# On the p-ranks of Prym varieties

### Ekin Ozman joint work with Rachel Pries

Bogazici University, Istanbul ekinozman@boun.edu.tr

May 30, 2017

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Ekin Ozman

- *k* algebraically closed field of characteristic p > 0,
- A abelian variety of dimension g over k,
- p-rank of A is the number  $f_A$  such that  $#A[p](k) = p^{f_A}$ ,
- If C is a curve of genus g over k then its p-rank is the p-rank of Jac(C) and
- $0 \leq f_A \leq g$ ,
- C is called *ordinary* if p-rank of C is g and *almost ordinary* if p-rank of C is g 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- *k* algebraically closed field of characteristic p > 0,
- A abelian variety of dimension g over k,
- p-rank of A is the number  $f_A$  such that  $#A[p](k) = p^{f_A}$ ,
- If C is a curve of genus g over k then its p-rank is the p-rank of Jac(C) and
- $0 \leq f_A \leq g$ ,
- C is called *ordinary* if p-rank of C is g and *almost ordinary* if p-rank of C is g 1.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

- *k* algebraically closed field of characteristic p > 0,
- A abelian variety of dimension g over k,
- p-rank of A is the number  $f_A$  such that  $#A[p](k) = p^{f_A}$ ,
- If C is a curve of genus g over k then its p-rank is the p-rank of Jac(C) and
- $0 \leq f_A \leq g$ ,
- C is called *ordinary* if p-rank of C is g and *almost ordinary* if p-rank of C is g 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- *k* algebraically closed field of characteristic p > 0,
- A abelian variety of dimension g over k,
- p-rank of A is the number  $f_A$  such that  $#A[p](k) = p^{f_A}$ ,
- If C is a curve of genus g over k then its p-rank is the p-rank of Jac(C) and
- $0 \leq f_A \leq g$ ,
- C is called *ordinary* if p-rank of C is g and *almost ordinary* if p-rank of C is g 1.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

## Question

Given (p, g, f) is there a curve *C* of genus *g* with *p*-rank *f* defined over an algebraically closed field of characteristic *p*?

## YES, by Faber and Van der Geer

Stratify by *p*-rank: M<sup>0</sup><sub>g</sub> ⊂ ... ⊂ M<sup>g-1</sup><sub>g</sub> ⊂ M<sup>g</sup><sub>g</sub>
 Every component of M<sup>f</sup><sub>g</sub> has codimension g − f in M<sub>g</sub>(i.e. has dim 2g-3+f).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

## Question

Given (p, g, f) is there a curve *C* of genus *g* with *p*-rank *f* defined over an algebraically closed field of characteristic *p*?

YES, by Faber and Van der Geer

Stratify by *p*-rank: M<sup>0</sup><sub>g</sub> ⊂ ... ⊂ M<sup>g-1</sup><sub>g</sub> ⊂ M<sup>g</sup><sub>g</sub>
 Every component of M<sup>f</sup><sub>g</sub> has codimension g − f in M<sub>g</sub>(i.e. has dim 2g-3+f).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Faber and Van der Geer : Every component of  $\mathcal{M}_g^f$  has codimension g f in  $\mathcal{M}_g$ (dim 2g-3+f).
- Norman and Oort:  $\mathcal{A}_{g}^{f}$  has codimension g f in  $\mathcal{A}_{g}$
- Glass and Pries, Pries and Zhu: Every component of  $\mathcal{H}_g^f$  has codimension g f in  $\mathcal{H}_g$ (dim g-1+f).

where  $\mathcal{A}_g$  abelian varieties,  $\mathcal{H}_g$  hyperelliptic curves

By Chai and Oort  $\mathcal{A}_g^f$  is irreducible for  $g \geq 3$ 

in most cases it is not known whether or not  $\mathcal{M}_{g}^{f}, \mathcal{H}_{g}^{f}$  are irreducible.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

- Faber and Van der Geer : Every component of  $\mathcal{M}_g^f$  has codimension g f in  $\mathcal{M}_g$ (dim 2g-3+f).
- Norman and Oort:  $\mathcal{A}_{g}^{f}$  has codimension g f in  $\mathcal{A}_{g}$
- Glass and Pries, Pries and Zhu: Every component of H<sup>f</sup><sub>g</sub> has codimension g f in H<sub>g</sub>(dim g-1+f).

where  $A_g$  abelian varieties,  $H_g$  hyperelliptic curves By Chai and Oort  $A_g^f$  is irreducible for  $g \ge 3$ 

in most cases it is not known whether or not  $\mathcal{M}_{g}^{f}, \mathcal{H}_{g}^{f}$  are irreducible.

- Faber and Van der Geer : Every component of M<sup>f</sup><sub>g</sub> has codimension g − f in M<sub>g</sub>(dim 2g-3+f).
- Norman and Oort:  $\mathcal{A}_{g}^{f}$  has codimension g f in  $\mathcal{A}_{g}$
- Glass and Pries, Pries and Zhu: Every component of H<sup>f</sup><sub>g</sub> has codimension g f in H<sub>g</sub>(dim g-1+f).

where  $\mathcal{A}_g$  abelian varieties,  $\mathcal{H}_g$  hyperelliptic curves

By Chai and Oort  $\mathcal{A}_{g}^{f}$  is irreducible for  $g \geq 3$ 

in most cases it is not known whether or not  $\mathcal{M}_{g}^{f}, \mathcal{H}_{g}^{f}$  are irreducible.

- Faber and Van der Geer : Every component of  $\mathcal{M}_g^f$  has codimension g f in  $\mathcal{M}_g$ (dim 2g-3+f).
- Norman and Oort:  $\mathcal{A}_{g}^{f}$  has codimension g f in  $\mathcal{A}_{g}$
- Glass and Pries, Pries and Zhu: Every component of H<sup>f</sup><sub>g</sub> has codimension g f in H<sub>g</sub>(dim g-1+f).

where  $\mathcal{A}_g$  abelian varieties,  $\mathcal{H}_g$  hyperelliptic curves

By Chai and Oort  $\mathcal{A}_{g}^{f}$  is irreducible for  $g \geq 3$ 

in most cases it is not known whether or not  $\mathcal{M}_{g}^{f}, \mathcal{H}_{g}^{f}$  are irreducible.

Suppose : *X* has genus  $\geq 2, \ell \neq p$ , prime,  $\pi : Y \to X$  an unramified  $\mathbb{Z}/\ell\mathbb{Z}$ -cover.

## Definition

The *Prym variety*  $P_{\pi}$  is the connected component containing 0 of the norm map on Jacobians i.e. if  $\sigma$  generates Gal(Y/X) then  $P_{\pi} = \text{ker}(1 + \sigma + \ldots + \sigma^{\ell-1})^0$ .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

• If 
$$X \in \mathcal{M}_g$$
 then  $Y \in \mathcal{M}_{\ell(g-1)+1}$  and  
• Jac $(Y) \sim \text{Jac}(X) \oplus P_{\pi}$ , so  $P_{\pi} \in \mathcal{A}_{(g-1)(\ell-1)}$  and  
• If  $X \in \mathcal{M}_g^f, P_{\pi} \in \mathcal{A}_{(g-1)(\ell-1)}^{f'}$  then  $Y \in \mathcal{M}_g^{f+f'}$ .

## Notation $\pi: Y \to X, \operatorname{Jac}(Y) \sim \operatorname{Jac}(X) \oplus P_{\pi}$

- $\mathcal{R}_{g,\ell} = \{(\pi : Y \to X), X \in \mathcal{M}_g, \pi \text{ unramified } \mathbb{Z}/\ell\mathbb{Z} \text{cover}\}$
- $\Pi_{\ell} : \mathcal{R}_{g,\ell} \to \mathcal{M}_g$ , natural projection,  $(\pi : Y \to X) \mapsto X$
- $\diamond \ \Pi_\ell \ is \ finite$

$$\diamond \ \operatorname{\mathsf{dim}} \mathcal{R}_{g,\ell} = \operatorname{\mathsf{dim}} \mathcal{M}_g = 3g - 3$$

# Question

What is the interaction between the p-ranks f and f'?



## Notation $\pi: Y \to X, \operatorname{Jac}(Y) \sim \operatorname{Jac}(X) \oplus P_{\pi}$

- $\mathcal{R}_{g,\ell} = \{(\pi : Y \to X), X \in \mathcal{M}_g, \pi \text{ unramified } \mathbb{Z}/\ell\mathbb{Z} \text{cover}\}$
- $\Pi_{\ell} : \mathcal{R}_{g,\ell} \to \mathcal{M}_g$ , natural projection,  $(\pi : Y \to X) \mapsto X$
- $\diamond \ \Pi_\ell \ is \ finite$

$$\diamond~ \mathsf{dim}\,\mathcal{R}_{g,\ell} = \mathsf{dim}\,\mathcal{M}_g = 3g-3$$

## Question

What is the interaction between the p-ranks f and f'?



### **Notation** $\pi: Y \to X, \operatorname{Jac}(Y) \sim \operatorname{Jac}(X) \oplus P_{\pi}$

• 
$$\mathcal{R}_{g,\ell} = \{(\pi : Y \to X), X \in \mathcal{M}_g, \pi \text{ unramified } \mathbb{Z}/\ell\mathbb{Z} - \text{cover}\}$$
  
•  $W_g^f = \{(\pi : Y \to X) | (\pi : Y \to X) \in \mathcal{R}_{g,\ell}, X \in \mathcal{M}_g^f\}$ 

 $\circ \ W_g^f = \Pi_\ell^{-1}(\mathcal{M}_g^f) \text{ and } \dim W_g^f = \dim \mathcal{M}_g^f = 2g - 3 + f$ 



э

Ekin Ozman

### Theorem 1 (O., Pries)

Let  $\ell \neq p$  and  $(g, f) \neq (2, 0)$ .

Prym varieties of all unramified cyclic degree  $\ell$  covers of a generic curve X of p-rank f is ordinary.

For each irreducible component *S* of  $\mathcal{M}_{g}^{f}$ ,  $\Pi_{\ell}^{-1}(S)$  is irreducible of dimension 2g - 3 + f and the cover represented by the generic point of  $\Pi_{\ell}^{-1}(S)$  has an ordinary Prym.

If Q is an irreducible component of  $W_g^f$  then the Prym of the cover represented by the generic point of Q is ordinary.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

#### Theorem 1 (O., Pries)

Let  $\ell \neq p$  and  $(g, f) \neq (2, 0)$ .

Prym varieties of all unramified cyclic degree  $\ell$  covers of a generic curve X of *p*-rank *f* is ordinary.

For each irreducible component *S* of  $\mathcal{M}_{g}^{f}$ ,  $\Pi_{\ell}^{-1}(S)$  is irreducible of dimension 2g - 3 + f and the cover represented by the generic point of  $\Pi_{\ell}^{-1}(S)$  has an ordinary Prym.

If Q is an irreducible component of  $W_g^f$  then the Prym of the cover represented by the generic point of Q is ordinary.

イロン 不良 とくほう 不良 とうほう

#### Theorem 1 (O., Pries)

Let  $\ell \neq p$  and  $(g, f) \neq (2, 0)$ .

Prym varieties of all unramified cyclic degree  $\ell$  covers of a generic curve X of *p*-rank *f* is ordinary.

For each irreducible component *S* of  $\mathcal{M}_{g}^{f}$ ,  $\Pi_{\ell}^{-1}(S)$  is irreducible of dimension 2g - 3 + f and the cover represented by the generic point of  $\Pi_{\ell}^{-1}(S)$  has an ordinary Prym.

If *Q* is an irreducible component of  $W_g^f$  then the Prym of the cover represented by the generic point of *Q* is ordinary.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

## Theorem 1 (O., Pries)

Let  $\ell \neq p$  and  $(g, f) \neq (2, 0)$ . For each irreducible component S of  $\mathcal{M}_{g}^{f}, \Pi_{\ell}^{-1}(S)$  is irreducible of dimension 2g - 3 + f and the cover represented by the generic point of  $\Pi_{\ell}^{-1}(S)$  has an ordinary Prym.

By Theorem 1 we know the dimension of the folowing stratum:



Theorem 1 (O., Pries)

Let  $\ell \neq p$  and  $(g, f) \neq (2, 0)$ . For each irreducible component S of  $\mathcal{M}_{g}^{f}, \Pi_{\ell}^{-1}(S)$  is irreducible of dimension 2g - 3 + f and the cover represented by the generic point of  $\Pi_{\ell}^{-1}(S)$  has an ordinary Prym.

This generalizes the following theorem:

**Nakajima, 1983:** The cover represented by the generic point of  $\mathcal{R}_{g,\ell}$  has an ordinary Prym.

and also:

**Raynaud**, **1982:** For any genus *g* curve *X* and for sufficiently large  $\ell$ , there is an unramified  $\mathbb{Z}/\ell\mathbb{Z}$ -cover  $\pi$  such that  $P_{\pi}$  is ordinary.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theorem 1 (O., Pries)

Let  $\ell \neq p$  and  $(g, f) \neq (2, 0)$ . For each irreducible component S of  $\mathcal{M}_{g}^{f}, \Pi_{\ell}^{-1}(S)$  is irreducible of dimension 2g - 3 + f and the cover represented by the generic point of  $\Pi_{\ell}^{-1}(S)$  has an ordinary Prym.

This generalizes the following theorem:

**Nakajima, 1983:** The cover represented by the generic point of  $\mathcal{R}_{g,\ell}$  has an ordinary Prym.

and also:

**Raynaud, 1982:** For any genus *g* curve *X* and for sufficiently large  $\ell$ , there is an unramified  $\mathbb{Z}/\ell\mathbb{Z}$ -cover  $\pi$  such that  $P_{\pi}$  is ordinary.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Aim: is to produce unramified  $\mathbb{Z}/\ell$ -cover  $\pi: Y \to X$  such that  $X \in \mathcal{M}_q^f$  and  $\mathcal{P}_{\pi}$  is ordinary.

Naive idea: Build a cover of singular curves, deform it to a smooth curve and proceed by induction

- STP 1 Let  $S_0$  be an irreducible component of  $\overline{\mathcal{M}}_g^f$ . Then  $\Pi_\ell^{-1}(S_0)$  is also irreducible, follows from a result of Achter and Pries
- STP 2 An irreducible component Q of  $W_g^f$  intersects a particular boundary

# Idea of the proof

STP 2 An irreducible component Q of  $W_g^f$  intersects a particular boundary.

In fact, *Q* contains a component of  $\kappa_{i,g-i}(W_{i,1}^{f_1} \times W_{g-i,1}^{f_2})$ 



 $1 \to \mathbb{T} \to P_{\pi} \to P_{\pi_1} \oplus P_{\pi_2} \to 1$ , where  $\mathbb{T}$  is a torus of rank  $\ell - 1$ .

STP 3 Inductive Step: Choose  $C_1, C_2$  with *p*-ranks  $f_1, f_2$  s.t.  $f_1 + f_2 = f$  such that there exists  $\pi_1 : C'_1 \to C_1, \pi_2 : C'_2 \to C_2$  s.t.  $P_{\pi_1}, P_{\pi_2}$  are ordinary. Then

$$f_{\pi} = f_{\pi_1} + f_{\pi_2} + \ell - \mathbf{1}$$

 $f_{\pi} = (\ell - 1)(g_1 - 1), f_{\pi_2} = (\ell - 1)(g_2 - 1),$ 

$$\Rightarrow f_{\pi} = (\ell - 1)(g - 1)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Ekin Ozman

STP 3 Inductive Step: Choose  $C_1, C_2$  with *p*-ranks  $f_1, f_2$  s.t.  $f_1 + f_2 = f$  such that there exists  $\pi_1 : C'_1 \to C_1, \pi_2 : C'_2 \to C_2$  s.t.  $P_{\pi_1}, P_{\pi_2}$  are ordinary. Then

$$f_{\pi} = f_{\pi_1} + f_{\pi_2} + \ell - \mathbf{1}$$

$$f_{\pi} = (\ell - 1)(g_1 - 1), f_{\pi_2} = (\ell - 1)(g_2 - 1),$$

$$\Rightarrow f_{\pi} = (\ell - 1)(g - 1)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Ekin Ozman

STP 3 Inductive Step: Choose  $C_1, C_2$  with *p*-ranks  $f_1, f_2$  s.t.  $f_1 + f_2 = f$  such that there exists  $\pi_1 : C'_1 \to C_1, \pi_2 : C'_2 \to C_2$  s.t.  $P_{\pi_1}, P_{\pi_2}$  are ordinary. Then

$$f_{\pi} = f_{\pi_1} + f_{\pi_2} + \ell - \mathbf{1}$$

$$f_{\pi} = (\ell - 1)(g_1 - 1), f_{\pi_2} = (\ell - 1)(g_2 - 1),$$

$$\Rightarrow f_{\pi} = (\ell - 1)(g - 1)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

### Notation $\pi: Y \to X$ unramified double cover $\operatorname{Jac}(Y) \sim \operatorname{Jac}(X) \oplus P_{\pi}$

• 
$$\mathcal{R}_g = \{(\pi : Y \to X), X \in \mathcal{M}_g, \pi \text{ unramified } \mathbb{Z}/2\mathbb{Z} - \text{cover}\}$$
  
•  $V_g^{f'} = \{(\pi : Y \to X) | (\pi : Y \to X) \in \mathcal{R}_g, P_\pi \text{ has p-rank } f'\}$ 



▲ロト ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● ○ ○ ○

### **Notation** $\pi: Y \to X$ unramified double cover $Jac(Y) \sim Jac(X) \oplus P_{\pi}$

• 
$$\mathcal{R}_{g} = \{(\pi : Y \to X), X \in \mathcal{M}_{g}, \pi \text{ unramified } \mathbb{Z}/2\mathbb{Z} - \text{cover}\}$$
  
•  $\mathcal{R}_{g}^{(f,f')} = \{(\pi : Y \to X) \in \mathcal{R}_{g}, X \in \mathcal{M}_{g}^{f}, P_{\pi} \in \mathcal{A}_{g-1}^{f'}\}$   
 $\diamond \ \mathcal{R}_{g}^{(f,f')} = W_{g}^{f} \cap V_{g}^{f'}$ 



**Notation**  $\pi: Y \to X$  unramified double cover  $\operatorname{Jac}(Y) \sim \operatorname{Jac}(X) \oplus P_{\pi}$ 

$$\mathcal{R}_g^{(f,f')} = \{(\pi: Y o X) \in \mathcal{R}_g, X \in \mathcal{M}_g^f, \mathcal{P}_\pi \in \mathcal{A}_{g-1}^{f'}\}$$



#### Question

What is the interaction between the p-ranks *f* and *f*? What can be said about the dimension of  $\mathcal{R}_g^{(f,f')}$ ?

### Let $g \ge 2$ and $0 \le f \le g$ . For $\ell = 2$ and $p \ge 5$ .

### Theorem 2 (O., Pries)

For a curve of genus g and p-rank f there is an unramified double cover  $\pi$  such that  $P_{\pi}$  is almost ordinary(has p-rank g - 2)

For each irreducible component *S* of  $\mathcal{M}_{g}^{f}$ , the locus of points for which there exists an unramified double cover  $\pi$  with  $P_{\pi}$  almost ordinary is nonempty with codimension one in *S*.

$$\dim \mathcal{R}_g^{(f,g-2)} = 2g - 4 + f$$

Let  $g \ge 2$  and  $0 \le f \le g$ . For  $\ell = 2$  and  $p \ge 5$ .

### Theorem 2 (O., Pries)

For a curve of genus g and p-rank f there is an unramified double cover  $\pi$  such that  $P_{\pi}$  is almost ordinary(has p-rank g - 2)

For each irreducible component *S* of  $\mathcal{M}_{g}^{f}$ , the locus of points for which there exists an unramified double cover  $\pi$  with  $P_{\pi}$  almost ordinary is nonempty with codimension one in *S*.

 $\dim \mathcal{R}_g^{(f,g-2)} = 2g - 4 + f$ 

Let  $g \ge 2$  and  $0 \le f \le g$ . For  $\ell = 2$  and  $p \ge 5$ .

### Theorem 2 (O., Pries)

For a curve of genus g and p-rank f there is an unramified double cover  $\pi$  such that  $P_{\pi}$  is almost ordinary(has p-rank g - 2)

For each irreducible component *S* of  $\mathcal{M}_{g}^{f}$ , the locus of points for which there exists an unramified double cover  $\pi$  with  $P_{\pi}$  almost ordinary is nonempty with codimension one in *S*.

$$\dim \mathcal{R}_g^{(f,g-2)} = 2g - 4 + f$$

Let  $g \ge 2$  and  $0 \le f \le g$ . For  $\ell = 2$  and  $p \ge 5$ .

### Theorem 2 (O., Pries)

For a curve of genus g and p-rank f there is an unramified double cover  $\pi$  such that  $P_{\pi}$  is almost ordinary(has p-rank g - 2)

For each irreducible component *S* of  $\mathcal{M}_{g}^{f}$ , the locus of points for which there exists an unramified double cover  $\pi$  with  $P_{\pi}$  almost ordinary is nonempty with codimension one in *S*.

$$\dim \mathcal{R}_g^{(f,g-2)} = 2g - 4 + f$$

**Raynaud**, **2000:** For any genus *g* curve *X* there is an unramified solvable cover  $Z \rightarrow X$  s.t. *Z* is not ordinary.

**Pop, Saidi, 2003:** If X is non-ordinary or if Jac(X) is simple then there is an unramified  $\mathbb{Z}/\ell\mathbb{Z}$ -cover  $\pi$  such that  $P_{\pi}$  is not ordinary for infinitely many  $\ell$ .

Let  $g \ge 2$  and  $0 \le f \le g$ . For  $\ell = 2$  and  $p \ge 5$ .

### Theorem 2 (O., Pries)

For a curve of genus g and p-rank f there is an unramified double cover  $\pi$  such that  $P_{\pi}$  is almost ordinary(has p-rank g - 2)

For each irreducible component *S* of  $\mathcal{M}_{g}^{f}$ , the locus of points for which there exists an unramified double cover  $\pi$  with  $P_{\pi}$  almost ordinary is nonempty with codimension one in *S*.

$$\dim \mathcal{R}_g^{(f,g-2)} = 2g - 4 + f$$

 $\dim \mathcal{R}_{g}^{(f,g-2)} = 2g - 4 + f$ 

This gives us:

Theorem 2 (O., Pries)



# Corollary (O., Pries)

Let  $\ell = 2, g \ge 4$  and  $p \ge 5$  and  $\frac{g}{2} - 1 \le f' \le g - 3$ . Then there exits a smooth curve X over  $\mathbb{F}_p$  of genus g and p-rank f having an unramified double cover  $\pi : Y \to X$  for which  $P_{\pi}$  has p-rank f'.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

### Question

Given g, f, f' such that  $g \ge 2, 0 \le f \le g, 0 \le f' \le g - 1$ , does there exists a curve X over  $\overline{\mathbb{F}}_p$  of genus g and *p*-rank *f* having an unramified double cover  $\pi : Y \to X$  with *p*-rank of  $P_{\pi}$  being f'?

The answer is YES for  $p \ge 3$  and  $0 \le f \le g$  when:

- g = 2, unless p = 3 and f = 0, 1 and f' = 0, in which case the anser is NO by Faber and van der Geer.
- $g \ge 3$  and f' = g 1 by Theorem 1
- $g \ge 3$  and f' = g 2 (with  $f \ge 2$  when p = 3) by Theorem 2
- when  $p \ge 5$  and  $g \ge 4$  and  $\frac{g}{2} 1 \le f' \le g 3$  by Corollary

### Question

Given g, f, f' such that  $g \ge 2, 0 \le f \le g, 0 \le f' \le g - 1$ , does there exists a curve X over  $\overline{\mathbb{F}}_p$  of genus g and p-rank f having an unramified double cover  $\pi : Y \to X$  with p-rank of  $P_{\pi}$  being f'?

First open case: g = 3,  $P_{\pi}$  has *p*-rank 0 studied as part of WINE 2 project and the answer is yes for  $3 \le p \le 19$ ,moreover

### Theorem (CEGNOPT)

If  $3 \le p \le 19$ , the answer to the question above is YES for all  $g \ge 2$  as long as f is bigger than (appr.)  $\frac{2g}{3}$  and f' bigger than (appr.)  $\frac{g}{3}$ .

**Thm:**[O., Pries] Once we know that  $\mathcal{R}_g^{(f,f')} \neq \emptyset$  then each of its components has dimension at least g - 2 + f + f' (an application of purity)

This lower bound is realized when:  $\diamond$  [Thm 1] f' = g - 1, dim  $\mathcal{R}_g^{(f,f')} = 2g - 3 + f$   $\diamond$  [Thm 2] f' = g - 2, with  $f \ge 2$  when p = 3, dim  $\mathcal{R}_g^{(f,f')} = 2g - 4 + f$   $\diamond$  [Cor.]  $p \ge 5$  and  $\frac{g}{2} - 1 \le f' \le g - 3$ , at least one component of  $\mathcal{R}_g^{(f,f')}$  has dimension g - 2 + f + f'

**Thm:**[O., Pries] Once we know that  $\mathcal{R}_g^{(f,f')} \neq \emptyset$  then each of its components has dimension at least g - 2 + f + f' (an application of purity)

This lower bound is realized when:

- ♦ [Thm 1] f' = g 1, dim  $\mathcal{R}_{g}^{(f,f')} = 2g 3 + f$
- $\diamond$  [Thm 2] f' = g 2, with  $f \geq 2$  when p = 3,  $\dim \mathcal{R}_g^{(f,f')} = 2g 4 + f$

・ロン・日本・ビン・ビン・ ビー うくつ

◊ [Cor.] p ≥ 5 and  $\frac{g}{2} - 1 ≤ f' ≤ g - 3$ , at least one component of  $\mathcal{R}_{g}^{(f,f')}$  has dimension g - 2 + f + f'

## Corollary (CEGNOPT)

If  $3 \le p \le 19$ ,  $\mathcal{R}_g^{(f,f')}$  has a nonempty component of dimension g - 2 + f + f' for all  $g \ge 2$  as long as f is bigger than (appr.) 2g/3 and f' bigger than (appr.) g/3.

#### Remark

Condition on *p* is needed to show that  $\mathcal{R}_3^{(2,0)}$  has dimension 3

**Open Question:** What is the dimension of  $\mathcal{R}_3^{(2,0)}$ ? Is there a 3-dimensional family of smooth plane quartics *X* with *p*-rank 2 having an unramified double cover  $\pi$  such that  $P_{\pi}$  has *p* rank 0.

- 日本 - 御子 - 田子 - 田子 - 田子

## Corollary (CEGNOPT)

If  $3 \le p \le 19$ ,  $\mathcal{R}_g^{(f,f')}$  has a nonempty component of dimension g - 2 + f + f' for all  $g \ge 2$  as long as f is bigger than (appr.) 2g/3 and f' bigger than (appr.) g/3.

#### Remark

Condition on *p* is needed to show that  $\mathcal{R}_3^{(2,0)}$  has dimension 3

**Open Question:** What is the dimension of  $\mathcal{R}_3^{(2,0)}$ ? Is there a 3-dimensional family of smooth plane quartics *X* with *p*-rank 2 having an unramified double cover  $\pi$  such that  $P_{\pi}$  has *p* rank 0.

## Corollary (CEGNOPT)

If  $3 \le p \le 19$ ,  $\mathcal{R}_g^{(f,f')}$  has a nonempty component of dimension g - 2 + f + f' for all  $g \ge 2$  as long as f is bigger than (appr.) 2g/3 and f' bigger than (appr.) g/3.

#### Remark

Condition on *p* is needed to show that  $\mathcal{R}_3^{(2,0)}$  has dimension 3

**Open Question:** What is the dimension of  $\mathcal{R}_3^{(2,0)}$ ? Is there a 3-dimensional family of smooth plane quartics *X* with *p*-rank 2 having an unramified double cover  $\pi$  such that  $P_{\pi}$  has *p* rank 0.