Distinguished models of intermediate Jacobians

Jeff Achter

j.achter@colostate.edu Colorado State University http://www.math.colostate.edu/~achter

June 2017 Arithmetic Aspects of Explicit Moduli Problems

1 Prelude

- Basic question
- Plausibility
- (intermediate) Jacobians
- Target Theorem

2 Proof

- Capture
- Descent

Beyond torsion

- Regularity
- Descent of regular maps

-

The quest for the phantom

Mazur's Question

 X/\mathbb{Q} a smooth projective threefold, $h^{3,0} = h^{0,3} = 0$. Is there an abelian variety A/\mathbb{Q} :

 $H^3(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_\ell(1)) \cong H^1(A_{\overline{\mathbb{Q}}}, \mathbb{Q}_\ell)?$

Such an *A* is called a phantom.

Joint work with Sebastian Casalaina-Martin (Boulder) and Charles Vial (Bielefeld).

Weights

- Y/\mathbb{Q} smooth, projective.
 - $H^r(Y_{\overline{\mathbb{Q}}}, \mathbb{Q}_\ell)$ pure of weight *r*:

$$\left|\operatorname{Fr}_{p}|H^{r}(Y_{\overline{\mathbb{Q}}},\mathbb{Q}_{\ell})\right|=\sqrt{p^{r}}.$$

• $H^r(Y_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(j))$ is pure of weight r - 2j.

イロト イポト イヨト イヨト

Prelude

Plausibility

Hodge numbers

 Y/\mathbb{C} smooth, projective.

• $H^r(Y(\mathbb{C}), \mathbb{Q})$ has Hodge structure of weight *r*:

$$H^{r}(Y(\mathbb{C}),\mathbb{Q})\otimes\mathbb{C}=\oplus_{p+q=r}H^{p,q}(Y)$$
$$H^{p,q}(Y)=H^{q}(Y(\mathbb{C}),\Omega_{Y}^{p})$$
$$h^{p,q}(Y)=\dim H^{p,q}(Y)$$

• Ex: dim Y = 3

イロト イポト イヨト イヨト 一日

Newton over Hodge

 X/\mathbb{Z}_p smooth, projective, good reduction.

- NP(X, r) Newton polygon of Fr on $H^r_{dR}(X_{\mathbb{Q}_p}) \cong H^r_{cris}(X_p)$.
- HP(X, r) r^{th} Hodge polygon, vertices $(\sum_{0 \le j \le k} h^{r-j,j}, \sum_{0 \le j \le k} jh^{r-j})$.

Theorem (Mazur)

NP(X, r) lies on or above HP(X, r).

< 注 → < 注 →

Divisibility

Corollary

If $h^{30}(X) = 0$, then each eigenvalue of Frobenius on $H^3(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1))$ is an algebraic integer of size \sqrt{p} .

Proof.

- NP(X,3) over HP(X,3) implies all slopes of Fr_p on $H^3(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_\ell)$ are ≥ 1 .
- \implies each eigenvalue α of Fr_p on $H^3(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_\ell)$ divisible by p
- \implies each eigenvalue α/p of Fr_p on $H^3(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(1))$ is algebraic integer of size \sqrt{p} .

 $H^3(X_{\overline{\mathbb{O}}}, \mathbb{Q}_{\ell}(1))$ could come from an abelian variety

イロト イポト イヨト イヨト 一日

Jacobians

Jacobians as Phantoms

If X/K smooth projective, then Pic_X^0 is a phantom in degree 1.

From Kummer sequence

$$1 \longrightarrow \boldsymbol{\mu}_{N} \longrightarrow \mathcal{O}_{X}^{\times} \xrightarrow{[N]} \mathcal{O}_{X}^{\times} \longrightarrow 1$$
get
$$0 \longrightarrow H^{1}(X_{\overline{K}}, \boldsymbol{\mu}_{N}) \longrightarrow H^{1}(X_{\overline{K}}, \mathcal{O}_{X}^{\times}) \longrightarrow H^{1}(X_{\overline{K}}, \mathcal{O}_{X}^{\times})$$
so

$$H^{1}(X_{\overline{K}}, \mathbb{Z}/N(1)) \cong \ker \left(H^{1}(X_{\overline{K}}, \mathcal{O}_{X}^{\times}) \to H^{1}(X_{\overline{K}}, \mathcal{O}_{X}^{\times}) \right) \cong \operatorname{Pic}_{X}^{0}[N](\overline{K}).$$

Complex Jacobians X/C smooth projective Exponential sequence

 $H^1(X,\mathbb{Z}) \hookrightarrow H^1(X,\mathcal{O}_X) \longrightarrow H^1(X,\mathcal{O}_X^{\times}) \longrightarrow H^2(X,\mathbb{Z})$

 $\cong \operatorname{Pic}_X(\mathbb{C})$

 $\subseteq \operatorname{Pic}_X^0(\mathbb{C})$

and so

$$\operatorname{Pic}_{X}^{0}(\mathbb{C}) = \frac{H^{1}(X, \mathcal{O}_{X})}{H^{1}(X, \mathbb{Z})}.$$

イロト イポト イヨト イヨト 一日

Intermediate Jacobians

$$\operatorname{Pic}_{X}^{0}(\mathbb{C}) \cong \frac{H^{1}(X, \mathcal{O}_{X})}{H^{1}(X, \mathbb{Z})}$$
$$\cong \operatorname{Fil}^{1} H^{1}(X, \mathbb{C}) \setminus H^{1}(X, \mathbb{C}) / H^{1}(X, \mathbb{Z}).$$

More generally, intermediate Jacobians are

 $J^{2n+1}(X) = \operatorname{Fil}^{n+1} \setminus H^{2n+1}(X, \mathbb{C}) / H^{2n+1}(X, \mathbb{Z}).$

If $H^{2n+1}(X, \mathbb{C})$ has Hodge level one, then

- $H^{2n+1} = H^{n+1,n} \oplus H^{n,n+1};$
- Complex torus $J^{2n+1}(X)$ is actually an abelian variety.

イロト イポト イヨト イヨト 二日

Complete intersections: Deligne

Theorem (Deligne)

Suppose X/\mathbb{Q} a complete intersection of dimension 2n + 1, and $H^{2n+1}(X,\mathbb{C})$ has Hodge level one. Then $J^{2n+1}(X_{\mathbb{C}})$ descends to an abelian variety J/\mathbb{Q} , and J is a phantom for X.

Idea

- Monodromy action on universal $\mathcal{J}^{2n+1}(\mathcal{X})$ over Hilbert scheme is irreducible.
- Descent.

(j.achter@colostate.edu)

イロト イポト イヨト イヨト 三日

Coniveau

X/K smooth projective.

 $N^{r}H^{i}(X_{\overline{K}}, \mathbb{Q}_{\ell}) \subseteq \widetilde{N}^{r}H^{i}(X_{\overline{K}}, \mathbb{Q}_{\ell}) \subseteq H^{i}(X_{\overline{K}}, \mathbb{Q}_{\ell})$

- $N^r H^i$ from $Y \hookrightarrow X$ of codim r.
- $\widetilde{N}^r H^i$ is maximal $M \subset H^i$; M(r) effective.

Generalized Tate Conjecture

 $N^{r}H^{i}(X_{\overline{K}}, \mathbb{Q}_{\ell}) = \widetilde{N}^{r}H^{i}(X_{\overline{K}}, \mathbb{Q}_{\ell}).$

Abel–Jacobi

X/*K* smooth projective.

- $CH^{r}(X) = \{ codim r cycles \} / \{ rat equiv \}$ Chow group.
- $A^r(X) \subset CH^r(X)$ algebraically trivial cycles .

If X/\mathbb{C} , have Abel–Jacobi map

$$\mathbf{A}^{n+1}(X) \stackrel{\mathbf{AJ}}{\longrightarrow} J^{2n+1}(X)$$

- 3 - ▶

Main result

Theorem (A.–C.-M.–V.)

X / *K* a smooth projective variety over a subfield of \mathbb{C} , $n \in \mathbb{Z}_{\geq 0}$. Then there exists an abelian variety J / K such that

 $J_{\mathbb{C}} = J_a^{2n+1}(X_{\mathbb{C}})$

and the Abel–Jacobi map

$$\mathbf{A}^{n+1}(X_{\mathbb{C}}) \xrightarrow{\mathbf{AJ}} J(\mathbb{C})$$

is Aut(\mathbb{C}/K)*-equivariant.*

Proof

1 Preluc

- Basic question
- Plausibility
- (intermediate) Jacobians
- Target Theorem

2 Proof

- Capture
- Descent

Beyond torsion

- Regularity
- Descent of regular maps

Lemma

There exist:

- *C*/*K* a smooth projective geometrically irreducible curve;
- $\gamma \in CH^{n+1}(C \times X)$ a correspondence on $C \times X$;

such that induced map is surjective:

$$H^{1}(C_{\overline{K}},\mathbb{Q}_{\ell}) \xrightarrow{\gamma_{*}} \mathbb{N}^{n} H^{2n+1}(X_{\overline{K}},\mathbb{Q}_{\ell}(n)).$$

Capture

Strategy

•
$$\exists f: Y \hookrightarrow X/K$$
, codim n ,

$$f_*H^1(Y_{\overline{K}},\mathbb{Q}_\ell)=\mathbb{N}^n\,H^{2n+1}(X_{\overline{K}},\mathbb{Q}_\ell)(n).$$

- Bertini: $C \hookrightarrow Y$ a curve, $H^1(Y) \hookrightarrow H^1(C)$.
- γ Construct a correspondence via

$$H^1(C) \hookrightarrow H^{2d_Y-1}(Y) \xrightarrow{\sim} H^1(Y) \longrightarrow H^{2n+1}(X)$$

(Only middle arrow difficult; Lefschetz standard conjecture in degree one.)

Can take *C* geometrically irreducible using:

- $\beta : C \to \operatorname{Pic}^0_C$ inducing isomorphism on $H^1(\cdot, \mathbb{Q}_\ell)$;
- Bertini for geometrically irreducible variety Pic⁰_C.

We have

$$J^1(C_{\mathbb{C}}) \xrightarrow{\gamma_*} J^{2n+1}_a(X_{\mathbb{C}}).$$

- $J^1(C_{\mathbb{C}}) = (\operatorname{Pic}^0_C)_{\mathbb{C}}$ has a distinguished model over *K*.
- Use this and γ_* to obtain model for $J_a^{2n+1}(X_{\mathbb{C}})$.

Proof C

Descent

\mathbb{C}/\overline{K}

- \mathbb{C}/\overline{K} is a regular extension of fields.
- $\underline{J}_{\underline{a}}^{2n+1}(X_{\mathbb{C}}) := \operatorname{tr}_{\mathbb{C}/\overline{K}}(J_a^{2n+1}(X_{\mathbb{C}}))$ is "largest" abelian variety defined over \overline{K} .

Rigidity:

$$\operatorname{Hom}_{\overline{K}}(J(C)_{\overline{K}}, J_{=a}^{2n+1}(X_{\mathbb{C}})) = \operatorname{Hom}_{\mathbb{C}}(J(C_{\overline{K}})_{\mathbb{C}}, J_{a}^{2n+1}(X_{\mathbb{C}})).$$

Get surjection

$$J(C_{\overline{K}}) \longrightarrow \underbrace{J}_{=a}^{2n+1}(X_{\mathbb{C}})$$

of abelian varieties over \overline{K} .

\overline{K}/K

Need to show

$$J(C_{\overline{K}}) \xrightarrow{\gamma_*} \underbrace{J^{2n+1}}_{=a}(X_{\mathbb{C}})$$

descends to K.

• Suffices to show

 $(\ker \gamma_*)[N](\overline{K})$

stable under Gal(K).

Strategy suggested to us by Gabber.

-

 $\star \underline{J}_{\underline{=}a}^{2n+1}(X_{\mathbb{C}})[N]$ $J(C_{\overline{K}})[N]$ —

イロト イポト イヨト イヨト

イロト イポト イヨト イヨト

Models

- Since $\ker(J^1(C)_{\overline{K}} \to \underline{J}_{\underline{a}a}^{2n+1}(X_{\mathbb{C}}))$ stable under $\operatorname{Gal}(K)$, we have a model J/K for $J_a^{2n+1}(X_{\mathbb{C}})$.
- How do we know this is the right model?

Recall the Abel–Jacobi map

$$A^{n+1}(X_{\mathbb{C}}) \xrightarrow{AJ} J^{2n+1}_a(X_{\mathbb{C}}).$$

Lemma

The model J/K of J_a^{2n+1}(X_{\mathbb{C}}) makes AJ Gal(*K*)*-equivariant on torsion.*

イロト イポト イヨト イヨト

Recall the Abel-Jacobi map

$$A^{n+1}(X_{\mathbb{C}}) \xrightarrow{AJ} J^{2n+1}_a(X_{\mathbb{C}}).$$

Lemma

The model J/K of J_a^{2n+1}(X_{\mathbb{C}}) makes AJ Gal(K)-equivariant on torsion.

イロト イポト イヨト イヨト

Corollary

J is a phantom for *X* in degree 2n + 1.

< D > < 🗗

- E

∃ >

Prelud

- Basic question
- Plausibility
- (intermediate) Jacobians
- Target Theorem

2 Proof

- Capture
- Descent

3 Beyond torsion

- Regularity
- Descent of regular maps

• Still want to show

$$\mathbf{A}^{n+1}(X_{\mathbb{C}}) \xrightarrow{\mathbf{A}\mathbf{J}} J(\mathbb{C})$$

is Aut(\mathbb{C}/K)-equivariant.

• Rigidity fails for non-torsion points (on abelian varieties) and cycles (on arbitrary varieties).

Key Tool

AJ : $A^{n+1}(X_{\mathbb{C}}) \to J^{2n+1}_a(X)(\mathbb{C})$ is *regular* (in the sense of Samuel).

Regular maps

- $X/k = \overline{k}$, A/k an abelian variety.
- An abstract group homomorphism

$$A^{i}(X) \xrightarrow{\phi} A(k)$$

is regular if for every pointed variety (T, t_0) , and every family of cycles $Z \in CH^i(T \times X)$, the map of sets

$$T(k) \xrightarrow{w_Z} A^i(X) \xrightarrow{\phi} A(k)$$

$$t \longmapsto [Z_t] - [Z_{t_0}]$$

Regular maps

- $X/k = \overline{k}$, A/k an abelian variety.
- An abstract group homomorphism

$$A^{i}(X) \xrightarrow{\phi} A(k)$$

is regular if for every pointed variety (T, t_0) , and every family of cycles $Z \in CH^i(T \times X)$, the map of sets is induced by a morphism

Ω/k

Lemma

 Ω/k an extension of algebraically closed fields of characteristic zero, X/k smooth projective, A/Ω an abelian variety,

$$A^i(X_{\Omega}) \xrightarrow{\phi} A(\Omega)$$

regular and surjective. Then $A = (\underline{\underline{A}})_{\Omega}$; $\phi = (\underline{\phi})_{\Omega}$; and

$$A^{i}(X) \xrightarrow{\phi} \underline{\underline{A}}(k)$$

is regular and surjective.

Key Idea

Use rigidity; $A^i(X_{\Omega})[N] \cong A^i(X_{\overline{K}})[N]$.

\overline{K}/K

Proposition

K perfect, X/K smooth and projective, A/K an abelian variety. Suppose

$$A^{i}(X_{\overline{K}}) \xrightarrow{\phi} A(\overline{K})$$

is regular and surjective. If $\phi[\ell^n]$ is Gal(K)-equivariant for all n, then ϕ is Gal(K)-equivariant.

Key Idea

For test varieties (T, t_0) , abelian varieties are enough.

イロト イ理ト イヨト イヨト

Weil's lemma

Algebraically trivial cycles are witnessed by abelian varieties:

Lemma

Let X/K be a scheme of finite type over a field, and let $\alpha \in A^i(X_{\overline{K}})$ be an algebraically trivial cycle class. Then there exist an abelian variety B/K, a cycle class $Z \in CH^i(B \times X)$, and $a t \in Z(\overline{K})$ such that

$$\alpha = [Z_t] - [Z_0].$$

- Weil (and Lang) prove this for $K = \overline{K}$.
- Their proof breaks down over arbitrary *K*; may not be enough Brill-Noether generic *K*-rational points.

イロト イ理ト イヨト イヨト

For regular maps, Gal(*K*)-equivariance on torsion implies equivariance:

• Weil's lemma: Find B/K abelian variety, $Z \in CH^i(B \times X)$,

$$B(\overline{K}) \xrightarrow{w_{Z}} A^{i}(X_{\overline{K}}) \longrightarrow A(\overline{K})$$

surjective.

• On torsion, have

$$B(\overline{K})[\ell^{\infty}] \xrightarrow{w_{Z}[\ell^{\infty}]} A^{i}(X_{\overline{K}})[\ell^{\infty}] \xrightarrow{\phi[\ell^{\infty}]} A(\overline{K})[\ell^{\infty}]$$

φ[ℓ[∞]] Gal(K)-equivariant by hypothesis.
w_Z[ℓ[∞]] is Gal(K)-equivariant since Z/K, 0 ∈ B(K).

So ψ : $B_{\overline{K}} \to A_{\overline{K}}$ descends to *K*.

Consequence

Corollary

If $K \subset \mathbb{C}$, then $A^{n+1}(X_{\mathbb{C}}) \to J(\mathbb{C})$ is $Aut(\mathbb{C}/K)$ -equivariant.

(j.achter@colostate.edu)

B N A B N

What about the explicit moduli?

Classification

 $X_n(a_1, \cdots, a_d) \subset \mathbb{P}^{n+d}$ a smooth complete intersection of dimension *n*, multidegree <u>*a*</u>.

Rapoport's Classification

A smooth complete intersection has Hodge level one if and only if it belongs to the following list:

 $X_n(2,2)$ intersection of two quadrics in \mathbb{P}^{n+2} ;

- $X_n(2,2,2)$ intersection of three quadrics;
 - $X_3(3)$ cubic threefold;
 - $X_3(2,3)$ a threefold, realized as the intersection of a quadric and cubic;
 - $X_5(3)$ cubic fivefold;
 - $X_3(4)$ quartic threefold.

< □ > < □ > < □ > < □ > < □ > < □

Period maps for Hodge level one

Distinguished models give new proof of:

Theorem (Deligne)

Let \mathcal{V} be a moduli space of complete intersection varieties of Hodge level one. The period map

$$\mathcal{V}(\mathbb{C}) \longrightarrow \mathcal{A}_{g(\mathcal{V})}(\mathbb{C})$$

is induced by a morphism

$$\mathcal{V}_{\mathbb{Q}} \longrightarrow \mathcal{A}_{g(\mathcal{V}),\mathbb{Q}}$$

over \mathbb{Q} .

From points to period maps

Proof.

• If $X \in \mathcal{V}(\mathbb{C})$,

$CH_0(X)_{\mathbb{Q}}, \cdots, CH_{n-1}(X)_{\mathbb{Q}}$

spanned by linear sections (Otwinoska).

- Decomposition of the diagonal; $A^n(X) \to J^{2n+1}(X)$ surjective, so $J^{2n+1}(X) = J_a^{2n+1}(X)$ (Bloch-Srinivas).
- If $\Gamma \in CH(J^{2n+1}(X) \times X)$ witnesses $J^{2n+1}(X)$ as intermediate Jacobian, and $\sigma \in Aut(\mathbb{C})$, then Γ^{σ} witness $J^{2n+1}(X)^{\sigma}$ as intermediate Jacobian of X^{σ} .

• So,

$$\left\{ (X, J^{2n+1}(X)) \right\} \subset (\mathcal{V} \times \mathcal{A}_{g(\mathcal{V})})(\mathbb{C})$$

stable under $Aut(\mathbb{C}/\mathbb{Q})$, and the period map descends.

Cubic surface

A cubic surface X/\mathbb{C} has no periods:

- $H^0(X, \Omega^2) = 0;$
- Hodge filtration is trivial:

Nonetheless:

-

Cubic surfaces

Theorem (Allcock-Carlson-Toledo, Dolgachev-van Geemen-Kondō)

There is an open immersion

 $\mathcal{S}_{\mathbb{C}} \longrightarrow \Gamma \backslash \mathbb{B}^4$

where

- $S = V_2(3)$ is the moduli space of cubic surfaces;
- $\Gamma \cong SU_{1,4}(\mathbb{Z}[\zeta_3]).$

イロト イロト イヨト イヨト

How do they do it?

Given X/\mathbb{C} a cubic surface, A-C-T:

- Let $Y \to \mathbb{P}^3$ be triple cover ramified along X.
- *Y* is a cubic threefold with μ_3 -action.
- Compute the periods of *Y*. Equivalently, $J^3(Y)$.

Get diagram of spaces over $\mathbb C$

 \mathcal{S} cubic surfaces;

 \mathcal{T} cubic threefolds;

$\mathcal{H}(n, r, d)$ uniform cyclic covers of \mathbb{P}^n of degree r, branch along divisor of degree rd.

(j.achter@colostate.edu) Distinguished models of intermediate Jacobia June 2017

7 39 / 50

Occult periods

• $\boldsymbol{\mu}_3$ action on *Y* gives $\mathbb{Z}[\zeta_3]$ action on $J^3(Y)$.

Let

 $\mathcal{A}_{\mathbb{Z}[\zeta_3],(1,4)}$

be the moduli space (over $\mathbb{Z}[\zeta_3, 1/3]$) of principally polarized abelian fivefolds with action by $\mathbb{Z}[\zeta_3]$ of signature (1,4).

• Image of $\widetilde{\mathcal{S}}_{\mathbb{C}} \to \mathcal{A}_{5,\mathbb{C}}$ lands in $\mathcal{A}_{\mathbb{Z}[\zeta_3],(1,4),\mathbb{C}}$.

Note: $\mathcal{A}_{\mathbb{Z}[\zeta_3],(1,4),\mathbb{C}}$ is an arithmetic quotient of \mathbb{B}^4 , the complex 4-ball.

Occult period map descends

Theorem (Kudla–Rapoport,A.-, A–C-M–V)

The Allcock-Carlson-Toledo map is the base change of a morphism

$$\widetilde{\mathcal{S}}_{\mathbb{Q}(\zeta_3)} \longrightarrow \mathcal{A}_{\mathbb{Z}[\zeta_3],(1,4),\mathbb{Q}(\zeta_3)}$$

of stacks over $\mathbb{Q}(\zeta_3)$.

Proofs.

K-R Deligne strategy (irreducibility of monodromy);

A.- Construct intermediate Jacobians geometrically;

A–C-M–V Distinguished models.

In fact, spreads to $\mathbb{Z}[\zeta_3, 1/6]$.

イロト イ理ト イヨト イヨ

Six points

Three views of six points

Let $\mathcal{M}_{0.6}$ be the moduli space of six points on a line.

Proposition

 $\mathcal{M}_{0.6}(\mathbb{C})$ is open in $\Gamma \setminus \mathbb{B}^3$, an arithmetic quotient of the 3-ball.

Three views of six points

Let $\mathcal{M}_{0.6}$ be the moduli space of six points on a line.

Proposition

 $\mathcal{M}_{0.6}(\mathbb{C})$ is open in $\Gamma \setminus \mathbb{B}^3$, an arithmetic quotient of the 3-ball.

Three reasons:

- Picard curves;
- K3 surfaces;
- Cubic surfaces.

Curves

$D = \{P_1, \cdots, P_6\} \qquad f(x)$ $C \to \mathbb{P}^1 \text{ cyclic triple cover } y^3 = f(x)$ ramified along DJ = Jac(C)

Then *J* has action by $\mathbb{Z}[\zeta_3]$ of signature (1,3).

• Torelli map factors:

$$\mathcal{M}_{0,6} \longrightarrow \mathcal{A}_{\mathbb{Z}[\zeta_3],(1,3)} \hookrightarrow \mathcal{A}_4$$

• Count dimensions:

$$\begin{split} & \dim \mathcal{M}_{0,6} = 6 \dim \mathbb{P}^1 - \dim Aut(\mathbb{P}^1) = 6 - 3 = 3 \\ & \dim \mathcal{A}_{\mathbb{Z}[\zeta_3],(1,3)} = 1 \cdot 3 = 3 \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ の々で

Six points

K3 surfaces (d'apres Kondō)

$D = \{P_1, \dots, P_6\} \qquad f(x)$ $C \to \mathbb{P}^1 \text{ cyclic triple cover} \qquad y^3 = f(x)$ ramified along D $Y \to \mathbb{P}^2 \text{ cyclic triple cover} \qquad z^3 = (y^3 - f(x))$ ramified along Y Z minimal resolution of Y

• Then *Z* is a K3 surface with (diagonal) μ_3 -action.

Lattice polarizations

Consider lattices

$$L_{K3} = U^3 \oplus E_8(-1)^2$$
$$L = U \oplus E_6(-1) \oplus A_2(-1)^3$$
$$L_{K3} \cong L \oplus L^{\perp}$$
$$L^{\perp} = A_2 \oplus A_2(-1)^3$$

- Cycles from construction give primitive $L \hookrightarrow Pic(Z)$.
- (L ⊗ Q_ℓ)[⊥] ⊂ H²(Z, Q_ℓ) free over Z[ζ₃] ⊗ Q_ℓ, Hermitian form of signature (1,3).
- $Z \in \mathcal{K}_{L,\mu_{3},(1,3)}$, moduli space of *L*-polarized K3 surfaces with action by μ_{3}, \cdots .
- Get map

$$\mathcal{M}_{0,6} \longrightarrow \mathcal{K}_{L,\boldsymbol{\mu}_{3},(1,3)}$$

Six points

Periods for K3 surfaces

• Sh^L Shimura variety attached to $SO_{L^{\perp}}$.

Example

 $Sh^{L(2d)}(\mathbb{C}) \cong \Gamma \setminus \mathbb{X}^{L(2d)}$, an arithmetic quotient of a 19-dimensional Hermitian symmetric domain of type IV.

Theorem

The period map gives an open embedding $\mathcal{K}_{L(2d)}(\mathbb{C}) \hookrightarrow \mathcal{Sh}^{L(2d)}(\mathbb{C})$ *.*

Theorem (Rizov, Madapusi-Pera)

The period map descends to $\mathbb{Z}[1/2d]$ *.*

イロト イポト イヨト イヨト 一日

Integral period maps

Proposition

The period map descends to maps over $\mathbb{Z}[\zeta_3, 1/6d]$

where horizontal arrows are closed, vertical are étale.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ の々で

Six points

Integral period maps

Proposition

The period map descends to maps over $\mathbb{Z}[\zeta_3, 1/6d]$

where horizontal arrows are closed, vertical are étale.

Proof.

- Moduli spaces of structured K3 surfaces are smooth.
- Integral canonical models of Shimura varieties (Milne, Vasiu, Kisin).

Integral period maps

Proposition

The period map descends to maps over $\mathbb{Z}[\zeta_3, 1/6d]$

where horizontal arrows are closed, vertical are étale.

Now, compose with $\mathcal{M}_{0,6} \to \mathcal{K}_{L,\boldsymbol{\mu}_{3},(1,3)}$.

Cubics

Since a cubic surface is the blowup of a projective plane at six points, consider the following moduli spaces:

- \mathcal{S} Smooth cubic surfaces;
- S^{st} Stable cubic surfaces;

 $S^n = S^{st} \setminus S$ nodal cubic surfaces;

 $\mathcal{M}^{\circ}_{\mathbb{P}^{2},6}$ 6 points in the projective plane, general position;

 $\mathcal{M}^{st}_{\mathbb{P}^2,6}$ allow points to lie on smooth conic.

Geometry:

$$\mathcal{M}^{\circ}_{\mathbb{P}^{2},6} \longrightarrow \mathcal{S}$$

Occult period:

$$\mathcal{S} \longrightarrow \mathcal{A}_{\mathbb{Z}[\zeta_3],(1,4)}$$

Finer analysis shows:

▲ ■ ■ ● ○ < ○
 June 2017 49 / 50

• • • • • • • •

Finer analysis shows:

June 2017 49 / 50

-

Thanks!

イロト イポト イヨト イヨト