Primes dividing the invariants of CM Picard Curves

Elisa Lorenzo García
Université Rennes 1
Joint work with Pınar Kılıçer and Marco Streng

02-06-2017

Picard Curves

Definition

Let k be a field of characteristic not 2 or 3 . A Picard curve of genus 3 is a smooth plane projective curve given by an equation of the form

$$
C: y^{3}=x^{4}+a x^{2}+b x+c
$$

where $a, b, c \in k$.

- This model for the Picard curves is unique up to the scaling $(x, y) \mapsto\left(u^{3} x, u^{4} y\right)$.(Holzapfel.)
- If k contains a primitive 3 rd root of unity ζ_{3}, then $\operatorname{Aut}(C)$ contains $\rho:(x, y) \mapsto\left(x, \zeta_{3} y\right)$.
- Let C be a Picard curve with CM by an order \mathcal{O} in a sextic CM field K. Then $\zeta_{3} \in \mathcal{O}$. (The converse also holds, Koike-Weng.)

Picard Curves

In 2004, Koike and Weng showed a conjectural list of all the Picard curves with CM by a maximal order defined over \mathbb{Q}. They used the Complex Multiplication method and they numerically computed class polynomials.

In 2016, Kıliçer proved that there are 10 Picard curves with CM over \mathbb{Q}.
In 2016, Lario-Somoza improves previous algorithm and (conjecturally) computed the other 5 Picard curves with CM defined over \mathbb{Q}.

Picard Curves

In 2004, Koike and Weng showed a conjectural list of all the Picard curves with CM by a maximal order defined over \mathbb{Q}. They used the Complex Multiplication method and they numerically computed class polynomials.

In 2016, Kıliçer proved that there are 10 Picard curves with CM over \mathbb{Q}.
In 2016, Lario-Somoza improves previous algorithm and (conjecturally) computed the other 5 Picard curves with CM defined over \mathbb{Q}.

For elliptic curves the class polynomials have integer coefficients. For genus 2 curves, Goren-Lauter and Lauter-Viray provided bounds for the denominators of the class polynomials.

For genus 3 curves, we only have a bound for the primes in the denominators [BCLLMNO15] + [KLLNOS16].

Picard Curves: Invariants

Let Δ be the discriminant of $y^{3}=x^{4}+a x^{2}+b x+c$:

$$
\Delta=-4 a^{3} b^{2}+16 a^{4} c-27 b^{4}+144 a b^{2} c-128 a^{2} c^{2}+256 c^{3} .
$$

It has weight 12.
Dixmier-Ohno invariants: for plane quartics, quite complicated. The denominators are Δ^{3}.

Shioda invariants:

$$
\frac{a^{6}}{\Delta}, \frac{b^{4}}{\Delta}, \frac{c^{3}}{\Delta} .
$$

Koike-Weng:

$$
\frac{b^{2}}{a^{3}}, \frac{c}{a^{2}}
$$

Our invariants:

$$
j_{1}=\frac{a^{3}}{b^{2}}, j_{2}=\frac{a c}{b^{2}} .
$$

Main Theorem

Theorem
Let C be a Picard curve of genus 3 over a number field M which has primitive CM by an order \mathcal{O} of a sextic CM field.

Let K_{+}be the real cubic subfield of K and $\mathcal{O}_{+}=K_{+} \cap \mathcal{O}$. Let μ be a totally real element in \mathcal{O}_{+}such that $K=\mathbb{Q}(\mu)\left(\zeta_{3}\right)$.

Let $j=u / b^{k}$ be a normalized Picard curve invariant. Let \mathfrak{p} be a prime of M lying over a rational prime p. If $\operatorname{ord}_{\mathfrak{p}}(j(C))<0$, then

$$
p<\operatorname{Tr}_{K_{+} / \mathbb{Q}}\left(\mu^{2}\right)^{3} \leq 3^{3}\left|\Delta\left(\mathcal{O}_{+}\right)\right|^{3 / 2}
$$

Main Theorem: idea

In [BCLLMNO15] and [KLLNOS16] we prove that a prime of bad reduction for a genus 3 curve with CM by a sextic order \mathcal{O} gives a solution to an embedding problem:

$$
\mathcal{O} \hookrightarrow \mathcal{M}_{3}\left(B_{p, \infty}\right)
$$

Then we proved the non-existence of such embeddings if p was big enough.

If a prime p divides b, we do not necessarily have bad reduction, but we are able to construct a solution to an embedding problem by using that if $b=0$ the jacobian of a Picard curve is not simple anymore and we can explicitly compute an elliptic factor.

Main Theorem: idea

In [BCLLMNO15] and [KLLNOS16] we proved that given a prime p of bad reduction of the curve, we have that the reduction of the Jacobian

$$
J \simeq E \times A .
$$

This isomorphism induces the solution

$$
\mathcal{O} \hookrightarrow \mathcal{M}_{3}(\mathcal{R} / n) \text { with } \mathcal{R}=\operatorname{End}(E) \subseteq B_{p, \infty} \text { and } n \text { bounded }
$$

When $b=0$ we have $\bar{J} \sim E \times A$. If the isogeny has degree m, we get

$$
\mathcal{O} \hookrightarrow \mathcal{M}_{3}(\mathcal{R} / n m) \text { with } \mathcal{R} \subseteq B_{p, \infty} .
$$

So, we need to bound m.

Extra

Indeed, with Ritzenthaler-Rogmany recently result, we can compute that the jacobian of the curve

$$
y^{3}=x^{4}+a x^{2}+1
$$

is isogenous to $E \times A$, where

$$
E: y^{2}+a y=x^{3}-1
$$

and $A=J(D)$ with D the genus 2 curve

$$
D:-a y^{2}=\left(x^{2}+2 x-2\right)\left(x^{4}+4 x^{3}+\left(2 a^{2}-8\right) x-a^{2}+4\right)
$$

Main Lemma

Lemma

Let C / M be a Picard curve of genus 3 over a number field and let $\mathfrak{p} \nmid 6$ be a prime of M. Let $j=u / b^{k}$ be a normalized Picard curve invariant. If $\operatorname{ord}_{\mathfrak{p}}(j(C))<0$, then up to extension of M and isomorphism of C, we are in one of the following cases.

1. $C: y^{3}=x^{4}+a x^{2}+b x+1$ with $b \equiv 0$ and $a \equiv \pm 2$ modulo \mathfrak{p}, and the reduction of this model is the singular curve $y^{3}=\left(x^{2} \pm 1\right)^{2}$ of geometric genus 1 ;
2. $C: y^{3}=x^{4}+x^{2}+b x+c$ with $b \equiv c \equiv 0$ modulo \mathfrak{p}, and the reduction of this model is the singular curve $y^{3}=\left(x^{2}+1\right) x^{2}$ of geometric genus 2;
3. $C: y^{3}=x^{4}+a x^{2}+b x+1$ with $b \equiv 0$ and $a \not \equiv \pm 2$ modulo \mathfrak{p}, and the reduction of this model is the smooth curve $y^{3}=x^{4}+\bar{a} x^{2}+1$ of genus 3 .

Example

Let $K=K_{+}\left(\zeta_{3}\right)$, where $K_{+}=\mathbb{Q}(y) /\left(y^{3}-y^{2}-4 y-1\right)$ is the totally real cubic subfield. The curve

$$
C: y^{3}=x^{4}-2 \cdot 7^{2} \cdot 13 x^{2}+2^{3} \cdot 5 \cdot 13 \cdot 47 x-5^{2} \cdot 13^{2} \cdot 31
$$

has CM by \mathcal{O}_{K} (Koike and Weng).
We compute

$$
j_{1}=-\frac{7^{6} \cdot 13}{2^{3} \cdot 5^{2} \cdot 47^{2}}, \quad j_{2}=\frac{7^{2} \cdot 13 \cdot 31}{2^{5} \cdot 47^{2}}
$$

The prime 5 is of case 2 , and the prime 47 is of case 3 .
For the prime 47, we take an integer $r \equiv 15$ modulo 47 and take $k=\mathbb{Q}_{47}(\alpha)$ with $\alpha^{2}=r$. Then consider the model

$$
C: y^{3}=x^{4}-\alpha^{2} \cdot 2 \cdot 7^{2} \cdot 13 x^{2}+\alpha^{3} \cdot 2^{3} \cdot 5 \cdot 13 \cdot 47 x-\alpha^{4} \cdot 5^{2} \cdot 13^{2} \cdot 31,
$$

which modulo 47 is

$$
\bar{C}: y^{3}=x^{4}+\overline{19} x^{2}+\overline{1} .
$$

Bounding the isogeny

Theorem

Let C / M as is previous Lemma. Then there are abelian subvarieties $I_{i}: A_{i} \hookrightarrow \bar{J}$, surjective homomorphisms $s_{i}: \bar{J} \rightarrow A_{i}$ for $i \in\{1,2\}$, endomorphisms $e_{i} \in \operatorname{End}(\bar{J})$ and an integer $d_{1} \in\{1,2\}$ such that the following holds for all i and $j \in\{1,2\}$.

$$
\begin{align*}
& e_{1}+e_{2}=\left[d_{1}\right], e_{i}^{2}=\left[d_{1}\right] e_{i}, e_{1} e_{2}=e_{2} e_{1}=0, e_{i}^{\dagger}=e_{i}, \tag{a}\\
& e_{i}=l_{i} s_{i}, \quad s_{i} l_{i}=\left[d_{1}\right], \text { if } i \neq j, \text { then } s_{i} l_{j}=0 .
\end{align*}
$$

(b) The abelian variety A_{i} has dimension i and we have a commutative diagram

$$
\mathrm{J} \underbrace{\left.\stackrel{\left(s_{1}\right.}{s_{2}}\right)}_{\left[d_{1}\right]} A_{1} \times A_{2}^{\left(l_{1} l_{2}\right)} \xrightarrow{J} \xrightarrow{\binom{\left.s_{1}\right]}{s_{1}}} A_{1} \times A_{2} .
$$

(c) if $i \neq j$, then we have $s_{i} \zeta_{3} l_{j}=0 \in \operatorname{Hom}\left(A_{j}, A_{i}\right)$.

Computations

Let us write $K=\mathbb{Q}\left(\zeta_{3}\right) K^{+}$with $K^{+}=\mathbb{Q}(\mu)$ with μ a totally positive element. Following the ideas in [KLLNOS16], we get

$$
\iota(\mu)=\left(\begin{array}{ccc}
x & a & b \\
1 & 0 & c / n \\
0 & 1 & d / n
\end{array}\right), \text { and } \iota\left(2 \zeta_{3}+1\right)=\left(\begin{array}{ccc}
r & 0 & 0 \\
0 & s & t \\
0 & u & v
\end{array}\right)
$$

where $x, a, b, c, d, r, n s, n t, n u, n v \in \mathcal{R}$. These two matrices have to commute and satisfy a condition given by the Rosati involution, which implies, after some computations, that all the entries are contained in a field. In [KLLNOS16] we proved that this implies that $p \mid n$.
On the other hand, we get $n \leq m a^{2} \operatorname{Tr} \mu^{2}$ and

$$
\operatorname{Tr} \mu^{2}=x^{2}+2 a+2(c / n)+(d / n)^{2} \geq \ldots \geq x^{2}+2 a
$$

Comparisons of invariants

In [KLLNOS16] we had the bound for the primes in the denominator of Dixmier-Ohno or Shioda invariants:

$$
p<\frac{1}{8} \operatorname{Tr}_{K_{+} / \mathbb{Q}}\left(\mu^{2}\right)^{10} .
$$

For the Koike-Weng Invariants:
There is no bounds.
For our invariants:
Main Theorem:

$$
p<\operatorname{Tr}_{K_{+} / \mathbb{Q}}\left(\mu^{2}\right)^{3} .
$$

+ we give an algorithm to compute all the solutions.

This will help to compute the exponents.

Example

Let us consider the Picard curve (computed by Koike-Weng) with CM by $K=\mathbb{Q}\left(\zeta_{3}\right) \cdot K^{+}$with $K^{+}=\mathbb{Q}(\mu)$ and $\mu^{3}-\mu^{2}-14 \mu-8=0$:
$y^{3}=x^{4}-2 \cdot 7 \cdot 43^{2} \cdot 223 x^{2}+2^{7} \cdot 11 \cdot 41 \cdot 43^{2} \cdot 59 x-11^{2} \cdot 43^{3} \cdot 419 \cdot 431$
We have

$$
\begin{gathered}
\Delta=2^{30} \cdot 11^{6} \cdot 47^{6} \approx 2.1 \cdot 10^{25} \\
b=2^{7} \cdot 11 \cdot 41 \cdot 43^{2} \cdot 59 \approx 3.4 \cdot 10^{6}
\end{gathered}
$$

Using [KLLNOS16] we get the bound $29^{10} / 8 \approx 5.25 \cdot 10^{13}$ for the primes in Δ, while for the primes in b we get the bound

$$
p<29^{3}=24389
$$

Thank you!

