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Subject of this talk

Let E/K be an elliptic curve, where K is a number �eld of degree

d , such that E (K ) contains a point of order n.

What properties do E and K have?

What can we say about the �eld K itself, about the rank of E over

K (or over extensions of K ), the reduction types of E at primes of

K , the �eld of de�nition of E and j(E ), etc.?
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Elliptic curves with a point of order n over Q

It is reasonable to start with d = 1, i.e. to look at elliptic curves

over Q.

Mazur (1977): The torsion of an elliptic curve over Q is

isomorphic to one of the following groups:

Cn, where n = 1, . . . , 10 or 12,

C2 ⊕ C2n, where n = 1, . . . , 4.

Unfortunately, one cannot say much about an elliptic curve with a

point of order n over Q.

The reason is that all the curves X1(n) with non-cuspidal points

over Q (i.e. n ≤ 10 or n = 12), are of genus 0.
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Elliptic curves with a point of order n over quadratic �elds

Let E/K be an elliptic curve, where K is a number �eld of degree

d , with a point of order n.

1) For (n, d) = (13, 2) :

a) K is a real quadratic �eld.

b) E is isomorphic to its Galois conjugate Eσ and j(E ) ∈ Q (but
E itself is not de�ned over Q!). So E is a Q-curve.

c) E has even rank over K .
d) E has even rank over every number �eld N that can be written

as N = N ′ ⊗Q K for some number �eld N ′.
e) The product

∏
v cv of the Tamagawa numbers cv of E satis�es

that v13(
∏

v cv ) is a positive even integer and there exists
exactly one elliptic curve for which v13(

∏
v cv ) = 2.

a), b) and c) were proved by Bosman, Bruin, Dujella and N.

(2011), a) was independently also proven by Krumm (2012), d) by

Bruin and N. (2012), and e) by N. (2016)
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Elliptic curves with a point of order n over quadratic �elds

2) For (n, d) = (16, 2), E is de�ned over Q, i.e. E/K is a base

change of an elliptic curve de�ned over Q. Moreover

E (Q)tors ' C8 and E has a Q-rational 16-isogeny.

3) For (n, d) = (18, 2),

a) K is a real quadratic �eld.
b) E is 2-isogenous (over K ) to its Galois conjugate Eσ, so E is a

Q-curve.
c) E has even rank over K
d) E has even rank over every number �eld N that can be written

as N = N ′ ⊗Q K for some number �eld N ′.

2) was proved by Bruin and N. (2016), 3a), 3b), 3c) by BBDN

(2011), and 3a) also independently by Krumm (2012) and 3d) by

Bruin and N. (2012)
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Elliptic curves with a point of order n over cubic �elds

4) For (n, d) = (21, 3), (E ,K ) is unique

E : y2 + xy + y = x3 − x2 − 5x + 5,

and K = Q(ζ9)
+.

5) If E (K )tors contains C2⊕C14 as a subgroup, then K is a cyclic

cubic �eld and E is a base change of an elliptic curve over Q.

The curve in 4) was found by N. (2012), and proven to be unique

by Derickx, Etropolski, Morrow and Zuerick-Brown (?). Statement

5) was proved by Bruin and N. (2016)
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Elliptic curves with a point of order n over quartic �elds

6) For (n, d) = (22, 4),

a) The Galois group of the normal closure of K over Q is D4.

b) E is 2-isogenous to Eσ, where σ is the generator of Gal(K/L),
and where L is the unique quadratic sub�eld of K . So E is a
L-curve.

c) E has even rank over K

7) For (n, d) = (17, 4), the Galois group of the normal closure of

K over Q is D4 or S4, with �nitely many exceptions.

6) was proven by BBDN (2011) and 7) by Derickx, Kamienny and

Mazur (2015).
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Moduli interpretation of maps between modular curves

All of these results come from �nding all the maps from the

corresponding modular curve X := X1(n) to all possible quotients

X ′ of X of genus 0, and understanding the moduli interpretation of

X ′ and the maps X → X ′.

We will sketch the case when X is a hyperelliptic curve, i.e

X = X1(n) for n = 13, 16, 18.

All the other cases follow the same basic ideas, although they are

more technically complicated.
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Hyperelliptic modular curves

Let E/K be an elliptic curve with a point of order n over a

quadratic �eld K such that X := X1(n) is hyperelliptic. Let J be

the Jacobian of X , ι the (unique) hyperelliptic involution of X and

σ the generator of Gal(K/Q).

Fix a cusp C ∈ X (Q). We look at the map

f : Sym2 X → J,

{P,Q} → [P + Q − C − ι(C )],

which is an isomorphism away from the �bre above 0 which consists

of the pairs of points {P, ι(P)} which are �xed by ι.

In all our cases we get that J(Q) is �nite and, we compute that

f −1(J(Q)− {0}) consists only of pairs of cusps.

Now take a non-cusp point P in X (K ). Then f ({P,Pσ}) ∈ J(Q),
thus it has to be 0, so Pσ = ι(P).
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Hyperelliptic modular curves

To conclude: the only non-cusp quadratic points on X are such

that ι(P) = Pσ.

Note that this is general fact about hyperelliptic curves: using the

notation as above, for a hyperelliptic curve over a number �eld L,
the points P of degree 2 over L are those such that Pσ = ι(P)
together with those that lie in f −1(J(L)− {0}).

Taking a model X : y2 = f (x), we have that all the quadratic

non-cusp points are of the form (x ,
√
f (x)), for some x ∈ Q. Now

it happens that for X = X1(13) and X1(18), for all x ∈ R, f (x) is
positive. Hence there are no non-cuspidal points on these modular

curves are de�ned over imaginary quadratic �elds.
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Hyperelliptic modular curves

Recall that each point x ∈ X1(n) represents a K -isomorphism class

of (E ,P), where E/K and P ∈ E (K ) has order n. Then xσ

represents (Eσ,Pσ). The moduli interpretation of ι is the following

1 For n = 13 ,ι((E ,P)) = (E , 5P). Now since ι(x) = xσ we

have E ' Eσ.

2 For n = 16, ι((E ,P)) = (E , 9P). Again, since ι(x) = xσ we

have E ' Eσ.

3 For n = 18, ι((E ,P)) = (E/〈9P〉,Q), where Q is a point of
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Understanding E ' E σ

To get information about the �eld of de�nition of E , one has to

understand the isomorphism E ' Eσ.

Take now X = X1(13) and let φ be the isomorphism from (Eσ,Pσ)
to (E , 5P) coming from xσ = ι(x). Then

(φ ◦ σ)(E ,P) = (E , 5P),

(φ ◦ σ)2(E ,P) = (E , 25P) = (E ,−P).

Now it is obvious that φ cannot be the identity, hence σ does not

act trivially on E , and hence E is not de�ned over Q.

Moreover (φ ◦ σ) =
√
−1 is an endomorphism of E (K ), which is

not mulitplicaiton by n, hence E (K ) is a Z[i ]-module, and hence a

Z-module of even rank. Equivalently, End(ResK/Q E ) ' Z[
√
−1].
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Remaining cases

In the case X1(16) one can work out that Eσ = E , so E has a

model de�ned over Q. Moreover, for the point P of order 16, one

gets that 2P = (2P)σ, so E (Q) contains a point of order 8.

In all the above cases we took advanatage of the moduli

interpretation of the map X → X/ι. It was very convenient that

there is a unique map from X to P1 for hyperelliptic X .

For X of higher gonality, there is usually more than one map from

X to P1, so things become more complicated.
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Tamagawa numbers

Let E/K an elliptic curve over a number �eld K . For every �nite

prime v of K , denote by Kv the completion of K at v and by kv
the residue �eld of v . The subgroup E0(Kv ) of E (Kv ) consisting of

points that reduce to nonsingular points in E (kv ) has �nite index in

E (Kv ) and the Tamagawa number of E at v is this index

cv := [E (Kv ) : E0(Kv )].

De�ne cE to be cE :=
∏

v cv .

Because the ratio cE/#E (K )tors appears, by the

Birch-Swinnerton�Dyer conjecture, as a factor in the leading term

of the L-function of E , it is natural to study how the value of cE
depends on E (K )tors .

Lorenzini (2011) proved many results about this ratio for elliptic

curves over Q.
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The ratio cE/#E (K )tors

Suppose for simplicity that N = #E (K )tors is prime. Let E1(Kv )
be the subgroup of E (Kv ) of points which reduce to the point at

in�nity in E (kv ) and let Ens(kv ) be the group of nonsingular points

in E (kv ).

There exists an exact sequence of abelian groups

0 −→ E1(Kv ) −→ E0(Kv ) −→ Ens(kv ) −→ 0.

If v does not divide N, then there are no points of order N in

E1(Kv ), as E1(Kv ) is isomorphic to the formal group of E . If v is

also small enough such that there cannot be any points of order N
in Ens(kv ), then it follows that E0(Kv ) does not have a point of

order N. It then follows, by de�nition, that N has to divide cv .

Krumm showed (taking v to be a prime above 2 and N = 13) that

for all elliptic curves E over all quadratic �elds K with

E (K )tors ' C13, v13(cE ) ≥ 2.
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A conjecture of Krumm

Krumm noticed that for the �rst 48925 such elliptic curves E that

he tested it was always true that v13(cE ) is even. He conjectured

that this was always the case.

Let for the remainder of the talk X = X1(13), and let J be the

Jacobian of X . The cusps of X are de�ned over Q(ζ13)
+ and none

of them are �xed by ι. The rank of J(Q(ζ13)
+) is 0.

Lemma. Let (E ,P) = x ∈ X (K ), let v be a prime of K such that

v - 13 and 13|cv , let p be the rational prime below v and let v ′ be
a prime of Q(ζ13)

+ above p. Then x mod v is equal to C mod v ′

for a cusp C ∈ X (Q(ζ13)
+) such that C mod v ′ is Fp-rational.
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Proposition Let Et be an elliptic curve over a quadratic �eld K
with Et(K )tors ' C13. Let v be a prime of K over a rational prime

p such that 13 divides cv . Then p splits in K .

Proof: Case 1: v does not divide 13

Let x ∈ Y (K ), v ′ be a prime of Q(ζ13)
+ above p. Denote by ỹ the

reduction of a y ∈ X (K ) mod v and denote by y the reduction of a

y ∈ X (Q(ζ13)
+) mod v ′. Note Y (Q) = ∅, so x is not de�ned over

Q.

Let x̃ = C and x̃σ = Cσ, for some cusps C and Cσ; C and Cσ are

Fp-rational by previous Lemma.

If p is inert or rami�ed, it follows that

Cσ = x̃σ = x̃Frob v = C
Frob v

= C .

It follows that [x̃ + x̃σ − 2C ] = 0, and since, [x + xσ − 2C ] is a
Q(ζ13)

+-rational divisor class, and hence a torsion point, injectivity

of reduction mod v ′ on J(Q(ζ13)
+)tors implies that

[x + xσ − 2C ] = 0.
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Thus x + xσ − 2C is a divisor of a rational function g , and since

x , xσ 6= C , g is of degree 2.

Since the hyperelliptic map is unique (up to an automorphism of

P1), it follows that g : X → X/〈ι〉 ' P1 is the hyperelliptic map. It

follows that C is �xed by ι, which is a contradiction.

Case 2: v divides 13: All elliptic curves with a point of order 13 can

be parameterized as

y2 + a(t, s)xy + b(t, s)y = x3 + b(t, s)x2,

where s =
√
t6 − 2t5 + t4 − 2t3 + 6t2 − 4t + 1, and a(t, s) and

b(t, s) are rational functions in s and t. Thus the reduction type of

E over a prime v over 13 depends only on the value of t mod 13.

In all the cases when Et has multiplicative reduction, we get that

13 splits in Q(s).
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Proof of Krumm's conjecture

By the previous proposition we have, that if v13(cv ) > 0, then

v 6= vσ. Since Eσ ' E , it follows that cv (E ) = cvσ(Eσ) = cvσ(E ).

Hence v13(
∏

v cv ) is even.

Moreover, we prove that the elliptic curve

E2 : y
2 + xy + y = x3 − x2 +

−541+ 131
√
17

2
x + 3624− 879

√
17

is the only elliptic curve E over any quadratic �eld with C13 torsion

such that v13(cE ) = 2; for all other such curves 134|cE .
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The end

Thank you for your attention!
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