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Picard Curves

Definition
Let k be a field of characteristic not 2 or 3. A Picard curve of
genus 3 is a smooth plane projective curve given by an equation of
the form

C : y3 = x4 + ax2 + bx + c ,

where a, b, c ∈ k.

I This model for the Picard curves is unique up to the scaling
(x , y) 7→ (u3x , u4y).(Holzapfel.)

I If k contains a primitive 3rd root of unity ζ3, then Aut(C )
contains ρ : (x , y) 7→ (x , ζ3y).

I Let C be a Picard curve with CM by an order O in a sextic
CM field K . Then ζ3 ∈ O. (The converse also holds,
Koike-Weng.)



Picard Curves

In 2004, Koike and Weng showed a conjectural list of all the Picard
curves with CM by a maximal order defined over Q. They used the
Complex Multiplication method and they numerically computed class
polynomials.

In 2016, Kılıçer proved that there are 10 Picard curves with CM over Q.

In 2016, Lario-Somoza improves previous algorithm and (conjecturally)
computed the other 5 Picard curves with CM defined over Q.

For elliptic curves the class polynomials have integer coefficients. For
genus 2 curves, Goren-Lauter and Lauter-Viray provided bounds for the
denominators of the class polynomials.

For genus 3 curves, we only have a bound for the primes in the
denominators [BCLLMNO15] + [KLLNOS16].
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Picard Curves: Invariants

Let ∆ be the discriminant of y3 = x4 + ax2 + bx + c :

∆ = −4a3b2 + 16a4c − 27b4 + 144ab2c − 128a2c2 + 256c3.

It has weight 12.

Dixmier-Ohno invariants: for plane quartics, quite complicated. The
denominators are ∆3.

Shioda invariants:
a6

∆
,
b4

∆
,
c3

∆
.

Koike-Weng:
b2

a3
,
c

a2
.

Our invariants:

j1 =
a3

b2
, j2 =

ac

b2
.



Main Theorem

Theorem
Let C be a Picard curve of genus 3 over a number field M which
has primitive CM by an order O of a sextic CM field.

Let K+ be the real cubic subfield of K and O+ = K+ ∩ O. Let µ
be a totally real element in O+ such that K = Q(µ)(ζ3).

Let j = u/bk be a normalized Picard curve invariant. Let p be a
prime of M lying over a rational prime p. If ordp(j(C )) < 0, then

p < TrK+/Q(µ2)3 ≤ 33|∆(O+)|3/2.



Main Theorem: idea

In [BCLLMNO15] and [KLLNOS16] we prove that a prime of bad
reduction for a genus 3 curve with CM by a sextic order O gives a
solution to an embedding problem:

O ↪→M3(Bp,∞).

Then we proved the non-existence of such embeddings if p was big
enough.

If a prime p divides b, we do not necessarily have bad reduction,
but we are able to construct a solution to an embedding problem
by using that if b = 0 the jacobian of a Picard curve is not simple
anymore and we can explicitly compute an elliptic factor.



Main Theorem: idea

In [BCLLMNO15] and [KLLNOS16] we proved that given a prime
p of bad reduction of the curve, we have that the reduction of the
Jacobian

J ' E × A.

This isomorphism induces the solution

O ↪→M3(R/n) with R = End(E ) ⊆ Bp,∞ and n bounded .

When b = 0 we have J ∼ E × A. If the isogeny has degree m, we
get

O ↪→M3(R/nm) with R ⊆ Bp,∞.

So, we need to bound m.



Extra

Indeed, with Ritzenthaler-Rogmany recently result, we can
compute that the jacobian of the curve

y3 = x4 + ax2 + 1

is isogenous to E × A, where

E : y2 + ay = x3 − 1,

and A = J(D) with D the genus 2 curve

D : −ay2 = (x2 + 2x − 2)(x4 + 4x3 + (2a2 − 8)x − a2 + 4).



Main Lemma

Lemma
Let C/M be a Picard curve of genus 3 over a number field and let p - 6
be a prime of M. Let j = u/bk be a normalized Picard curve invariant. If
ordp(j(C )) < 0, then up to extension of M and isomorphism of C , we are
in one of the following cases.

1. C : y3 = x4 + ax2 + bx + 1 with b ≡ 0 and a ≡ ±2 modulo p, and
the reduction of this model is the singular curve y3 = (x2 ± 1)2 of
geometric genus 1;

2. C : y3 = x4 + x2 + bx + c with b ≡ c ≡ 0 modulo p, and the
reduction of this model is the singular curve y3 = (x2 + 1)x2 of
geometric genus 2;

3. C : y3 = x4 + ax2 + bx + 1 with b ≡ 0 and a 6≡ ±2 modulo p, and
the reduction of this model is the smooth curve y3 = x4 + ax2 + 1
of genus 3.



Example

Let K = K+(ζ3), where K+ = Q(y)/(y3 − y2 − 4y − 1) is the totally real
cubic subfield. The curve

C : y3 = x4 − 2 · 72 · 13x2 + 23 · 5 · 13 · 47x − 52 · 132 · 31

has CM by OK (Koike and Weng).
We compute

j1 = − 76 · 13

23 · 52 · 472
, j2 =

72 · 13 · 31

25 · 472
.

The prime 5 is of case 2, and the prime 47 is of case 3.
For the prime 47, we take an integer r ≡ 15 modulo 47 and take
k = Q47(α) with α2 = r . Then consider the model

C : y3 = x4 − α2 · 2 · 72 · 13x2 + α3 · 23 · 5 · 13 · 47x − α4 · 52 · 132 · 31,

which modulo 47 is
C : y3 = x4 + 19x2 + 1.



Bounding the isogeny

Theorem
Let C/M as is previous Lemma. Then there are abelian subvarieties
Ii : Ai ↪→ J, surjective homomorphisms si : J → Ai for i ∈ {1, 2},
endomorphisms ei ∈ End(J) and an integer d1 ∈ {1, 2} such that the
following holds for all i and j ∈ {1, 2}.

(a) e1 + e2 = [d1], e2
i = [d1]ei , e1e2 = e2e1 = 0, e†i = ei ,

ei = Ii si , si Ii = [d1], if i 6= j , then si Ij = 0.

(b) The abelian variety Ai has dimension i and we have a commutative
diagram

J

(
s1
s2

)
//

[d1]

==A1 × A2
(I1 I2) //

[d1]

<<J

(
s1
s2

)
// A1 × A2.

(c) if i 6= j , then we have siζ3Ij = 0 ∈ Hom(Aj ,Ai ).



Computations

Let us write K = Q(ζ3)K+ with K+ = Q(µ) with µ a totally
positive element. Following the ideas in [KLLNOS16], we get

ι(µ) =

 x a b
1 0 c/n
0 1 d/n

 , and ι(2ζ3 + 1) =

 r 0 0
0 s t
0 u v

 ,

where x , a, b, c , d , r , ns, nt, nu, nv ∈ R. These two matrices have
to commute and satisfy a condition given by the Rosati involution,
which implies, after some computations, that all the entries are
contained in a field. In [KLLNOS16] we proved that this implies
that p | n.
On the other hand, we get n ≤ ma2 Trµ2 and

Trµ2 = x2 + 2a + 2(c/n) + (d/n)2 ≥ ... ≥ x2 + 2a.



Comparisons of invariants

In [KLLNOS16] we had the bound for the primes in the denominator of
Dixmier-Ohno or Shioda invariants:

p <
1

8
TrK+/Q(µ2)10.

For the Koike-Weng Invariants:

There is no bounds.

For our invariants:
Main Theorem:

p < TrK+/Q(µ2)3.

+ we give an algorithm to compute all the solutions.

This will help to compute the exponents.



Example

Let us consider the Picard curve (computed by Koike-Weng) with
CM by K = Q(ζ3) · K+ with K+ = Q(µ) and
µ3 − µ2 − 14µ− 8 = 0:

y3 = x4−2 ·7 ·432 ·223x2 +27 ·11 ·41 ·432 ·59x−112 ·433 ·419 ·431

We have

∆ = 230 · 116 · 476 ≈ 2.1 · 1025,

b = 27 · 11 · 41 · 432 · 59 ≈ 3.4 · 106.

Using [KLLNOS16] we get the bound 2910/8 ≈ 5.25 · 1013 for the
primes in ∆, while for the primes in b we get the bound

p < 293 = 24389.



Thank you!


