Isogeny classes of rational squares of CM elliptic curves

Francesc Fité (UPC) and Xavier Guitart (UB)

BIRS, Banff, 31st May 2017.

• F is a number field.

- A/F is an abelian variety
- Call End $(A_{\overline{\Omega}}) \otimes \mathbb{Q}$ the *endomorphism algebra* of $A_{\overline{\Omega}}$.
- For any $g, d \ge 1$, set

 $\mathcal{L}_{g,d} = \{ \operatorname{End}(A_{\overline{\mathbb{O}}}) \otimes \mathbb{Q} \mid \operatorname{dim}(A) = g \text{ and } [F : \mathbb{Q}] = d \} / \simeq .$

Conjecture

For every $g,d\geq 1$, the set $\mathcal{L}_{g,d}$ is finite.

- F is a number field.
- A/F is an abelian variety
- Call End $(A_{\overline{\mathbb{O}}}) \otimes \mathbb{Q}$ the *endomorphism algebra* of $A_{\overline{\mathbb{O}}}$.
- For any $g, d \ge 1$, set

 $\mathcal{L}_{g,d} = \{ \operatorname{End}(A_{\overline{\mathbb{O}}}) \otimes \mathbb{Q} \mid \operatorname{dim}(A) = g \text{ and } [F : \mathbb{Q}] = d \} / \simeq .$

Conjecture

For every $g,d\geq 1$, the set $\mathcal{L}_{g,d}$ is finite.

- F is a number field.
- A/F is an abelian variety
- Call $\operatorname{End}(A_{\overline{\mathbb{O}}}) \otimes \mathbb{Q}$ the *endomorphism algebra* of $A_{\overline{\mathbb{O}}}$.
- For any $g, d \ge 1$, set

 $\mathcal{L}_{g,d} = \{ \operatorname{End}(A_{\overline{\mathbb{O}}}) \otimes \mathbb{Q} \mid \dim(A) = g \text{ and } [F : \mathbb{Q}] = d \} / \simeq .$

Conjecture

For every $g, d \geq 1$, the set $\mathcal{L}_{g,d}$ is finite.

- F is a number field.
- A/F is an abelian variety
- Call $\operatorname{End}(A_{\overline{\mathbb{O}}}) \otimes \mathbb{Q}$ the *endomorphism algebra* of $A_{\overline{\mathbb{O}}}$.
- For any $g, d \ge 1$, set

$$\mathcal{L}_{g,d} = \{ \mathsf{End}(A_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q} \mid \mathsf{dim}(A) = g \text{ and } [F:\mathbb{Q}] = d \} / \simeq 1$$

Conjecture

For every $g, d \geq 1$, the set $\mathcal{L}_{g,d}$ is finite.

- F is a number field.
- A/F is an abelian variety
- Call $\operatorname{End}(A_{\overline{\mathbb{O}}}) \otimes \mathbb{Q}$ the *endomorphism algebra* of $A_{\overline{\mathbb{O}}}$.
- For any $g, d \ge 1$, set

$$\mathcal{L}_{g,d} = \{ \mathsf{End}(A_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q} \mid \mathsf{dim}(A) = g \text{ and } [F : \mathbb{Q}] = d \} / \simeq$$

Conjecture

For every $g, d \ge 1$, the set $\mathcal{L}_{g,d}$ is finite.

Example: g = d = 1

$$\#\mathcal{L}_{1,1}=10\,.$$

Indeed:

- $\operatorname{End}(A_{\overline{\mathbb{O}}}) \otimes \mathbb{Q}$ is \mathbb{Q} if A does not have CM.
- If A/Q has CM by M, then

 $\operatorname{Cl}(M)\simeq\operatorname{Gal}(H_M/M)\simeq\operatorname{Gal}(M(J_A)/M)$

Problem What is the set $\mathcal{L}_{2,1}$?

Example: g = d = 1

$$\# \mathcal{L}_{1,1} = 10$$
.

Indeed:

- $\operatorname{End}(A_{\overline{\mathbb{O}}}) \otimes \mathbb{Q}$ is \mathbb{Q} if A does not have CM.
- If A/\mathbb{Q} has CM by M, then

 $\operatorname{Cl}(M) \simeq \operatorname{Gal}(H_M/M) \simeq \operatorname{Gal}(M(j_A)/M) \simeq \{1\}$

Problem What is the set $\mathcal{L}_{2,1}$?

Example: g = d = 1

$$\# \mathcal{L}_{1,1} = 10$$
.

Indeed:

- $\operatorname{End}(A_{\overline{\mathbb{O}}})\otimes \mathbb{Q}$ is \mathbb{Q} if A does not have CM.
- If A/\mathbb{Q} has CM by M, then

 $\operatorname{Cl}(M) \simeq \operatorname{Gal}(H_M/M) \simeq \operatorname{Gal}(M(j_A)/M) \simeq \{1\}.$

Thus there are 9 possibilities for *M*.

Problem What is the set $\mathcal{L}_{2,1}$?

Example: g = d = 1

$$\# \mathcal{L}_{1,1} = 10$$
.

Indeed:

- $\operatorname{End}(A_{\overline{\mathbb{O}}})\otimes \mathbb{Q}$ is \mathbb{Q} if A does not have CM.
- If A/\mathbb{Q} has CM by M, then

 $\operatorname{Cl}(M) \simeq \operatorname{Gal}(H_M/M) \simeq \operatorname{Gal}(M(j_A)/M) \simeq \{1\}.$

Thus there are 9 possibilities for *M*.

Problem What is the set $\mathcal{L}_{2,1}$?

Example: g = d = 1

$$\# \mathcal{L}_{1,1} = 10$$
.

Indeed:

- $\operatorname{End}(A_{\overline{\mathbb{O}}})\otimes \mathbb{Q}$ is \mathbb{Q} if A does not have CM.
- If A/\mathbb{Q} has CM by M, then

 $\operatorname{Cl}(M) \simeq \operatorname{Gal}(H_M/M) \simeq \operatorname{Gal}(M(j_A)/M) \simeq \{1\}.$

Thus there are 9 possibilities for *M*.

Problem

What is the set $\mathcal{L}_{2,1}$?

Example: g = d = 1

$$\# \mathcal{L}_{1,1} = 10$$
.

Indeed:

- $\operatorname{End}(A_{\overline{\mathbb{O}}})\otimes \mathbb{Q}$ is \mathbb{Q} if A does not have CM.
- If A/\mathbb{Q} has CM by M, then

$$\operatorname{Cl}(M) \simeq \operatorname{Gal}(H_M/M) \simeq \operatorname{Gal}(M(j_A)/M) \simeq \{1\}.$$

Thus there are 9 possibilities for M.

Problem

What is the set $\mathcal{L}_{2,1}$?

Example:
$$g = d = 1$$

$$\#\mathcal{L}_{1,1} = 10$$
.

Indeed:

- $\operatorname{End}(A_{\overline{\mathbb{O}}})\otimes \mathbb{Q}$ is \mathbb{Q} if A does not have CM.
- If A/\mathbb{Q} has CM by M, then

$$\operatorname{Cl}(M) \simeq \operatorname{Gal}(H_M/M) \simeq \operatorname{Gal}(M(j_A)/M) \simeq \{1\}.$$

Thus there are 9 possibilities for M.

Problem

What is the set $\mathcal{L}_{2,1}$?

Let A be an abelian surface over \mathbb{Q} .

Dec. of $A_{\overline{\mathbb{Q}}}$	$End(A_{\overline{\mathbb{Q}}})\otimes \mathbb{Q}$	#Possibilities
$A_{\overline{\mathbb{Q}}}$ is simple	Q	1
	real quad. field	?
	def. div. quat. alg./ $\mathbb Q$?
	quartic CM field	19 (Murabayashi-Umegaki)
$A_{\overline{\mathbb{Q}}} \sim E imes E'$ and $E earrow E'$	$\mathbb{Q} \times \mathbb{Q}$	1
	$\mathbb{Q} imes M_1, M_i$ quad. imag.	9, since $\# \operatorname{Cl}(M_i) = 1$
	$M_1 imes M_2$	36
$A_{\overline{\mathbb{Q}}} \sim E^2$	$M_2(\mathbb{Q})$	
	$M_2(M), M$ quad. imag.	

Let A be an abelian surface over \mathbb{Q} .

Dec. of $A_{\overline{\mathbb{Q}}}$	$End(A_{\overline{\mathbb{Q}}})\otimes \mathbb{Q}$	#Possibilities
$A_{\overline{\mathbb{Q}}}$ is simple	Q	1
	real quad. field	?
	def. div. quat. alg./ ${\mathbb Q}$?
	quartic CM field	19 (Murabayashi-Umegaki)
$A_{\overline{\mathbb{Q}}} \sim E imes E'$ and $E earrow E'$	$\mathbb{Q} \times \mathbb{Q}$	1
	$\mathbb{Q} imes M_1, M_i$ quad. imag.	9, since $\#Cl(M_i) = 1$
	$M_1 imes M_2$	36
$A_{\overline{\mathbb{Q}}} \sim E^2$	$M_2(\mathbb{Q})$	
	$M_2(M), M$ quad. imag.	

Let A be an abelian surface over \mathbb{Q} .

Dec. of $A_{\overline{\mathbb{Q}}}$	$End(A_{\overline{\mathbb{Q}}})\otimes \mathbb{Q}$	#Possibilities
$A_{\overline{\mathbb{Q}}}$ is simple	Q	1
	real quad. field	?
	def. div. quat. alg./ $\mathbb Q$?
	quartic CM field	19 (Murabayashi-Umegaki)
$A_{\overline{\mathbb{Q}}} \sim E imes E'$ and $E eq E'$	$\mathbb{Q} \times \mathbb{Q}$	1
	$\mathbb{Q} imes M_1, M_i$ quad. imag.	9, since $\# \operatorname{Cl}(M_i) = 1$
	$M_1 imes M_2$	36
$A_{\overline{\mathbb{Q}}} \sim E^2$	$M_2(\mathbb{Q})$	1
	$M_2(M), M$ quad. imag.	?, since $\#Cl(M) = 1, 2,$

Let A be an abelian surface over \mathbb{Q} .

Dec. of $A_{\overline{\mathbb{Q}}}$	$End(A_{\overline{\mathbb{Q}}})\otimes \mathbb{Q}$	#Possibilities
$A_{\overline{\mathbb{Q}}}$ is simple	Q	1
	real quad. field	?
	def. div. quat. alg./ $\mathbb Q$?
	quartic CM field	19 (Murabayashi-Umegaki)
$A_{\overline{\mathbb{Q}}} \sim E imes E'$ and $E eq E'$	$\mathbb{Q} \times \mathbb{Q}$	1
	$\mathbb{Q} imes M_1, M_i$ quad. imag.	9, since $\# \operatorname{Cl}(M_i) = 1$
	$M_1 imes M_2$	36
$A_{\overline{\mathbb{Q}}} \sim E^2$	$M_2(\mathbb{Q})$	1
	$M_2(M), M$ quad. imag.	N ₂

The goal of the talk is to find an upper bound for

 $N_2 = \#\{\text{ab. surf. } A/\mathbb{Q} \text{ such that } A_{\overline{\mathbb{Q}}} \sim E^2 \text{, where } E \text{ has CM}\}/\sim_{\overline{\mathbb{Q}}}$.

Let A be an abelian surface over \mathbb{Q} .

Dec. of $A_{\overline{\mathbb{Q}}}$	$End(A_{\overline{\mathbb{Q}}})\otimes \mathbb{Q}$	#Possibilities
$A_{\overline{\mathbb{Q}}}$ is simple	Q	1
	real quad. field	?
	def. div. quat. alg./ $\mathbb Q$?
	quartic CM field	19 (Murabayashi-Umegaki)
$A_{\overline{\mathbb{Q}}} \sim E imes E'$ and $E earrow E'$	$\mathbb{Q} \times \mathbb{Q}$	1
	$\mathbb{Q} imes M_1,\ M_i$ quad. imag.	9, since $\#Cl(M_i) = 1$
	$M_1 imes M_2$	36
$A_{\overline{\mathbb{Q}}} \sim E^2$	$M_2(\mathbb{Q})$	1
	$M_2(M), M$ quad. imag.	<i>N</i> ₂

Actually, for any prime g, we will find an upper bound for

 $N_g = \#\{\text{ab. var. } A/\mathbb{Q} \text{ such that } A_{\overline{\mathbb{Q}}} \sim E^g \text{, where } E \text{ has CM}\}/\sim_{\overline{\mathbb{Q}}}$.

Main result

Theorem 1 (F.-Guitart)

Let A/\mathbb{Q} be an abelian variety of dimension $g \ge 1$ such that $A_{\overline{\mathbb{Q}}} \sim E^g$, where $E/\overline{\mathbb{Q}}$ is an elliptic curve with CM by M. Then:

i) The class group Cl(M) has exponent dividing g.

ii) If moreover g is prime, then

$$\operatorname{Cl}(M) = \begin{cases} 1, \, \operatorname{C}_2, \, \operatorname{C}_2 \times \operatorname{C}_2 & \text{ if } g = 2, \\ 1, \, \operatorname{C}_g & \text{ otherwise.} \end{cases}$$

Main result

Theorem 1 (F.-Guitart)

Let A/\mathbb{Q} be an abelian variety of dimension $g \ge 1$ such that $A_{\overline{\mathbb{Q}}} \sim E^g$, where $E/\overline{\mathbb{Q}}$ is an elliptic curve with CM by M. Then:

i) The class group Cl(M) has exponent dividing g.

ii) If moreover g is prime, then

$$\mathrm{Cl}(M) = egin{cases} 1, \, \mathrm{C}_2, \, \mathrm{C}_2 imes \mathrm{C}_2 & ext{if} g = 2, \ 1, \, \mathrm{C}_g & ext{otherwise}. \end{cases}$$

• Write:

 $\mathcal{M}^{g, i, g} := \{ M \text{ quad. imag. field } | \operatorname{Cl}(M) \simeq \operatorname{C}_g \times . i \cdot \times \operatorname{C}_g \}.$ • Theorem 1 implies:

> $N_2 \le \#\mathcal{M}^1 + \#\mathcal{M}^2 + \#\mathcal{M}^{2,2} = 9 + 18 + 24 = 51.$ $N_a \le \#\mathcal{M}^1 + \#\mathcal{M}^a$ for $a \ge 3.$

• On the other hand: $N_g \geq \#\mathcal{M}^1 + \#\mathcal{M}^g$ for $g \geq 2.$

Open question ls $N_2 > 9 + 18$?

• Write:

 $\mathcal{M}^{g, i, g} := \{M \text{ quad. imag. field } | \operatorname{Cl}(M) \simeq \operatorname{C}_g \times . i \cdot \times \operatorname{C}_g \}.$ • Theorem 1 implies:

$$\begin{split} N_2 &\leq \#\mathcal{M}^1 + \#\mathcal{M}^2 + \#\mathcal{M}^{2,2} = 9 + 18 + 24 = 51 \,. \\ N_g &\leq \#\mathcal{M}^1 + \#\mathcal{M}^g \,, \qquad \text{for } g \geq 3 \,. \end{split}$$

• On the other hand: $N_g \geq \#\mathcal{M}^1 + \#\mathcal{M}^g$ for $g \geq 2$.

Open question ls $N_2 > 9 + 18$?

• Write:

 $\mathcal{M}^{g, i, g} := \{M \text{ quad. imag. field } | \operatorname{Cl}(M) \simeq \operatorname{C}_g \times . i . \times \operatorname{C}_g \}.$ • Theorem 1 implies:

$$\begin{split} N_2 &\leq \#\mathcal{M}^1 + \#\mathcal{M}^2 + \#\mathcal{M}^{2,2} = 9 + 18 + 24 = 51 \,. \\ N_g &\leq \#\mathcal{M}^1 + \#\mathcal{M}^g \,, \qquad \text{for } g \geq 3 \,. \end{split}$$

• On the other hand: $N_g \geq \#\mathcal{M}^1 + \#\mathcal{M}^g$ for $g \geq 2$.

 $A = \operatorname{Res}_{\mathbb{Q}}^{\mathbb{Q}(i_{\mathcal{E}})}(\mathcal{E})$

satisfies $\dim(A) = [\mathbb{Q}(j_E) : \mathbb{Q}] = \#GI(M) = g$ and $A_{\overline{\mathbb{Q}}} \sim E_{\overline{\mathbb{Q}}}^{d}$

Open question ls $N_2 > 9 + 18$?

• Write:

 $\mathcal{M}^{g, i, g} := \{M \text{ quad. imag. field } | \operatorname{Cl}(M) \simeq \operatorname{C}_g \times . i \cdot \times \operatorname{C}_g \}.$ • Theorem 1 implies:

$$\begin{split} &N_2 \leq \#\mathcal{M}^1 + \#\mathcal{M}^2 + \#\mathcal{M}^{2,2} = 9 + 18 + 24 = 51 \,. \\ &N_g \leq \#\mathcal{M}^1 + \#\mathcal{M}^g \,, \qquad \text{for } g \geq 3 \,. \end{split}$$

 On the other hand: N_g ≥ #M¹ + #M^g for g ≥ 2. Indeed, for M ∈ M^g, take E/Q(j_E) with CM by M. Then

 $A = \operatorname{Res}_{\mathbb{Q}}^{\mathbb{Q}(j_{\mathcal{E}})}(E)$

satisfies dim $(A) = [\mathbb{Q}(j_E) : \mathbb{Q}] = \# \mathrm{Cl}(M) = g$ and $A_{\overline{\mathbb{Q}}} \sim E_{\overline{\mathbb{Q}}}^g$

Open question Is $N_2 > 9 + 18$?

• Write:

 $\mathcal{M}^{g,.i.,g} := \{ M \text{ quad. imag. field } | \operatorname{Cl}(M) \simeq \operatorname{C}_g \times .i. \times \operatorname{C}_g \}.$

Theorem 1 implies:

$$\begin{split} & N_2 \leq \#\mathcal{M}^1 + \#\mathcal{M}^2 + \#\mathcal{M}^{2,2} = 9 + 18 + 24 = 51 \,. \\ & N_g \leq \#\mathcal{M}^1 + \#\mathcal{M}^g \;, \qquad \text{for } g \geq 3 \,. \end{split}$$

 On the other hand: N_g ≥ #M¹ + #M^g for g ≥ 2. Indeed, for M ∈ M^g, take E/Q(j_E) with CM by M. Then

 $A = \operatorname{Res}_{\mathbb{Q}}^{\mathbb{Q}(j_E)}(E)$

satisfies dim $(A) = [\mathbb{Q}(j_E) : \mathbb{Q}] = \# \mathrm{Cl}(M) = g$ and $A_{\overline{\mathbb{Q}}} \sim E^g_{\overline{\mathbb{Q}}}$.

Open question Is $N_2 > 9 + 18$?

Francesc Fité (UPC)

• Write:

 $\mathcal{M}^{g, i, g} := \{M \text{ quad. imag. field } | \operatorname{Cl}(M) \simeq \operatorname{C}_g \times . i \cdot \times \operatorname{C}_g \}.$ • Theorem 1 implies:

$$\begin{split} & \textit{N}_2 \leq \#\mathcal{M}^1 + \#\mathcal{M}^2 + \#\mathcal{M}^{2,2} = 9 + 18 + 24 = 51 \,. \\ & \textit{N}_g \leq \#\mathcal{M}^1 + \#\mathcal{M}^g \,, \qquad \text{for } g \geq 3 \,. \end{split}$$

• On the other hand: $N_g \ge \#M^1 + \#M^g$ for $g \ge 2$. Indeed, for $M \in \mathcal{M}^g$, take $E/\mathbb{Q}(j_E)$ with CM by M. Then

$$A = \operatorname{Res}_{\mathbb{Q}}^{\mathbb{Q}(j_{E})}(E)$$

satisfies dim $(A) = [\mathbb{Q}(j_E) : \mathbb{Q}] = \# \mathrm{Cl}(M) = g$ and $A_{\overline{\mathbb{Q}}} \sim E_{\overline{\mathbb{Q}}}^g$.

Open question Is $N_2 > 9 + 18$?

• Write:

 $\mathcal{M}^{g,\ldots,g} := \{ M \text{ quad. imag. field } | \operatorname{Cl}(M) \simeq \operatorname{C}_g \times \ldots \times \operatorname{C}_g \}.$

Theorem 1 implies:

$$\begin{split} &N_2 \leq \#\mathcal{M}^1 + \#\mathcal{M}^2 + \#\mathcal{M}^{2,2} = 9 + 18 + 24 = 51 \,. \\ &N_g \leq \#\mathcal{M}^1 + \#\mathcal{M}^g \;, \qquad \text{for } g \geq 3 \,. \end{split}$$

• On the other hand: $N_g \ge \#M^1 + \#M^g$ for $g \ge 2$. Indeed, for $M \in \mathcal{M}^g$, take $E/\mathbb{Q}(j_E)$ with CM by M. Then

$$A = \operatorname{Res}_{\mathbb{Q}}^{\mathbb{Q}(j_{E})}(E)$$

satisfies dim $(A) = [\mathbb{Q}(j_E) : \mathbb{Q}] = \# \mathrm{Cl}(M) = g$ and $A_{\overline{\mathbb{Q}}} \sim E_{\overline{\mathbb{Q}}}^g$.

Open question

Is $N_2 > 9 + 18$?

Francesc Fité (UPC)

Definition

Let B/F be an abelian variety. The minimal extension K/F over which

 $\operatorname{End}(B_{\mathcal{K}})\simeq\operatorname{End}(B_{\overline{\mathbb{Q}}})$

is called the endomorphism field of B.

- K/F is finite and Galois.
- Recast of the setting of Theorem 1:
 - (H) A/\mathbb{Q} is an abelian variety of dimension $g \ge 1$ such that $A_K \sim E^g$, where E/K is an elliptic curve with CM by M.

Here K/\mathbb{Q} is the endomorphism field of A.

Definition

Let B/F be an abelian variety. The minimal extension K/F over which

 $\operatorname{End}(B_{\mathcal{K}})\simeq\operatorname{End}(B_{\overline{\mathbb{Q}}})$

is called the endomorphism field of B.

- K/F is finite and Galois.
- Recast of the setting of Theorem 1:
 - (H) A/\mathbb{Q} is an abelian variety of dimension $g \ge 1$ such that $A_K \sim E^g$, where E/K is an elliptic curve with CM by M.

Here K/\mathbb{Q} is the endomorphism field of A.

Definition

Let B/F be an abelian variety. The minimal extension K/F over which

$$\mathsf{End}(B_{\mathcal{K}})\simeq\mathsf{End}(B_{\overline{\mathbb{Q}}})$$

is called the endomorphism field of B.

- K/F is finite and Galois.
- Recast of the setting of Theorem 1:
 - (H) A/\mathbb{Q} is an abelian variety of dimension $g \ge 1$ such that $A_K \sim E^g$, where E/K is an elliptic curve with CM by M.

Here K/\mathbb{Q} is the endomorphism field of A.

Theorem 2 (F.-Guitart)

Under (H), there exist a subextension $M \subseteq L \subseteq K$ and an elliptic curve E'/L such that:

- $E'_{\overline{\mathbb{Q}}} \sim E_{\overline{\mathbb{Q}}}$
- L/M is Galois and Gal(L/M) has exponent dividing g.

• Part i) of Theorem 1 follows from Theorem 2

 ${\operatorname{Gal}}(L/M) woheadrightarrow {\operatorname{Gal}}(M(j_{E'})/M) \simeq {\operatorname{Gal}}(H_M/M) \simeq {\operatorname{Cl}}(M)$.

Theorem 3 ('from' Guralnick-Kedlaya)

Under (H), if g is prime, the maximal power of g dividing $\# \operatorname{Gal}(K/M)$ is 2 if g = 2 and 1 if g > 2.

• Part ii) of Theorem 1 follows from Theorem 3.

Theorem 2 (F.-Guitart)

Under (H), there exist a subextension $M \subseteq L \subseteq K$ and an elliptic curve E'/L such that:

- $E'_{\overline{\mathbb{Q}}} \sim E_{\overline{\mathbb{Q}}}$
- L/M is Galois and Gal(L/M) has exponent dividing g.

• Part i) of Theorem 1 follows from Theorem 2 Gal $(L/M) \rightarrow$ Gal $(M(j_{F'})/M) \simeq$ Gal $(H_M/M) \simeq Cl(M)$.

Theorem 3 ('from' Guralnick-Kedlaya)

Under (H), if g is prime, the maximal power of g dividing $\# \operatorname{Gal}(K/M)$ is 2 if g = 2 and 1 if g > 2.

Part ii) of Theorem 1 follows from Theorem 3.

Theorem 2 (F.-Guitart)

Under (H), there exist a subextension $M \subseteq L \subseteq K$ and an elliptic curve E'/L such that:

- $E'_{\overline{\mathbb{Q}}} \sim E_{\overline{\mathbb{Q}}}$
- L/M is Galois and Gal(L/M) has exponent dividing g.

• Part i) of Theorem 1 follows from Theorem 2

 $\operatorname{Gal}(L/M) \twoheadrightarrow \operatorname{Gal}(M(j_{E'})/M) \simeq \operatorname{Gal}(H_M/M) \simeq \operatorname{Cl}(M)$.

Theorem 3 ('from' Guralnick-Kedlaya)

Under (H), if g is prime, the maximal power of g dividing $\# \operatorname{Gal}(K/M)$ is 2 if g = 2 and 1 if g > 2.

• Part ii) of Theorem 1 follows from Theorem 3.

Theorem 2 (F.-Guitart)

Under (H), there exist a subextension $M \subseteq L \subseteq K$ and an elliptic curve E'/L such that:

- $E'_{\overline{\mathbb{Q}}} \sim E_{\overline{\mathbb{Q}}}$
- L/M is Galois and Gal(L/M) has exponent dividing g.

• Part i) of Theorem 1 follows from Theorem 2

 $\operatorname{Gal}(L/M) \twoheadrightarrow \operatorname{Gal}(M(j_{E'})/M) \simeq \operatorname{Gal}(H_M/M) \simeq \operatorname{Cl}(M)$.

Theorem 3 ('from' Guralnick-Kedlaya)

Under (H), if g is prime, the maximal power of g dividing $\# \operatorname{Gal}(K/M)$ is 2 if g = 2 and 1 if g > 2.

• Part ii) of Theorem 1 follows from Theorem 3.

A refined version of Theorem 1 for g = 2

Theorem 1^{*} (F.-Guitart)

Let A/\mathbb{Q} be an abelian surface such that $A_{\overline{\mathbb{Q}}} \sim E^2$, where $E/\overline{\mathbb{Q}}$ is an elliptic curve with CM by M. Then, the set of possibilities for M provided that $Gal(K/M) \simeq G$ is contained in $\mathcal{M}(G)$, where

Gal(K/M)	$\mathcal{M}(Gal(K/M))$
C_1	\mathcal{M}^1
C_2	$\mathcal{M}^1 \cup \mathcal{M}^2$
C ₃	\mathcal{M}^1
C_4	$\{\mathbb{Q}(\sqrt{-1}),\mathbb{Q}(\sqrt{-2})\}\cup\mathcal{M}^2$
C_6	$\{\mathbb{Q}(\sqrt{-3})\}\cup\mathcal{M}^2$
D_2	$\mathcal{M}^1 \cup \mathcal{M}^2 \cup \mathcal{M}^{2,2}$
D_3	$\mathcal{M}^1 \cup \mathcal{M}^2$
D_4	$\{\mathbb{Q}(\sqrt{-1}),\mathbb{Q}(\sqrt{-2})\}\cup\mathcal{M}^2\cup\mathcal{M}^{2,2}$
D_6	$\{\mathbb{Q}(\sqrt{-3})\}\cup \mathcal{M}^2\cup \mathcal{M}^{2,2}$
A_4	$\mathcal{M}^1 \setminus \{\mathbb{Q}(\sqrt{-7})\}$
S4	$\{\mathbb{Q}(\sqrt{-2})\}\cup\mathcal{M}^2\setminus\{\mathbb{Q}(\sqrt{-15}),\mathbb{Q}(\sqrt{-35}),\mathbb{Q}(\sqrt{-51}),\mathbb{Q}(\sqrt{-115})\}$

Proof of Theorem 2: abelian F-varieties

Definition (Ribet)

Let $B/\overline{\mathbb{Q}}$ be an abelian variety and F a number field. We say that B is an *(abelian)* F-variety if for every $\sigma \in G_F$:

- There exists an isogeny $\mu_{\sigma} \colon {}^{\sigma}B \to B$,
- **2** For every $\varphi \in \operatorname{End}(B)$, the following diagram commutes

- If dim(B) = 1, then B is called an *(elliptic)* F-curve.
- If dim(B) = 1, observe that
 - ▶ If *B* does not have CM, then 2) is always satisfied.
 - ▶ If B has CM (by M), then 1) automatic and 2) amounts to $M \subseteq F$.

Proof of Theorem 2: abelian F-varieties

Definition (Ribet)

Let $B/\overline{\mathbb{Q}}$ be an abelian variety and F a number field. We say that B is an *(abelian)* F-variety if for every $\sigma \in G_F$:

- There exists an isogeny $\mu_{\sigma} \colon {}^{\sigma}B \to B$,
- **2** For every $\varphi \in \operatorname{End}(B)$, the following diagram commutes

- If dim(B) = 1, then B is called an *(elliptic)* F-curve.
- If dim(B) = 1, observe that
 - ▶ If *B* does not have CM, then 2) is always satisfied.
 - ▶ If B has CM (by M), then 1) automatic and 2) amounts to $M \subseteq F$.

Proof of Theorem 2: abelian F-varieties

Definition (Ribet)

Let $B/\overline{\mathbb{Q}}$ be an abelian variety and F a number field. We say that B is an *(abelian)* F-variety if for every $\sigma \in G_F$:

- There exists an isogeny $\mu_{\sigma} \colon {}^{\sigma}B \to B$,
- **2** For every $\varphi \in \operatorname{End}(B)$, the following diagram commutes

- If dim(B) = 1, then B is called an *(elliptic)* F-curve.
- If dim(B) = 1, observe that
 - ▶ If *B* does not have CM, then 2) is always satisfied.
 - If B has CM (by M), then 1) automatic and 2) amounts to $M \subseteq F$.

• Let B be a F-variety.

• We may assume B/K, where K is a number field.

- We may assume that K is a *field of complete definition for B*, i.e.:
 - ► *K*/*F* is finite and Galois,
 - All the isogenies μ_{σ} are defined over K.
- Set G = Gal(K/F) and define

• Denote by $\gamma_B = [c_B] \in H^2(G, \mathbb{R}^{\times})$.

Weil's descent criterion (Ribet)

If $F \subseteq L \subseteq K$ is such that

 $\gamma_B \in \operatorname{Ker}(H^2(G, R^{\times}) \stackrel{\operatorname{res}}{\to} H^2(\operatorname{Gal}(K/L), R^{\times}))$,

- Let *B* be a *F*-variety.
- We may assume B/K, where K is a number field.
- We may assume that K is a field of complete definition for B, i.e.:
 - K/F is finite and Galois,
 - All the isogenies μ_{σ} are defined over K.
- Set G = Gal(K/F) and define

• Denote by $\gamma_B = [c_B] \in H^2(G, \mathbb{R}^{\times})$.

Weil's descent criterion (Ribet)

If $F \subseteq L \subseteq K$ is such that

 $\gamma_B \in \operatorname{Ker}(H^2(G, R^{ imes}) \stackrel{\mathrm{res}}{ o} H^2(\operatorname{Gal}(K/L), R^{ imes}))$,

- Let *B* be a *F*-variety.
- We may assume B/K, where K is a number field.
- We may assume that K is a *field of complete definition for B*, i.e.:
 - K/F is finite and Galois,
 - All the isogenies μ_{σ} are defined over K.

• Set G = Gal(K/F) and define

• Denote by $\gamma_B = [c_B] \in H^2(G, R^{ imes})$.

Weil's descent criterion (Ribet)

If $F \subseteq L \subseteq K$ is such that

 $\gamma_B \in \operatorname{Ker}(H^2(G,R^{ imes}) \stackrel{\mathrm{res}}{ o} H^2(\operatorname{Gal}(K/L),R^{ imes}))\,,$

- Let *B* be a *F*-variety.
- We may assume B/K, where K is a number field.
- We may assume that K is a *field of complete definition for B*, i.e.:
 - K/F is finite and Galois,
 - All the isogenies μ_{σ} are defined over K.
- Set G = Gal(K/F) and define

$$c_B \colon G imes G o (\operatorname{End}(B) \otimes \mathbb{Q})^{ imes}$$

 $(\sigma, \tau) \mapsto \mu_\sigma \circ {}^\sigma \mu_\tau \circ (\mu_{\sigma\tau})^{-1}$

• Denote by $\gamma_B = [c_B] \in H^2(G, R^{\times})$.

Weil's descent criterion (Ribet)

If $F \subseteq L \subseteq K$ is such that

 $\gamma_B \in \operatorname{Ker}(H^2(G, R^{\times}) \stackrel{\operatorname{res}}{\to} H^2(\operatorname{Gal}(K/L), R^{\times}))$

- Let *B* be a *F*-variety.
- We may assume B/K, where K is a number field.
- We may assume that K is a *field of complete definition for B*, i.e.:
 - K/F is finite and Galois,
 - All the isogenies μ_{σ} are defined over K.
- Set G = Gal(K/F) and define

$$c_B \colon G imes G o Z(\operatorname{End}(B) \otimes \mathbb{Q})^{ imes} \ (\sigma, au) \mapsto \mu_\sigma \circ {}^\sigma \mu_\tau \circ (\mu_{\sigma au})^{-1}$$

• Denote by $\gamma_B = [c_B] \in H^2(G, R^{\times})$.

Weil's descent criterion (Ribet)

If $F \subseteq L \subseteq K$ is such that

 $\gamma_B \in \operatorname{Ker}(H^2(G, R^{\times}) \xrightarrow{\operatorname{res}} H^2(\operatorname{Gal}(K/L), R^{\times})),$

- Let *B* be a *F*-variety.
- We may assume B/K, where K is a number field.
- We may assume that K is a *field of complete definition for B*, i.e.:
 - K/F is finite and Galois,
 - All the isogenies μ_{σ} are defined over K.
- Set G = Gal(K/F) and define

$$egin{aligned} & c_B\colon G imes G o Z(\operatorname{End}(B)\otimes \mathbb{Q})^{ imes} = R^{ imes} \ & (\sigma, au)\mapsto \mu_\sigma\circ^\sigma\mu_\tau\circ(\mu_{\sigma au})^{-1} \end{aligned}$$

• Denote by $\gamma_B = [c_B] \in H^2(G, R^{\times})$.

Weil's descent criterion (Ribet)

If $F \subseteq L \subseteq K$ is such that

 $\gamma_B \in \operatorname{Ker}(H^2(G, R^{\times}) \xrightarrow{\operatorname{res}} H^2(\operatorname{Gal}(K/L), R^{\times})),$

then there exists B'/L such that $B'_{\overline{\square}} \sim B_{\overline{\square}}$.

- Let *B* be a *F*-variety.
- We may assume B/K, where K is a number field.
- We may assume that K is a field of complete definition for B, i.e.:
 - K/F is finite and Galois,
 - All the isogenies μ_{σ} are defined over K.
- Set G = Gal(K/F) and define

$$egin{aligned} & c_B\colon G imes G o Z(\operatorname{End}(B)\otimes \mathbb{Q})^{ imes} = R^{ imes} \ & (\sigma, au)\mapsto \mu_\sigma\circ {}^\sigma\!\mu_\tau\circ (\mu_{\sigma au})^{-1} \end{aligned}$$

• Denote by
$$\gamma_B = [c_B] \in H^2(G, R^{\times})$$
.

Weil's descent criterion (Ribet)

If $F \subseteq L \subseteq K$ is such that

$$\gamma_B \in \operatorname{Ker}(H^2(G, R^{\times}) \xrightarrow{\operatorname{res}} H^2(\operatorname{Gal}(K/L), R^{\times})),$$

then there exists B'/L such that $B'_{\overline{\square}} \sim B_{\overline{\square}}.$

- Let *B* be a *F*-variety.
- We may assume B/K, where K is a number field.
- We may assume that K is a field of complete definition for B, i.e.:
 - K/F is finite and Galois,
 - All the isogenies μ_{σ} are defined over K.
- Set G = Gal(K/F) and define

$$egin{aligned} c_B\colon G imes G o Z(\operatorname{End}(B)\otimes \mathbb{Q})^{ imes} &= R^{ imes}\ &(\sigma, au)\mapsto \mu_\sigma\circ^\sigma\mu_\tau\circ(\mu_{\sigma au})^{-1} \end{aligned}$$

• Denote by
$$\gamma_B = [c_B] \in H^2(G, R^{\times})$$
 .

Weil's descent criterion (Ribet)

If $F \subseteq L \subseteq K$ is such that

$$\gamma_{\mathcal{B}} \in \operatorname{Ker}(\mathcal{H}^{2}(\mathcal{G}, \mathbb{R}^{\times}) \stackrel{\operatorname{res}}{\rightarrow} \mathcal{H}^{2}(\operatorname{Gal}(\mathcal{K}/\mathcal{L}), \mathbb{R}^{\times})),$$

then there exists B'/L such that $B'_{\overline{\mathbb{O}}} \sim B_{\overline{\mathbb{O}}}$.

Recall the setting of Theorem 2

Theorem 2 (F.-Guitart)

Let A/\mathbb{Q} be an abelian variety of dimension $g\geq 1$ such that:

- $A_K \sim E^g$
- E/K has CM by M.

Here, K the endomorphism field of A. Then, there exists a subextension $M \subseteq L \subseteq K$ and an elliptic curve E'/L such that:

- $E'_{\overline{\mathbb{Q}}} \sim E_{\overline{\mathbb{Q}}}$,
- L/M is Galois and Gal(L/M) has exponent dividing g.

• Key observation: *E* is a an *M*-curve and *K* is a field of complete definition for *E*.

 $\forall \sigma \in G_M: \quad {}^{\sigma}E^{g} \sim {}^{\sigma}A_K \sim A_K \sim E^{g} \qquad \rightsquigarrow \qquad \mu_{\sigma}: {}^{\sigma}E \to E.$

Recall the setting of Theorem 2

Theorem 2 (F.-Guitart)

Let A/\mathbb{Q} be an abelian variety of dimension $g\geq 1$ such that:

- *A_K* ~ *E^g*
- E/K has CM by M.

Here, K the endomorphism field of A. Then, there exists a subextension $M \subseteq L \subseteq K$ and an elliptic curve E'/L such that:

- $E'_{\overline{\mathbb{Q}}} \sim E_{\overline{\mathbb{Q}}}$,
- L/M is Galois and Gal(L/M) has exponent dividing g.

• Key observation: *E* is a an *M*-curve and *K* is a field of complete definition for *E*.

 $\forall \sigma \in G_M \colon {}^{\sigma} E^g \sim {}^{\sigma} A_K \sim A_K \sim E^g \qquad \rightsquigarrow \qquad \mu_{\sigma} \colon {}^{\sigma} E \to E \,.$

Recall the setting of Theorem 2

Theorem 2 (F.-Guitart)

Let A/\mathbb{Q} be an abelian variety of dimension $g\geq 1$ such that:

- $A_K \sim E^g$
- E/K has CM by M.

Here, K the endomorphism field of A. Then, there exists a subextension $M \subseteq L \subseteq K$ and an elliptic curve E'/L such that:

- $E'_{\overline{\mathbb{Q}}} \sim E_{\overline{\mathbb{Q}}}$,
- L/M is Galois and Gal(L/M) has exponent dividing g.
- Key observation: *E* is a an *M*-curve and *K* is a field of complete definition for *E*.

$$\forall \sigma \in G_{\mathcal{M}}: \quad {}^{\sigma}E^{g} \sim {}^{\sigma}A_{\mathcal{K}} \sim A_{\mathcal{K}} \sim E^{g} \qquad \rightsquigarrow \qquad \mu_{\sigma}: \, {}^{\sigma}E \to E \,.$$

It follows 'Ribet's strategy':

- One shows that γ_E ∈ H²(G, M[×])[g], where G = Gal(K/M) (by relating γ_E, γ_{E^g}, and γ_A).
- Write $P = M^{\times}/U$, where $U \subseteq M^{\times}$ denotes the roots of unity in M^{\times} .

We have

• For any subgroup $H \subseteq G$, one shows that

It follows 'Ribet's strategy':

- One shows that $\gamma_E \in H^2(G, M^{\times})[g]$, where G = Gal(K/M) (by relating γ_E , γ_{E^g} , and γ_A).
- Write P = M[×]/U, where U ⊆ M[×] denotes the roots of unity in M[×].
 We have

• For any subgroup $H \subseteq G$, one shows that

It follows 'Ribet's strategy':

- One shows that $\gamma_E \in H^2(G, M^{\times})[g]$, where G = Gal(K/M) (by relating γ_E , γ_{E^g} , and γ_A).
- Write P = M[×]/U, where U ⊆ M[×] denotes the roots of unity in M[×].
 We have

• For any subgroup $H \subseteq G$, one shows that

It follows 'Ribet's strategy':

- One shows that $\gamma_E \in H^2(G, M^{\times})[g]$, where G = Gal(K/M) (by relating γ_E , γ_{E^g} , and γ_A).
- Write $P = M^{\times}/U$, where $U \subseteq M^{\times}$ denotes the roots of unity in M^{\times} .

• We have

$H^2(G,M^\times)\simeq H^2(G,U)\times H^2(G,P)$

• For any subgroup $H \subseteq G$, one shows that

It follows 'Ribet's strategy':

- One shows that $\gamma_E \in H^2(G, M^{\times})[g]$, where G = Gal(K/M) (by relating γ_E , γ_{E^g} , and γ_A).
- Write $P = M^{\times}/U$, where $U \subseteq M^{\times}$ denotes the roots of unity in M^{\times} .

• We have

$H^2(G, M^{\times})[g] \simeq H^2(G, U)[g] \times H^2(G, P)[g]$

• For any subgroup $H \subseteq G$, one shows that

It follows 'Ribet's strategy':

- One shows that $\gamma_E \in H^2(G, M^{\times})[g]$, where G = Gal(K/M) (by relating γ_E , γ_{E^g} , and γ_A).
- Write $P = M^{\times}/U$, where $U \subseteq M^{\times}$ denotes the roots of unity in M^{\times} .

We have

$$H^{2}(G, M^{\times})[g] \simeq H^{2}(G, U)[g] \times H^{2}(G, P)[g]$$

 $\gamma_{E} \mapsto (\gamma_{U}, \overline{\gamma})$

• For any subgroup $H \subseteq G$, one shows that

$$\operatorname{res}_{H}^{G}(\overline{\gamma}) = 1 \qquad \Rightarrow \qquad \operatorname{res}_{H}^{G}(\gamma_{U}) = 1.$$

It follows 'Ribet's strategy':

- One shows that γ_E ∈ H²(G, M[×])[g], where G = Gal(K/M) (by relating γ_E, γ_{E^g}, and γ_A).
- Write $P = M^{\times}/U$, where $U \subseteq M^{\times}$ denotes the roots of unity in M^{\times} .

We have

$$H^2(G, M^{\times})[g] \simeq H^2(G, U)[g] \times H^2(G, P)[g]$$

 $\gamma_E \mapsto (\gamma_U, \overline{\gamma})$

• For any subgroup $H \subseteq G$, one shows that

$$\operatorname{res}_{H}^{G}(\overline{\gamma}) = 1 \qquad \Rightarrow \qquad \operatorname{res}_{H}^{G}(\gamma_{U}) = 1.$$

• Consider the map

 $P \rightarrow P$ $x \mapsto x^g$

• It induces an exact sequence in cohomology

Take $H = \langle a^g \mid a \in G \rangle \triangleleft G$. Then clearly

 $\mathrm{res}^{\mathsf{v}}_{H}(\overline{\gamma})=1, \qquad ext{as } \overline{\gamma} \in \mathsf{Hom}(G, P/P^{s})$.

• By Weil's descent criterion:

- There is a model of *E* over $L = K^H$, and
- $Gal(L/F) \simeq G/H$ is killed by g.

• Consider the map

 $P \rightarrow P$ $x \mapsto x^g$

• It induces an exact sequence in cohomology

 $H^1(G, P) \to H^1(G, P/P^g) \to H^2(G, P)[g] \to 1$ Take $H = \langle a^g \mid a \in G \rangle \triangleleft G$. Then clearly $\operatorname{res}^G_H(\overline{\gamma}) = 1$, as $\overline{\gamma} \in \operatorname{Hom}(G, P/P^g)$.

By Weil's descent criterion:

- There is a model of E over $L = K^H$, and
- Gal $(L/F) \simeq G/H$ is killed by g.

• Consider the map

 $P \rightarrow P$ $x \mapsto x^g$

• It induces an exact sequence in cohomology

 $\operatorname{Hom}(G,P) \to \operatorname{Hom}(G,P/P^g) \to H^2(G,P)[g] \to 1$ ake $H = \langle a^g \mid a \in G \rangle \triangleleft G$. Then clearly $\operatorname{reg}^G(\overline{\alpha}) = 1 \qquad \text{as } \overline{\alpha} \in \operatorname{Hom}(G,P/P^g)$

• By Weil's descent criterion:

- There is a model of *E* over $L = K^H$, and
- Gal $(L/F) \simeq G/H$ is killed by g.

• Consider the map

 $P \rightarrow P$ $x \mapsto x^g$

• It induces an exact sequence in cohomology

 $1 \to \mathsf{Hom}(G, P/P^g) \overset{\simeq}{\longrightarrow} H^2(G, P)[g] \to 1$

• Take $H = \langle a^g | a \in G \rangle \triangleleft G$. Then clearly

 $\operatorname{res}_{H}^{G}(\overline{\gamma}) = 1, \quad \text{as } \overline{\gamma} \in \operatorname{Hom}(G, P/P^{g}).$

- By Weil's descent criterion:
 - There is a model of E over L = K^H, and
 - $Gal(L/F) \simeq G/H$ is killed by g.

• Consider the map

 $P \rightarrow P$ $x \mapsto x^g$

• It induces an exact sequence in cohomology

$$1
ightarrow \mathsf{Hom}({\sf G},{\sf P}/{\sf P}^{\sf g}) \stackrel{\simeq}{\longrightarrow} {\sf H}^2({\sf G},{\sf P})[{\sf g}]
ightarrow 1$$

• Take $H = \langle a^g \mid a \in G \rangle \triangleleft G$. Then clearly

 $\operatorname{res}_{H}^{G}(\overline{\gamma}) = 1, \quad \text{as } \overline{\gamma} \in \operatorname{Hom}(G, P/P^{g}).$

• By Weil's descent criterion:

- There is a model of *E* over $L = K^H$, and
- $Gal(L/F) \simeq G/H$ is killed by g.

• Consider the map

 $P \rightarrow P$ $x \mapsto x^g$

• It induces an exact sequence in cohomology

$$1
ightarrow \mathsf{Hom}({\sf G},{\sf P}/{\sf P}^{\sf g}) \stackrel{\simeq}{\longrightarrow} {\sf H}^2({\sf G},{\sf P})[{\sf g}]
ightarrow 1$$

• Take $H = \langle a^g \mid a \in G \rangle \triangleleft G$. Then clearly

 $\operatorname{res}_{\mathcal{H}}^{\mathcal{G}}(\overline{\gamma}) = 1, \quad \text{as } \overline{\gamma} \in \operatorname{Hom}(\mathcal{G}, \mathcal{P}/\mathcal{P}^{g}).$

- By Weil's descent criterion:
 - There is a model of *E* over $L = K^H$, and
 - $Gal(L/F) \simeq G/H$ is killed by g.

Final comments

Theorem (Elkies-Ribet)

Let $E/\overline{\mathbb{Q}}$ be an *F*-curve *without CM*. Then *E* admits a model over a polyquadratic extension of *F*.

^

Ribet shows that

$$\gamma_E \in H^2(G, \mathbb{Q}^{\times})[2],$$

(for different reasons as ours). The other steps of the proof are analogous.

Corollary

Let A be an abelian variety over F such that $A_{\overline{\mathbb{Q}}} \sim E^g$, where E is an elliptic curve *without CM* and g is *odd*. Then E admits a model over F.

$$\left. \begin{array}{l} \gamma_E^{\rm g} = 1 \\ \gamma_E^2 = 1 \end{array} \right\} \Rightarrow \gamma_E = 1 \Rightarrow E \text{ admits a model over } F \, . \end{array}$$