Torsion points on elliptic curves over quintic and sextic number fields

Maarten Derickx¹ Andrew Sutherland²

¹Universität Bayreuth

²MIT

Arithmetic Aspects of Explicit Moduli Problems 02-06-2017

Question

Does there exist a number field K with $[K : \mathbb{Q}] = d$ and an elliptic curve E/K such that $E(K)_{tors} \cong \mathbb{Z}/M\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z}$?

Definition/Notation

- Y₁(M, N)/Z[1/N] is the curve parametrizing triples (E, P, Q) of elliptic curve, with independent points of order M and N.
- $X_1(M, N)/\mathbb{Z}[1/N]$ is its projectivisation.

Question

Does the curve $Y_1(M, N)_{\mathbb{Q}}$ contain a point of degree d over \mathbb{Q} ?

Question

Does the curve $Y_1(M, N)_{\mathbb{Q}}$ contain ∞ many points of degree d over \mathbb{Q} ?

Theorem (Mazur)

If E/\mathbb{Q} is an elliptic curve then $E(\mathbb{Q})_{tors}$ is isomorphic to one of the following groups:

- $\mathbb{Z}/N\mathbb{Z}$ for $1 \le N \le 10$ or N = 12
- $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2N\mathbb{Z}$ for $1 \le N \le 4$

And each of these groups occurs for infinitely many non isomorphic elliptic curves.

Definition

A group *G* is an *elliptic torsion group* of degree *d* if $G \cong E(K)_{tors}$ for some elliptic curve E/K with $\mathbb{Q} \subseteq K$, $[K : \mathbb{Q}] = d$. The set of all isomorphism classes of such groups is denoted by $\Phi(d)$.

Theorem (Uniform Boundedness Conjecture)

 $\Phi(d)$ is finite for all d.

Definition

A prime *p* is a *torsion prime* of degree *d* if there exist an $G \in \Phi(d)$ such that $p \mid \#G$. The set of all torsion primes of degree *d* is denoted by S(d).

What is known about torsion primes

 $S(d) := \{p \text{ prime } | \exists K / \mathbb{Q} \colon [K : \mathbb{Q}] \le d, \exists E / K \colon p \mid \#E(K)_{tors} \}$ $Primes(n) := \{p \text{ prime } | p \le n\}$

- $\Phi(d)$ is finite $\Leftrightarrow S(d)$ is finite.
- S(d) is finite (Merel)
- $S(d) \subseteq Primes((3^{d/2} + 1)^2)$ (Oesterlé) not published
- *S*(1) = *Primes*(7) (Mazur)
- S(2) = Primes(13) (Kamienny, Kenku, Momose)
- *S*(3) = *Primes*(13) (Parent)
- S(4) = Primes(17) (Kamienny, Stein, Stoll) to be published.
- S(5) = Primes(19) (D., Kamienny, Stein, Stoll) to be published.

• $S(6) = Primes(19) \cup \{37\}$ idem.

Remark For $d \le 6$ and $p \in S(d)$, $p \ne 37$ there are ∞ many non isomorphic (E, K) such that $E(K)[p] \ne 0$.

Definition

Let $\Phi^{\infty}(d)$ denote the set of $\mathbb{Z}/M\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z}$ for which $X_1(M, N)$ has infinitely many places of degree d over \mathbb{Q} .

•
$$\Phi^{\infty}(d) \subseteq \Phi(d)$$

•
$$\Phi^{\infty}(1) = \Phi(1) = known$$
 (Mazur)

- $\Phi^{\infty}(2) = \Phi(2) = known$ (Kenku, Momose, Kamienny)
- $\Phi^{\infty}(3), \Phi^{\infty}(4) = known$ (Jeon,Kim,Park,Schweizer)
- $\Phi^{\infty}(3) \neq \Phi(3)$ (Najman)
- $\Phi(3) = known$ (D., Etropolski, Hoeij, Morrow, Zureick-Brown)
- The cyclic groups in $\Phi^{\infty}(d)$ are known for $d \leq 8$ (D., Hoeij)

Q2: When has $Y_1(N) \infty$ many places of degree d

 $j \in \mathbb{Q}(X_1(N))$ is a function of degree $[PSL_2(\mathbb{Z}) : \Gamma_1(N)] \ge \frac{3}{\pi^2}N^2$, hence $Y_1(N)$ has ∞ many places of degree $[PSL_2(\mathbb{Z}) : \Gamma_1(N)]$.

Theorem (Abramovich)

$$\operatorname{gon}_{\mathbb{C}}(X_1(N)) \ge \frac{7}{800}[\operatorname{PSL}_2(\mathbb{Z}):\Gamma_1(N)] \qquad (\ge \frac{7}{800}\frac{3}{\pi^2}N^2)$$

Theorem (Frey, (quick corollary of Faltings))

Let K be a number field and C/K be a curve, if C contains ∞ many places of degree d over K then

 $d \ge \operatorname{gon}_{\mathcal{K}}(\mathcal{C})/2$

Corollary

If $d < \frac{7}{1600} \frac{3}{\pi^2} N^2 \leq \text{gon}_{\mathbb{C}}(X_1(N))/2 \leq \text{gon}_{\mathbb{Q}}(X_1(N))/2$ then $X_1(N)$ contains only finitely many places of deg d.

For $X_1(M, N)$ one has upper and lower bounds quadratic in MN.

M. Derickx, A. Sutherland

Q2: Two reasons for the existence of ∞ many places of degree *d* on a curve *X* over a number field *K*

Consider $u: X^{(d)} \to \operatorname{Pic}^{(d)} X$ and let $D \in X^{(d)}(K)$

- 1) if $r(D) := \dim |D| \ge 1$ then *D* occurs in a non constant infinite family of divisors of degree *D* ($|D| \cong \mathbb{P}^{r(D)}$).
- 2) if $W_d^0 := u(X^{(d)}) \subseteq \operatorname{Pic}^{(d)} X$ contains a translate of a rank > 0 abelian variety *A* s.t. $u(D) \in A(K)$, then $u^{-1}A(K)$ is a non constant infinite family of divisors of degree *d* that contains *D*.

Theorem (Faltings)

If $\#X^{(d)}(K) = \infty$ then there is a $D \in X^{(d)}(K)$ for which (1) or (2) holds.

Remark: If $\#Pic^{(d)}X(K) < \infty$ then $gon_K X$ is the smallest degree for which X has infinitely many places of degree d over K. (No need for Faltings)

Some isomorphisms between modular curves

Let $M \mid N$ and d be integers such that gcd(d, N) = 1.

Definition

 $X_1(M, N)$ is the modular curve parameterizing triples (E, P, Q) of an elliptic curve E, and points P, Q of order M, N such that $\langle P \rangle \cap \langle Q \rangle = 0$. $X_{0,1}(M, N)$ is the modular curve parameterizing triples (E, G, Q) of an elliptic curve E, a cyclic subgroup G of order M and a point Q of order N such that $G \cap \langle Q \rangle = 0$. $X_1(N) := X_1(1, N)$.

- $< d > : X_1(N) \xrightarrow{\sim} X_1(N) \quad (E, Q) \mapsto (E, dQ).$
- $X_1(M, N) \xrightarrow{\sim} X_{0,1}(M, N) \times \mu'_M \ (\cong X_{0,1}(M, N)_{\mathbb{Z}[1/N, \zeta_M]})$ $(E, P, Q) \mapsto (E, \langle P \rangle, Q) \times e_M(P, N/MQ)$
- $X_1(MN)/\langle N+1 \rangle \xrightarrow{\sim} X_{0,1}(M,N)$ (E,P) $\mapsto (E/(NP), E[M]/(NP), P \mod NP)$

In particular questions about $X_1(M, N)$ can be answered in terms of $(X_1(MN)/\langle N+1\rangle)_{\mathbb{Q}(\zeta_M)}$.

Theorem (Kolyvagin,Logachev,Kato)

Let M, N be integers, $\chi : \mathbb{Z}/M\mathbb{Z}^* \to \mathbb{C}$ a character and A be a simple isogeny factor of $J_1(N)$ corresponding to a modular form f. Then the dimension of $(J_1(N)(\mathbb{Q}(\zeta_M)) \otimes_{\mathbb{Z}} \mathbb{C})^{\chi}$ is zero if $L(f, \chi, 1) \neq 0$.

Theorem (D., Sutherland)

The rank of $J_1(m, mn)$ is zero over $\mathbb{Q}(\zeta_m)$ if any of the following hold:

- m = 1 and $n \le 36$; m = 4 and $n \le 6$;
- m = 2 and $n \le 21$; m = 5 and $n \le 4$;
- m = 3 and $n \le 10$; m = 6 and $n \le 5$.

Proof.

Define $\gamma_{\chi} := \sum_{a \in (\mathbb{Z}/MZ)^*} \chi(a) \{\infty, a/M\}$ then $\tau(\overline{\chi}) L(f, \chi, 1) = \int_{\gamma_{\overline{\chi}}} f$. We checked computationally that the modular symbol γ_{χ} was nonzero in the modular symbol space corresponding to f.

Lower bound for $\mathbb Q\text{-gonality}$ by computing $\mathbb F_\ell$ gonality

Proposition

Let C/\mathbb{Q} be a smooth projective curve and ℓ be a prime of good reduction of C then:

 $\operatorname{\mathsf{gon}}_{\mathbb{Q}}(\mathcal{C}) \geq \operatorname{\mathsf{gon}}_{\mathbb{F}_\ell}(\mathcal{C}_{\mathbb{F}_\ell})$

To use this we need to know how compute the \mathbb{F}_{ℓ} gonality of *C*. Let $\operatorname{div}_{d}^{+} C_{\mathbb{F}_{\ell}} \subseteq \operatorname{div}^{+} C_{\mathbb{F}_{\ell}}$ be the set of effective divisors of degree *d*. Then $\#(\operatorname{div}_{d}^{+} C_{\mathbb{F}_{\ell}}) < \infty$. The following algorithm computes the \mathbb{F}_{ℓ} -gonality: 1 set d = 1

2 While for all $D \in \operatorname{div}_d^+ C_{\mathbb{F}_\ell}$: dim $H^0(C, D) = 1$ set d = d + 1

3 Output d.

If $f : C_{\mathbb{F}_l} \to \mathbb{P}^1$ then there exists an $x \in \mathbb{P}^1(\mathbb{F}_l)$ with at least $\lceil \#C(\mathbb{F}_l)/(l+1) \rceil$ distinct \mathbb{F}_l -rational points in the fiber. So only need to check effective divisor with at least $\lceil \#C(\mathbb{F}_l)/(l+1) \rceil$ rational points in its support.

Theorem (D.,Sutherland)

 $\begin{array}{l} \Phi^{\infty}(5) = \{(1,n): 1 \leq n \leq 25, \ n \neq 23\} \ \cup \ \{(2,2n): 1 \leq n \leq 8\}, \\ \Phi^{\infty}(6) = \{(1,n): 1 \leq n \leq 30, \ n \neq 23, 25, 29\} \ \cup \ \{(2,2n): 1 \leq n \leq 10\} \\ \quad \cup \ \{(3,3n): 1 \leq n \leq 4\} \ \cup \ \{(4,4), (4,8), (6,6)\}. \\ \end{array}$ Moreover if $(M,N) \in \Phi^{\infty}(d)$ for d = 5, 6 then $X_1(M,N)$ contains a function of degree $d/\phi(M)$ over $\mathbb{Q}(\zeta_M)$.

Proof.

The hard part is showing that $(M, N) \notin \Phi^{\infty}$. From Abramovich bound + Frey's bound get that $(M, N) \notin \Phi^{\infty}(d)$ if $d < \frac{7}{1600} \frac{3}{\pi^2} N^2$ so this leaves finitely many cases.

In the finitely many remaining cases we either proved (by computation) $\operatorname{gon}_{\mathbb{Q}(\zeta_M)} X_1(M,N) > d/\phi(M)$ if rank $J_1(M,N)(\mathbb{Q}(\zeta_M)) = 0$ or $\operatorname{gon}_{\mathbb{Q}(\zeta_M)} X_1(M,N) > 2d/\phi(M)$ if $J_1(M,N)(\mathbb{Q}(\zeta_M)) > 0$. The Theorem follows from Frey's bound on degree d points in terms of gonality. \Box

- More efficient algorithm to compute gonalities over finite fields (Brouwer-Zimmermann for generalized Hamming weight)
- Determine $\Phi^{\infty}(7)$ and $\Phi^{\infty}(8)$.
- Study theoretical problems for Φ[∞](9), J₁(37)(ℚ) has positive rank but and gon_ℚ(X₁(37)) = 18 ≥ 2 ⋅ 9.

Let *n* be an integer and $n = \sum_{i=0}^{k} \sum_{j=0}^{m_i} b_{i,j}$ be a partition partition of *n*.

Definition (Generalized Hamming Weight / GHW)

Let $x = (x_{i,j}) \in \mathbb{F}_p^n \cong \bigoplus_{i=0}^k \bigoplus_{j=0}^{m_i} \mathbb{F}_p^{b_{i,j}}$, then the GHW of x is $h_b(x) = \sum_{i=0}^k \sum_{j=0}^{l_i} b_{i,j}$ where l_i is the largest j for which $x_{i,j} \neq 0$.

- Let b_{triv} be the partition with k = n and both m_i and $b_{i,j}$ constant 1.
- *h*_{btriv} is the classical Hamming weight
- $h_{b_{triv}}(x) \le h_b(x)$ for all $x \in \mathbb{F}_p^n$ and all partition partitions *b*.

Generalized Hamming weight and gonalities

Let C/\mathbb{F}_{ρ} be a curve and $D = \sum_{i=0}^{k} m_i D_i$ be an effective divisor of degree *n* and let b_i denote degree of the field of definition of D_i .

Taking the negative parts of the laurent expansions at the D_i gives a map $H^0(C, D) \to \mathbb{F}_p^n \cong (O_C(D)/O_C)(C)$.

Write $n = \sum_{i=0}^{k} \sum_{j=0}^{m_i} b_i$.

The degree function on $H^0(C, D)$ agrees with the generalized Hamming weight on \mathbb{F}_p^n with respect to the above partition partition.

In conclusion: Adaption of the Brouwer-Zimmermann algorithm for computing minimal weights to the Generalized Hamming weight gives a better than brute force algorithm for gonalities.