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1. Introduction

I Let:
Mg/C be the moduli space of genus g curves /C, so
Mg (C) corresponds to isomorphism classes of such curves.

I Question: What is the dimension (and structure) of
subvarieties (subschemes) of Mg defined by “special
properties” of curves?

I Examples: 1) Curves with extra automorphims
2) Curves with non-constant morphisms to non-rational
curves;
3) Curves C whose Jacobians JC have non-trivial
endomorphisms, i.e. End(JC ) 6= Z.

I Note: Example 2 is a special case of Example 3.
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1. Introduction – 2

I Remark: By Torelli we have an injection

j : Mg (C) ↪→ Ag (C),

where Ag is the moduli space which classifies isomorphism
classes of principally polarized (p.p.) abelian varieties (A, λ)
of dimension g .
Explicitly: j(C ) := (JC , λθ), where λθ : JC

∼→ ĴC is the
θ-polarization.

Thus, Question/Example 3 can be transported to Ag . For
g = 2 this question was answered by Humbert (1900).



1. Introduction – 3

I Humbert (1900): For each positive integer n ≡ 0, 1 (mod 4), ∃
an irreducible surface Hn ⊂ A2 (called a Humbert surface)
such that:

(i) End(A) 6= Z ⇔ (A, λ) ∈ Hn, for some n;

(ii) M2 = A2 \ H1;

(iii) ∃f : C → E ⇔ (JC , λθ) ∈ HN2 , for some N ≥ 2.

I Remark: In [EC] (1994), property (iii) was refined to:

(iii′) (JC , λθ) ∈ HN2 ⇔ ∃f : C → E , deg(f ) = N, f minimal.

I Note: f : C → E is minimal ⇔ f does not factor over a
non-trivial isogeny of E .



1. Introduction – 4

I Questions: 1) How can we describe/analyze the components
of the intersection Hn ∩ Hm of two distinct Humbert
surfaces? (Of particular interest: the case n = N2.)

Note: The intersection HN2 ∩ Hm2 ∩M2 classifies curves C
with two minimal morphisms f1 : C → E1 and f2 : C → E2 of
degrees N and m.

2) How many such components are there?

I Basic idea: As will be explained below, each integral, positive
definite quadratic form q defines a closed subscheme

H(q) ⊂ A2,

called a generalized Humbert scheme.
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1. Introduction – 5

I Properties: 1) H(q) depends only on the GLr -equivalence
class of the quadratic form q = q(x1, . . . , xr ).

2) We have that H(q) 6= A2, but H(q) may be empty.

3) The usual Humbert surface is Hn := H(nx2).

4) It follows easily from the definition of H(q) (given below)
that if n 6= m, then

(1) Hn ∩ Hm =
⋃

q→n,m

H(q),

where the union is over all integral, positive definite binary
quadratic forms q which represent both n and m primitively.

Note: Up to equivalence, there are only finitely many forms q
with this property because |disc(q)| ≤ 4mn.



1. Introduction – 6

I Questions: 1) When is H(q) 6= ∅?
2) What is the (geometric) structure of H(q)? Is H(q)
irreducible?

3) For a given q, how can we construct the p.p. abelian
surfaces (A, λ) in H(q)? Is there a “modular construction”?



2. Main Results I

• Notation: Write q = [a, b, c] for a binary quadratic form

q(x , y) = ax2 + bxy + cy2.

Let Q denote the set of integral binary quadratic forms q
which satisfy:

(i) q is positive-definite;

(ii) q(x , y) ≡ 0, 1 (mod 4), ∀x , y ∈ Z.
Moreover, for n ∈ N let

Q(n) = {q ∈ Q : q → n}

denote the set of forms q ∈ Q which primitively represent n,
i.e.,

q(x , y) = n, for some x , y ∈ Z with gcd(x , y) = 1.



2. Main Results I - 2

I Theorem 1: Let q be an integral binary quadratic form and let
N ≥ 1. Then:

H(q) 6= ∅ and H(q) ⊂ HN2 ⇔ q ∈ Q(N2).

I Corollary: If m ≡ 0, 1 (mod 4) and N ≥ 1, then

Hm ∩ HN2 6= ∅.

Moreover, if m > 1 and N > 1, then

Hm ∩ HN2 ∩M2 6= ∅.

I Proof. Wlog m > 1. Consider q = [N2, 2εN,m], where
ε = rem(m, 4). Then H(q) 6= ∅ by Theorem 1 because
q ∈ Q(N2). Moreover, since q → N2 and q → m, we have by
(1) that H(q) ⊂ Hm ∩ HN2 .
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2. Main Results I - 3

I Remark. This corollary implies that the moduli space

M2(1, n) =
⋃

1<N|n

HN2 ∩M2

of curves admitting a morphism f : C → E of degree n to
some elliptic curve E is connected.

This answers a question posed by Accola-Previato[AP] (2006).

Note: The space M2(1, n) was studied by Lange[La] (1976).



3. Main Results II

I Question: When is H(q) irreducible?

I Theorem 2: If q = [a, b, c] ∈ Q(N2) is primitive, i.e., if
gcd(a, b, c) = 1, then H(q) is an irreducible curve.

I Definition. A quadratic form q is said to be of type (N,m, d)
if q ∈ Q(N2) and if m|N and

disc(q) = −16m2d and gcd(d ,N/m) = 1.

I Lemma: If q ∈ Q(N2), then there exists unique positive
integers m|N and d such that q has type (N,m, d).
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3. Main Results II - 2

I Theorem 3: Let q = [a, b, c] ∈ Q(N2) have type (N,m, d),
and put

cm(q) = gcd(a, b, c ,m).

(a) H(q) has at most 2ω(cm(q)) irreducible components,
provided that 8 - cm(q). Here ω(n) = |{p|n}|.
(b) If d > N4/(4m2) and if cm(q) is odd, then H(q) has
precisely 2ω(cm(q)) irreducible components, except when
q ∼ [N2, 0, 4d ].

I Remarks: 1) Clearly, Theorem 3(a) ⇒ Theorem 2.

2) If 8|cm(q), then H(q) has at most 2ω(cm(q))+1 irreducible
components, and the analogue of part (b) holds (but there are
more exceptions.) Moreover, the number of components can
also be determined in the exceptional cases.
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3. Main Results II - 4
I Numerical Examples: By the reduction theory of binary

quadratic forms and the above results (and more), we obtain:

H1 ∩ H4 = H[1, 0, 4],

H1 ∩ H5 = H[1, 0, 4],

H4 ∩ H5 = H[1, 0, 4] ∪ H[4, 0, 5] ∪ H[4, 4, 5],

H9 ∩ H5 = H[4, 0, 5] ∪ H[5, 2, 9] ∪ H[5, 4, 8].

Also, the number of irreducible components of HN2 ∩ Hm is:

N2\m 1 4 5 8 9 12 13 16 17 20 21 24 25

1 ∗ 1 1 2 1 2 2 2 3 3 2 3 3
4 1 ∗ 3 4 3 4 5 5 5 6 5 6 6
9 1 3 3 5 ∗ 6 5 6 8 7 8 10 9
16 2 5 5 6 6 9 9 ∗ 9 12 10 11 12
25 3 6 7 8 9 9 10 12 15 16 11 13 ∗

Note: The numbers in red are those for which the intersection
HN2 ∩ Hm contains reducible H(q)’s.



4. The Refined Humbert Invariant

I Key Observation: The Néron-Severi group

NS(A) = Div(A)/≡

of a p.p. abelian variety (A, λ) comes equipped with a
canonical integral quadratic form q(A,λ) (called the refined
Humbert invariant).

I Notation: Let A/K be an abelian surface over an algebraically
closed field K . If λ : A → Â is a p.p., then λ = φθ for some
(unique) θ ∈ NS(A). Put

q̃(A,λ)(D) = (D.θ)2 − 2(D.D), ∀D ∈ NS(A).

Then by the Hodge Index Theorem q̃(A,λ) defines a positive
definite quadratic form q(A,λ) on the quotient group

NS(A, λ) := NS(A)/Zθ.
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4. The Refined Humbert Invariant - 2

I Definition: We call q(A,λ) the refined Humbert invariant of
(A, λ).

I Remark: If D̄ ∈ NS(A, λ) is primitive (i.e., if NS(A, λ)/ZD̄ is
torsionfree), then it was shown in [EC] (1994) that

N = q(A,λ)(D̄)

is the classical Humbert invariant of A (which Humbert
defined in the case K = C via the period matrix of A).
Note that if rank(NS(A)) > 2, then (A, λ) has infinitely many
different (classical) Humbert invariants N associated to it.



5. Generalized Humbert Schemes

I Observation: The refined Humbert invariant q(A,λ) can be
used to define closed subschemes H(q) of the moduli space
A2.

I Definition: If (M1, q1) and (M2, q2) are two quadratic
Z-modules, then we say that (M1, q1) primitively represents
(M2, q2) if there exists a linear injection f : M2 → M1 such
that

q1 ◦ f = q2 and M1/f (M2) is torsionfree.

If this is the case, then we write q1 → q2.

I Notation: If q is an integral, positive-definite quadratic form
(on Zr ), then we put

H(q) := {(A, λ) ∈ A2(K ) : q(A,λ) → q}.
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5. Generalized Humbert Schemes - 2

I Proposition 1: H(q) is a closed subscheme of A2, provided
that char(K )2 6 | disc(q).

I Example: As was already mentioned, the classical Humbert
surface is Hn = H(nx2) (when K = C).

I Remark: It is possible to generalize the refined Humbert
invariant q(A,λ) to p.p. abelian varieties (A, λ) of arbitrary
dimension g ≥ 2. Then the above definition of H(q) extends
to define closed subschemes of Ag .
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5. Generalized Humbert Schemes - 3

I Generalization: Let (A, λ) be a p.p. abelian variety of
dimension g . Then the rule D 7→ λ−1 ◦ φD defines a bijection

ΦA : NS(A)
∼→ Endλ(A) := {α ∈ End(A) : λ−1 ◦ α̂ ◦ λ = α}.

Put, for α ∈ Endλ(A),

q(A,λ)(α) =
1

4
(2g tr(α2)− tr(α)2).

Then q(A,λ) defines a positive definite quadratic form on

NS(A, λ) = Endλ(A)/Z1A

(which generalizes the case g = 2) and one can show that

H(q) := {(A, λ) ∈ Ag : q(A,λ) → q}

is a closed subscheme of Ag .



6. The Modular Construction: Step 1

I Step 1: The Basic Construction ([FK])

I Theorem 4: Let char(K ) - N ≥ 1, and let X (N)/K denote the
affine modular curve of full level N. Then there is a finite
surjective morphism

βN : X (N)× X (N) → HN2 .

Moreover, the normalization H̃N2 of HN2 is isomorphic to the
quotient surface (X (N)× X (N))/Aut(βN).

I Remarks: 1) The morphism βN is a variant of the “basic
construction” of [FK].
2) We have that deg(βN) = |Aut(βN)| and that

Aut(βN) ' SL2(Z/NZ)/{±1}o Z/2Z.

In particular, |Aut(βN)| = |SL2(Z/NZ)|, if N ≥ 3.
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6. The Modular Construction: Step 2

I Step 2: The Modular Correspondences XN
A

I Notation: For d ≥ 1, let Md denote the set of primitive
matrices of determinant d , so

Md = Γ(1)αdΓ(1), where Γ(1) = SL2(Z), αd =
(

1 0
0 d

)
.

I Fact: If K = C, then for each A ∈Md there is an irreducible
curve

XN
A ⊂ X (N)× X (N)

which depends only on the double coset ±Γ(N)AΓ(N).

I Remark: Analytically, X (N) = Γ(N)\H, and XN
A is the image

of the graph ΓA ⊂ H× H of A (viewed as a fractional linear
transformation on the upper half-plane H).
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6. The Modular Construction: Step 3

I Step 3: The structure of H(q)

I Notation: For A ∈Md and N ≥ 1 let

qN
A = [N2, 2mt,m2(t2 + 4d)/N2].

Here, t = trace(BA), where B =
(

1 0
0 −1

)
and m|N is

determined by the formula

N

m
= gcd(x − w , y , z ,N), if BA = ( x y

z w ) .

I Lemma: (a) qN
A is a form of type (N,m, d).

(b) If q is a form of type (N,m, d), then there is a (primitive)
matrix A ∈Md such that q ∼ qN

A .
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6. The Modular Construction: Step 3 (cont’d)

I Notation: For A ∈Md and N ≥ 1 let

X
N
A := βN(XN

A ) ⊂ HN2 ⊂ A2

denote the image of the modular correspondence XN
A in the

Humbert surface HN2 .

I Theorem 5: If q is a binary form of type (N,m, d), then

(2) H(q) =
⋃
A

X
N
A ,

where the union is over all A ∈Md such that qN
A ∼ q. This is

a finite union because

(3) gBA1g
−1 ≡ ±BA2 (modN), g ∈ Γ(1) ⇒ X

N
A1

= X
N
A2
.



6. The Modular Construction: Step 3 (cont’d)
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7. The Structure of H(q)

I Analysis of the structure of H(q)

I Note: In view of Theorem 5, the study of the irreducible
components of H(q) leads to the following 3 problems:

1. Determine the SL2(Z/NZ)-conjugacy classes of the matrices A
mod N.

2. Study the ±-action on the conjugacy classes.
3. Examine the converse of implication (3).

I Solutions: 1) This is an easy extension of the work of
Nobs[No] (1977).

2) This is an easy exercise and leads to the exceptional cases
of Theorem 3.

3) This is more difficult because the failure of the converse
leads to curves lying in the singular locus of HN2 . However:
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7. The Structure of H(q) - 2

I Theorem 6: Let q be a form of type (N,m, d) which satisfies
the condition

(4) |{(x , y) ∈ Z2 : q(x , y) = N2, gcd(x , y) = 1}| = 2.

Then the converse of (3) holds for the matrices Ai ∈Md with
qN
Ai
∼ q.

I Remark: If d > N4/(4m2), then the theory of quadratic forms
(reduction theory) shows that (4) holds. (⇒ Theorem 3(b).)

I Theorem 7: Let N be an odd prime and q a form of type
(N,N, d) for which (4) does not hold. Then the converse of
(3) holds if and only if N ≡ 1 mod 4.

I Example: The form q = [9, 6, 9] has type (3, 3, 2) and
condition (4) fails for q. Thus, the converse of (3) does not
hold for q, and hence H(q) is an irreducible curve lying in the
singular locus of H9.
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8. Method of proof

I Definition. A N-presentation of a p.p. abelian surface (A, λ) is
4-tuple (E1,E2, ψ, π) where Ei/K are elliptic curves,
ψ : E1[N] → E2[N] is an anti-isometry, and

π : E1 × E2 → A

is an isogeny such that Ker(π) = Graph(−ψ) and

π∗θ ≡ N(θ1 + θ2),

where θ is the theta-divisor of (A, λ) and θi = pri (0Ei
).

I Remark: It follows from the basic construction (cf. [FK]) that

(A, λ) has an N-presentation ⇔ (A, λ) ∈ HN2 .
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8. Method of proof - 2

I Step 0: Given an N-presentation (E1,E2, ψ, π) of (A, λ),
compute the refined Humbert invariant q(A,λ) of (A, λ). This
was done in [ES]. (See [MJ] for a special case.)

I Step 1: Use the modular interpretation of X (N) to construct
the morphism

βN : X (N)× X (N) → A2.

Then Im(βN) = HN2 by the basic construction. Verify that βN

has finite fibres and that βN is proper. Thus, βN is finite.

I Steps 2 and 3: Determine a useful modular interpretation of
(the normalization of) the modular correspondence XN

A . Use
this and Step 0 to show that βN(XN

A ) ⊂ H(q) if and only if
qN
A ∼ q.
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