi \in \mathcal{H}^{\mathfrak{c}}$$
, and $u_{n}^{(1)}(s,\theta_{-\tau}\omega)|_{s=0} = 0.$ (5d)

/ = 1

Theorem (M. Chekroun, H. Liu, J. McWilliams, & S. W., 2017)

Consider the SPDE (3) with L being self-adjoint and the noise being given by

$$W_t(\omega) = \sum_{k=1}^N \sigma_k W_t^k(\omega) e_k, \ \sigma_k \ge 0, \ \omega \in \Omega.$$
(8)

Then given a reduced phase space $\mathcal{H}^{\mathfrak{c}}$, the stochastic process $(u_{\mathfrak{c}}^{(1)}, u_n^{(1)})$ evolving in $\mathcal{H}^{\mathfrak{c}} \times \operatorname{span}\{e_n\}$ and solving the **backward-forward system** (5b)-(5c) subject to the boundary conditions (5d), has the following integral representation,

$$\begin{split} u_n^{(1)}[\xi](\tau,\theta_{-\tau}\omega) &= -e^{\beta_n\tau}\Pi_n W_{-\tau}(\omega) + \beta_n \int_{-\tau}^0 e^{-\beta_n s}\Pi_n W_s(\omega) \,\mathrm{d}s \\ &+ \int_{-\tau}^0 e^{-\beta_n s}\Pi_n B\big(u_{\mathfrak{c}}^{(1)}(s,\omega;\xi), u_{\mathfrak{c}}^{(1)}(s,\omega;\xi)\big) \,\mathrm{d}s, \ \xi \in \mathcal{H}^{\mathfrak{c}}, \end{split}$$

and

$$u_{\mathfrak{c}}^{(1)}(s,\omega;\xi) = e^{sL_{\mathfrak{c}}}\xi - \int_{\tau}^{0} e^{(s-s')L_{\mathfrak{c}}} L_{\mathfrak{c}}\Pi_{\mathfrak{c}}W_{s'}(\omega)\,\mathrm{d}s' + \Pi_{\mathfrak{c}}W_{\tau}(\omega), \qquad s \in [-\tau,0].$$

Moreover, the stochastic process $u_n^{(1)}[\xi](\tau, \theta_{-\tau}\omega; 0)$ admits the following expression

$$\begin{split} u_{n}^{(1)}[\xi](\tau,\theta_{-\tau}\omega) &= \sigma_{n}e^{\tau\beta_{n}}W_{-\tau}^{n}(\omega) + Z_{\tau}^{n}(\beta,\omega) + \sum_{i_{1}=1}^{m}\sum_{i_{2}=1}^{m} \left(P_{\tau}^{n,i_{1},i_{2}}(\beta,\omega) + C_{\tau}^{n,i_{1},i_{2}}(\beta,\omega)\xi_{i_{1}} + C_{\tau}^{n,i_{2},i_{1}}(\beta,\omega)\xi_{i_{2}} + D_{i_{1},i_{2}}^{n}(\tau,\beta)\xi_{i_{1}}\xi_{i_{2}}\right) \langle B(e_{i_{1}},e_{i_{2}}),e_{n} \rangle. \end{split}$$

Explicit formulas

Here
$$\sigma_n = 0$$
 and $Z_{\tau}^n(\boldsymbol{\beta}, \omega) = 0$ if $n > N$, and where for all n ,

$$D_{i_1, i_2}^n(\boldsymbol{\tau}, \boldsymbol{\beta}) = \begin{cases} \frac{1 - \exp\left(-(\beta_{i_1} + \beta_{i_2} - \beta_n)\tau\right)}{\beta_{i_1} + \beta_{i_2} - \beta_n}, & \text{if } \beta_{i_1} + \beta_{i_2} - \beta_n \neq 0, \\ \tau, & \text{otherwise} \end{cases}$$
(9)

while the **path-dependent coefficients** are given by $Z_{\tau}^{n}(\beta,\omega) := \sigma_{n}\beta_{n}\int_{-\tau}^{0} e^{-s\beta_{n}}W_{s}^{n}(\omega) ds$, and $P_{\tau}^{n,i_{1},i_{2}}(\beta,\omega) = \sum_{j=1}^{4} M_{j,\tau}^{n,i_{1},i_{2}}(\omega), \quad C_{\tau}^{n,i_{1},i_{2}}(\beta,\omega) = \sum_{j=5}^{6} M_{j}^{n,i_{1},i_{2}}(\omega), \quad \text{with}$ $M_{1,\tau}^{n,i_{1},i_{2}}(\beta,\omega) := \sigma_{i_{1}}\sigma_{i_{2}}\int_{-\tau}^{0} e^{-\beta_{n}s}W_{s}^{i_{1}}(\omega)W_{s}^{i_{2}}(\omega) ds,$ $M_{2,\tau}^{n,i_{1},i_{2}}(\beta,\omega) := -\sigma_{i_{1}}\sigma_{i_{2}}\beta_{i_{2}}\int_{-\tau}^{0} \left(e^{-\beta_{n}s}W_{s}^{i_{1}}(\omega)\int_{s}^{0} e^{(s-s')\beta_{i_{2}}}W_{s'}^{i_{2}}(\omega)ds'\right) ds,$ $M_{3,\tau}^{n,i_{1},i_{2}}(\beta,\omega) := M_{2,\tau}^{n,i_{2},i_{1}}(\beta,\omega), \quad M_{5,\tau}^{n,i_{1},i_{2}}(\beta,\omega) := \sigma_{i_{2}}\int_{-\tau}^{0} e^{(\beta_{i_{1}}-\beta_{n})s}W_{s}^{i_{2}}(\omega)ds,$ (10) $M_{4,\tau}^{n,i_{1},i_{2}}(\beta,\omega) := \sigma_{i_{1}}\sigma_{i_{2}}\beta_{i_{1}}\beta_{i_{2}}\int_{-\tau}^{0} \left(e^{-\beta_{n}s}\int_{s}^{0} e^{(s-s')\beta_{i_{1}}}W_{s'}^{i_{1}}(\omega)ds'\int_{s}^{0} e^{(s-s')\beta_{i_{2}}}W_{s'}^{i_{2}}(\omega)ds'\right) ds,$ $M_{6,\tau}^{n,i_{1},i_{2}}(\beta,\omega) := -\sigma_{i_{2}}\beta_{i_{2}}\int_{-\tau}^{0} \left(e^{(\beta_{i_{1}}-\beta_{n})s}\int_{s}^{0} e^{(s-s')\beta_{i_{2}}}W_{s'}^{i_{2}}(\omega)ds'\right) ds.$

■ These non-Markovian M_n-terms solve auxiliary Random Auxiliary Equations (RDEs).

28

Application to a stochastic Burgers-Sivashinsky equation

We consider the Burgers-Sivashinsky equation driven by a degenerate additive noise:

$$du = \left(\nu u_{xx} + \lambda u - u u_x\right) dt + dW_t(x,\omega), \qquad (x,t) \in (0,l) \times \mathbb{R}^+,$$

$$u(0,t;\omega) = u(l,t;\omega) = 0, \qquad t \ge 0,$$

$$u(x,0;\omega) = u_0(x), \qquad x \in (0,l).$$

with $W_t(x,\omega) = \sum_{k=1}^N \sigma_k W_t^k(\omega) e_k(x), \ \sigma_k \ge 0, \ N \in \mathbb{Z}^+.$

The SPDE is set in a parameter regime where sharp spatial gradient is present in the spatiotemporal field:

• $l = 9\pi$, $\nu = 0.01$, $\lambda = (100+1)\nu\pi^2/L^2$. We have **10 unstable eigenmodes**.

• The eigenmodes 15 - 30 are forced, $\sigma_k = 4\sqrt{\nu} k^{-2} / \left(\sum_{k=k_s}^{k_f} k^{-2} \right)$.

PDF and PSD of the TV-norm anomalies, $\|u\|_{\mathrm{TV}} - \langle \|u\|_{\mathrm{TV}} \rangle$

