On the p-ranks of Prym varieties

Ekin Ozman joint work with Rachel Pries

Bogazici University, Istanbul ekinozman@boun.edu.tr

May 30, 2017

- k algebraically closed field of characteristic $p>0$,
- A abelian variety of dimension g over k,
- p-rank of A is the number f_{A} such that $\# A[p](k)=p^{f_{A}}$, - If C is a curve of genus g over k then its p-rank is the p-rank of $\operatorname{Jac}(C)$ and
- $0 \leq f_{A} \leq g$,
- C is called ordinary if p-rank of C is g and almost ordinary if p-rank of C is $g-1$.
- k algebraically closed field of characteristic $p>0$,
- A abelian variety of dimension g over k,
- p-rank of A is the number f_{A} such that $\# A[p](k)=p^{f_{A}}$,
- If C is a curve of genus g over k then its p-rank is the p-rank of $\operatorname{Jac}(C)$ and
- C is called ordinary if p-rank of C is g and almost ordinary if p-rank of C is $g-1$.
- k algebraically closed field of characteristic $p>0$,
- A abelian variety of dimension g over k,
- p-rank of A is the number f_{A} such that $\# A[p](k)=p^{f_{A}}$,
- If C is a curve of genus g over k then its p-rank is the p-rank of $\operatorname{Jac}(C)$ and
- $0 \leq f_{A} \leq g$,
- C is called ordinary if p-rank of C is g
- k algebraically closed field of characteristic $p>0$,
- A abelian variety of dimension g over k,
- p-rank of A is the number f_{A} such that $\# A[p](k)=p^{f_{A}}$,
- If C is a curve of genus g over k then its p-rank is the p-rank of $\operatorname{Jac}(C)$ and
- $0 \leq f_{A} \leq g$,
- C is called ordinary if p-rank of C is g and almost ordinary if p-rank of C is $g-1$.

Question

Given (p, g, f) is there a curve C of genus g with p-rank f defined over an algebraically closed field of characteristic p ?

YES, by Faber and Van der Geer

Question

Given (p, g, f) is there a curve C of genus g with p-rank f defined over an algebraically closed field of characteristic p ?

YES, by Faber and Van der Geer

- Stratify by p-rank: $\mathcal{M}_{g}^{0} \subset \ldots \subset \mathcal{M}_{g}^{g-1} \subset \mathcal{M}_{g}^{g}$

Every component of \mathcal{M}_{g}^{f} has codimension $g-f$ in \mathcal{M}_{g} (i.e. has dim $2 \mathrm{~g}-3+\mathrm{f}$).

Similar Questions

Similarly:

- Faber and Van der Geer : Every component of \mathcal{M}_{g}^{f} has codimension $g-f$ in $\mathcal{M}_{g}(\operatorname{dim} 2 g-3+f)$.
- Norman and Oort: \mathcal{A}_{g}^{f} has codimension g - f in \mathcal{A}_{g}
- Glass and Pries, Pries and Zhu: Every component of \mathcal{H}_{g}^{f} has codimension $g-f$ in $\mathcal{H}_{g}(\operatorname{dim} g-1+\mathrm{f})$.
where \mathcal{A}_{g} abelian varieties, \mathcal{H}_{g} hyperelliptic curves
By Chai and Oort \mathcal{A}_{g}^{f} is irreducible for $g \geq 3$
in most cases it is not known whether or not $\mathcal{M}_{g}^{f}, \mathcal{H}_{g}^{f}$ are

Similar Questions

Similarly:

- Faber and Van der Geer: Every component of \mathcal{M}_{g}^{f} has codimension $g-f$ in $\mathcal{M}_{g}(\operatorname{dim} 2 g-3+f)$.
- Norman and Oort: \mathcal{A}_{g}^{f} has codimension $g-f$ in \mathcal{A}_{g}
- Glass and Pries, Pries and Zhu: Every component of \mathcal{H}_{g}^{f} has codimension $g-f$ in $\mathcal{H}_{g}(\operatorname{dim} g-1+f)$.
where \mathcal{A}_{g} abelian varieties, \mathcal{H}_{g} hyperelliptic curves
By Chai and Oort \mathcal{A}_{g}^{f} is irreducible for $g \geq 3$

Similar Questions

Similarly:

- Faber and Van der Geer : Every component of \mathcal{M}_{g}^{f} has codimension $g-f$ in $\mathcal{M}_{g}($ dim 2g-3+f).
- Norman and Oort: \mathcal{A}_{g}^{f} has codimension $g-f$ in \mathcal{A}_{g}
- Glass and Pries, Pries and Zhu: Every component of \mathcal{H}_{g}^{f} has codimension $g-f$ in $\mathcal{H}_{g}(\operatorname{dim} g-1+f)$.
where \mathcal{A}_{g} abelian varieties, \mathcal{H}_{g} hyperelliptic curves
By Chai and Oort \mathcal{A}_{g}^{f} is irreducible for $g \geq 3$

Similar Questions

Similarly:

- Faber and Van der Geer: Every component of \mathcal{M}_{g}^{f} has codimension $g-f$ in $\mathcal{M}_{g}(\operatorname{dim} 2 g-3+f)$.
- Norman and Oort: \mathcal{A}_{g}^{f} has codimension $g-f$ in \mathcal{A}_{g}
- Glass and Pries, Pries and Zhu: Every component of \mathcal{H}_{g}^{f} has codimension $g-f$ in $\mathcal{H}_{g}(\operatorname{dim} g-1+f)$.
where \mathcal{A}_{g} abelian varieties, \mathcal{H}_{g} hyperelliptic curves
By Chai and Oort \mathcal{A}_{g}^{f} is irreducible for $g \geq 3$
in most cases it is not known whether or not $\mathcal{M}_{g}^{f}, \mathcal{H}_{g}^{f}$ are irreducible.

Similar Questions about Prym varieties

Suppose:
X has genus $\geq 2, \ell \neq p$, prime,
$\pi: Y \rightarrow X$ an unramified $\mathbb{Z} / \ell \mathbb{Z}$-cover.

Definition

The Prym variety P_{π} is the connected component containing 0 of the norm map on Jacobians i.e.
if σ generates $\operatorname{Gal}(Y / X)$ then $P_{\pi}=\operatorname{ker}\left(1+\sigma+\ldots+\sigma^{\ell-1}\right)^{0}$.

- If $X \in \mathcal{M}_{g}$ then $Y \in \mathcal{M}_{\ell(g-1)+1}$ and
- $\operatorname{Jac}(Y) \sim \operatorname{Jac}(X) \oplus P_{\pi}$, so $P_{\pi} \in \mathcal{A}_{(g-1)(\ell-1)}$ and
- If $X \in \mathcal{M}_{g}^{f}, P_{\pi} \in \mathcal{A}_{(g-1)(\ell-1)}^{f^{\prime}}$ then $Y \in \mathcal{M}_{g}^{f+f^{\prime}}$.

Notation

$\pi: Y \rightarrow X, \operatorname{Jac}(Y) \sim \operatorname{Jac}(X) \oplus P_{\pi}$

- $\mathcal{R}_{g, \ell}=\left\{(\pi: Y \rightarrow X), X \in \mathcal{M}_{g}, \pi\right.$ unramified $\mathbb{Z} / \ell \mathbb{Z}$ - cover $\}$
- $\Pi_{\ell}: \mathcal{R}_{g, \ell} \rightarrow \mathcal{M}_{g}$, natural projection, $(\pi: Y \rightarrow X) \mapsto X$
$\diamond \Pi_{\ell}$ is finite
$\diamond \operatorname{dim} \mathcal{R}_{g, \ell}=\operatorname{dim} \mathcal{M}_{g}=3 g-3$

What is the interaction between the p-ranks f and f'?

Notation

$\pi: Y \rightarrow X, \operatorname{Jac}(Y) \sim \operatorname{Jac}(X) \oplus P_{\pi}$

- $\mathcal{R}_{g, \ell}=\left\{(\pi: Y \rightarrow X), X \in \mathcal{M}_{g}, \pi\right.$ unramified $\mathbb{Z} / \ell \mathbb{Z}$ - cover $\}$
- $\Pi_{\ell}: \mathcal{R}_{g, \ell} \rightarrow \mathcal{M}_{g}$, natural projection, $(\pi: Y \rightarrow X) \mapsto X$
$\diamond \Pi_{\ell}$ is finite
$\diamond \operatorname{dim} \mathcal{R}_{g, \ell}=\operatorname{dim} \mathcal{M}_{g}=3 g-3$

Question

What is the interaction between the p -ranks f and f^{\prime} ?

Notation

$\pi: Y \rightarrow X, \operatorname{Jac}(Y) \sim \operatorname{Jac}(X) \oplus P_{\pi}$

- $\mathcal{R}_{g, \ell}=\left\{(\pi: Y \rightarrow X), X \in \mathcal{M}_{g}, \pi\right.$ unramified $\mathbb{Z} / \ell \mathbb{Z}$ - cover $\}$
- $W_{g}^{f}=\left\{(\pi: Y \rightarrow X) \mid(\pi: Y \rightarrow X) \in \mathcal{R}_{g, \ell}, X \in \mathcal{M}_{g}^{f}\right\}$
$\diamond W_{g}^{f}=\Pi_{\ell}^{-1}\left(\mathcal{M}_{g}^{f}\right)$ and $\operatorname{dim} W_{g}^{f}=\operatorname{dim} \mathcal{M}_{g}^{f}=2 g-3+f$

Ekin Ozman

Main Result 1

Let $g \geq 2$ and $0 \leq f \leq g$.
Theorem 1 (O., Pries)
Let $\ell \neq p$ and $(g, f) \neq(2,0)$.
Prym varieties of all unramified cyclic degree ℓ covers of a generic curve X of p-rank f is ordinary.

Main Result 1

Let $g \geq 2$ and $0 \leq f \leq g$.
Theorem 1 (O., Pries)
Let $\ell \neq p$ and $(g, f) \neq(2,0)$.
Prym varieties of all unramified cyclic degree ℓ covers of a generic curve X of p-rank f is ordinary.

For each irreducible component S of $\mathcal{M}_{g}^{f}, \Pi_{\ell}^{-1}(S)$ is irreducible of dimension $2 g-3+f$ and the cover represented by the generic point of $\Pi_{\ell}^{-1}(S)$ has an ordinary Prym.
the cover represented by the generic point of Q is ordinary.

Main Result 1

Let $g \geq 2$ and $0 \leq f \leq g$.

Theorem 1 (O., Pries)

Let $\ell \neq p$ and $(g, f) \neq(2,0)$.
Prym varieties of all unramified cyclic degree ℓ covers of a generic curve X of p-rank f is ordinary.

For each irreducible component S of $\mathcal{M}_{g}^{f}, \Pi_{\ell}^{-1}(S)$ is irreducible of dimension $2 g-3+f$ and the cover represented by the generic point of $\Pi_{\ell}^{-1}(S)$ has an ordinary Prym.

If Q is an irreducible component of W_{g}^{f} then the Prym of the cover represented by the generic point of Q is ordinary.

Main Result 1

Theorem 1 (O., Pries)
Let $\ell \neq p$ and $(g, f) \neq(2,0)$. For each irreducible component S of $\mathcal{M}_{g}^{f}, \Pi_{\ell}^{-1}(S)$ is irreducible of dimension $2 g-3+f$ and the cover represented by the generic point of $\Pi_{\ell}^{-1}(S)$ has an ordinary Prym.

By Theorem 1 we know the dimension of the folowing stratum:

Comparing with previous work

Theorem 1 (O., Pries)

Let $\ell \neq p$ and $(g, f) \neq(2,0)$. For each irreducible component S of $\mathcal{M}_{g}^{f}, \Pi_{\ell}^{-1}(S)$ is irreducible of dimension $2 g-3+f$ and the cover represented by the generic point of $\Pi_{\ell}^{-1}(S)$ has an ordinary Prym.

This generalizes the following theorem:
Nakajima, 1983: The cover represented by the generic point of $\mathcal{R}_{g, \ell}$ has an ordinary Prym.
and also:
Raynaud, 1982: For any genus g curve X and for sufficiently large ℓ, there is an unramified $\mathbb{Z} / \ell \mathbb{Z}$-cover π such that P_{π} is ordinary.

Comparing with previous work

Theorem 1 (O., Pries)

Let $\ell \neq p$ and $(g, f) \neq(2,0)$. For each irreducible component S of $\mathcal{M}_{g}^{f}, \Pi_{\ell}^{-1}(S)$ is irreducible of dimension $2 g-3+f$ and the cover represented by the generic point of $\Pi_{\ell}^{-1}(S)$ has an ordinary Prym.

This generalizes the following theorem:
Nakajima, 1983: The cover represented by the generic point of $\mathcal{R}_{g, \ell}$ has an ordinary Prym. and also:
Raynaud, 1982: For any genus g curve X and for sufficiently large ℓ, there is an unramified $\mathbb{Z} / \ell \mathbb{Z}$-cover π such that P_{π} is ordinary.

Idea of the proof

Aim: is to produce unramified \mathbb{Z} / ℓ-cover $\pi: Y \rightarrow X$ such that $X \in \mathcal{M}_{g}^{f}$ and P_{π} is ordinary.
Naive idea: Build a cover of singular curves, deform it to a smooth curve and proceed by induction

STP 1 Let S_{0} be an irreducible component of $\overline{\mathcal{M}}_{g}^{f}$. Then $\Pi_{\ell}^{-1}\left(S_{0}\right)$ is also irreducible, follows from a result of Achter and Pries
STP 2 An irreducible component Q of W_{g}^{f} intersects a particular boundary

Idea of the proof

STP 2 An irreducible component Q of W_{g}^{f} intersects a particular boundary.
In fact, Q contains a component of $\kappa_{i, g-i}\left(W_{i, 1}^{f_{1}} \times W_{g-i, 1}^{f_{2}}\right)$

$1 \rightarrow \mathbb{T} \rightarrow P_{\pi} \rightarrow P_{\pi_{1}} \oplus P_{\pi_{2}} \rightarrow 1$, where \mathbb{T} is a torus of rank $\ell-1$.

Idea of the proof

STP 3 Inductive Step:
Choose C_{1}, C_{2} with p-ranks f_{1}, f_{2} s.t. $f_{1}+f_{2}=f$ such that there exists $\pi_{1}: C_{1}^{\prime} \rightarrow C_{1}, \pi_{2}: C_{2}^{\prime} \rightarrow C_{2}$ s.t. $P_{\pi_{1}}, P_{\pi_{2}}$ are ordinary. Then

$$
f_{\pi}=f_{\pi_{1}}+f_{\pi_{2}}+\ell-1
$$

$$
f_{\pi}=(\ell-1)\left(g_{1}-1\right), f_{\pi_{2}}=(\ell-1)\left(g_{2}-1\right),
$$

$$
\Rightarrow f_{\pi}=(\ell-1)(g-1)
$$

Idea of the proof

STP 3 Inductive Step:
Choose C_{1}, C_{2} with p-ranks f_{1}, f_{2} s.t. $f_{1}+f_{2}=f$ such that there exists $\pi_{1}: C_{1}^{\prime} \rightarrow C_{1}, \pi_{2}: C_{2}^{\prime} \rightarrow C_{2}$ s.t. $P_{\pi_{1}}, P_{\pi_{2}}$ are ordinary. Then

$$
\begin{gathered}
f_{\pi}=f_{\pi_{1}}+f_{\pi_{2}}+\ell-1 \\
f_{\pi}=(\ell-1)\left(g_{1}-1\right), f_{\pi_{2}}=(\ell-1)\left(g_{2}-1\right),
\end{gathered}
$$

Idea of the proof

STP 3 Inductive Step:
Choose C_{1}, C_{2} with p-ranks f_{1}, f_{2} s.t. $f_{1}+f_{2}=f$ such that there exists $\pi_{1}: C_{1}^{\prime} \rightarrow C_{1}, \pi_{2}: C_{2}^{\prime} \rightarrow C_{2}$ s.t. $P_{\pi_{1}}, P_{\pi_{2}}$ are ordinary. Then

$$
\begin{gathered}
f_{\pi}=f_{\pi_{1}}+f_{\pi_{2}}+\ell-1 \\
f_{\pi}=(\ell-1)\left(g_{1}-1\right), f_{\pi_{2}}=(\ell-1)\left(g_{2}-1\right) \\
\Rightarrow f_{\pi}=(\ell-1)(g-1)
\end{gathered}
$$

Notation

$\pi: Y \rightarrow X$ unramified double cover $\operatorname{Jac}(Y) \sim \operatorname{Jac}(X) \oplus P_{\pi}$

- $\mathcal{R}_{g}=\left\{(\pi: Y \rightarrow X), X \in \mathcal{M}_{g}, \pi\right.$ unramified $\mathbb{Z} / 2 \mathbb{Z}$ - cover $\}$
- $V_{g}^{f^{\prime}}=\left\{(\pi: Y \rightarrow X) \mid(\pi: Y \rightarrow X) \in \mathcal{R}_{g}, P_{\pi}\right.$ has p-rank $\left.f^{\prime}\right\}$

Ekin Ozman

Notation

$\pi: Y \rightarrow X$ unramified double cover $\operatorname{Jac}(Y) \sim \operatorname{Jac}(X) \oplus P_{\pi}$

- $\mathcal{R}_{g}=\left\{(\pi: Y \rightarrow X), X \in \mathcal{M}_{g}, \pi\right.$ unramified $\mathbb{Z} / 2 \mathbb{Z}$ - cover $\}$
- $\mathcal{R}_{g}^{\left(f, f^{\prime}\right)}=\left\{(\pi: Y \rightarrow X) \in \mathcal{R}_{g}, X \in \mathcal{M}_{g}^{f}, P_{\pi} \in \mathcal{A}_{g-1}^{f^{\prime}}\right\}$
$\diamond \mathcal{R}_{g}^{\left(f, f^{\prime}\right)}=W_{g}^{f} \cap V_{g}^{f^{\prime}}$

Notation

$\pi: Y \rightarrow X$ unramified double cover $\operatorname{Jac}(Y) \sim \operatorname{Jac}(X) \oplus P_{\pi}$

$$
\mathcal{R}_{g}^{\left(f, f^{\prime}\right)}=\left\{(\pi: Y \rightarrow X) \in \mathcal{R}_{g}, X \in \mathcal{M}_{g}^{f}, P_{\pi} \in \mathcal{A}_{g-1}^{f^{\prime}}\right\}
$$

Question

What is the interaction between the p-ranks f and f^{\prime} ?
What can be said about the dimension of $\mathcal{R}_{g}^{\left(f, f^{\prime}\right)}$?

Main Result 2

Let $g \geq 2$ and $0 \leq f \leq g$. For $\ell=2$ and $p \geq 5$.
Theorem 2 (O., Pries)
For a curve of genus g and p-rank f there is an unramified double cover π such that P_{π} is almost ordinary(has p-rank $g-2$)

> For each irreducible component S of \mathcal{M}_{q}^{f}, the locus of points for which there exists an unramified double cover π with P_{π} almost ordinary is nonempty with codimension one in S.

Raynaud, 2000: For any genus g curve X there is an
unramified solvable cover $Z \rightarrow X$ s.t. Z is not ordinary.
Pop, Saidi, 2003: If X is non-ordinary or if $\operatorname{Jac}(X)$ is simple then there is an unramified $\mathbb{Z} / \ell \mathbb{Z}$-cover π such that P_{π} is not ordinary for infinitely many

Main Result 2

Let $g \geq 2$ and $0 \leq f \leq g$. For $\ell=2$ and $p \geq 5$.
Theorem 2 (O., Pries)
For a curve of genus g and p-rank f there is an unramified double cover π such that P_{π} is almost ordinary(has p-rank $g-2$)

For each irreducible component S of \mathcal{M}_{g}^{f}, the locus of points for which there exists an unramified double cover π with P_{π} almost ordinary is nonempty with codimension one in S.

Raynaud, 2000: For any genus g curve X there is an unramified solvable cover $Z \rightarrow X$ s.t. Z is not ordinary.
Pop, Saidi, 2003: If X is non-ordinary or if $\operatorname{Jac}(X)$ is simple then there is an unramified $\mathbb{Z} / \ell \mathbb{Z}$-cover π such that P_{π} is not ordinary for infinitely many

Main Result 2

Let $g \geq 2$ and $0 \leq f \leq g$. For $\ell=2$ and $p \geq 5$.

Theorem 2 (O., Pries)

For a curve of genus g and p-rank f there is an unramified double cover π such that P_{π} is almost ordinary(has p-rank $g-2$)

For each irreducible component S of \mathcal{M}_{g}^{f}, the locus of points for which there exists an unramified double cover π with P_{π} almost ordinary is nonempty with codimension one in S.

$$
\operatorname{dim} \mathcal{R}_{g}^{(f, g-2)}=2 g-4+f
$$

Raynaud, 2000: For any genus g curve X there is an
unramified solvable cover $Z \rightarrow X$ s.t. Z is not ordinary.
Pop, Saidi, 2003: If X is non-ordinary or if $\operatorname{Jac}(X)$ is simple then there is an unramified $\mathbb{Z} / \ell \mathbb{Z}$-cover π such that P_{π} is not ordinary for infinitely many

Main Result 2

$$
\text { Let } g \geq 2 \text { and } 0 \leq f \leq g . \text { For } \ell=2 \text { and } p \geq 5
$$

Theorem 2 (O., Pries)

For a curve of genus g and p-rank f there is an unramified double cover π such that P_{π} is almost ordinary(has p-rank $g-2$)

For each irreducible component S of \mathcal{M}_{g}^{f}, the locus of points for which there exists an unramified double cover π with P_{π} almost ordinary is nonempty with codimension one in S.

$$
\operatorname{dim} \mathcal{R}_{g}^{(f, g-2)}=2 g-4+f
$$

Raynaud, 2000: For any genus g curve X there is an unramified solvable cover $Z \rightarrow X$ s.t. Z is not ordinary.

Main Result 2

Let $g \geq 2$ and $0 \leq f \leq g$. For $\ell=2$ and $p \geq 5$.

Theorem 2 (O., Pries)

For a curve of genus g and p-rank f there is an unramified double cover π such that P_{π} is almost ordinary(has p-rank $g-2$)

For each irreducible component S of \mathcal{M}_{g}^{f}, the locus of points for which there exists an unramified double cover π with P_{π} almost ordinary is nonempty with codimension one in S.

$$
\operatorname{dim} \mathcal{R}_{g}^{(f, g-2)}=2 g-4+f
$$

Raynaud, 2000: For any genus g curve X there is an unramified solvable cover $Z \rightarrow X$ s.t. Z is not ordinary. Pop, Saidi, 2003: If X is non-ordinary or if $\operatorname{Jac}(X)$ is simple then there is an unramified $\mathbb{Z} / \ell \mathbb{Z}$-cover π such that P_{π} is not ordinary for infinitely many ℓ.

Main Result 2

Theorem 2 (O., Pries)

$$
\operatorname{dim} \mathcal{R}_{g}^{(f, g-2)}=2 g-4+f
$$

This gives us:

An application

Let $g \geq 2$ and $0 \leq f \leq g$.
Corollary (O., Pries)
Let $\ell=2, g \geq 4$ and $p \geq 5$ and $\frac{g}{2}-1 \leq f^{\prime} \leq g-3$.
Then there exits a smooth curve X over \mathbb{F}_{p} of genus g and p-rank f having an unramified double cover $\pi: Y \rightarrow X$ for which P_{π} has p-rank f'.

Summary and Further Directions

Question

Given g, f, f^{\prime} such that $g \geq 2,0 \leq f \leq g, 0 \leq f^{\prime} \leq g-1$, does there exists a curve X over \mathbb{F}_{p} of genus g and p-rank f having an unramified double cover $\pi: Y \rightarrow X$ with p-rank of P_{π} being f^{\prime} ?

The answer is YES for $p \geq 3$ and $0 \leq f \leq g$ when:

- $g=2$, unless $p=3$ and $f=0,1$ and $f^{\prime}=0$, in which case the anser is NO by Faber and van der Geer.
- $g \geq 3$ and $f^{\prime}=g-1$ by Theorem 1
- $g \geq 3$ and $f^{\prime}=g-2$ (with $f \geq 2$ when $p=3$) by Theorem 2
- when $p \geq 5$ and $g \geq 4$ and $\frac{g}{2}-1 \leq f^{\prime} \leq g-3$ by Corollary

Summary and Further Directions

Question

Given g, f, f^{\prime} such that $g \geq 2,0 \leq f \leq g, 0 \leq f^{\prime} \leq g-1$, does there exists a curve X over \mathbb{F}_{p} of genus g and p-rank f having an unramified double cover $\pi: Y \rightarrow X$ with p-rank of P_{π} being f^{\prime} ?

First open case: $g=3, P_{\pi}$ has p-rank 0 studied as part of WINE 2 project and the answer is yes for $3 \leq p \leq 19$,moreover

Theorem (CEGNOPT)

If $3 \leq p \leq 19$, the answer to the question above is YES for all $g \geq 2$ as long as f is bigger than (appr.) $\frac{2 g}{3}$ and f^{\prime} bigger than (appr.) $\frac{g}{3}$.

Summary and Further Directions

Thm:[O., Pries] Once we know that $\mathcal{R}_{g}^{\left(f, f^{\prime}\right)} \neq \emptyset$ then each of its components has dimension at least $g-2+f+f^{\prime}$ (an application of purity)

This lower bound is realized when:

component of $\mathcal{R}_{g}^{\left(f, f^{\prime}\right)}$ has dimension $g-2+f+f^{\prime}$

Summary and Further Directions

Thm:[O., Pries] Once we know that $\mathcal{R}_{g}^{\left(f, f^{\prime}\right)} \neq \emptyset$ then each of its components has dimension at least $g-2+f+f^{\prime}$ (an application of purity)

This lower bound is realized when:
$\diamond\left[\right.$ Thm 1] $f^{\prime}=g-1, \operatorname{dim} \mathcal{R}_{g}^{\left(f, f^{\prime}\right)}=2 g-3+f$
$\diamond\left[\right.$ Thm 2] $f^{\prime}=g-2$, with $f \geq 2$ when $p=3, \operatorname{dim} \mathcal{R}_{g}^{\left(f, f^{\prime}\right)}=2 g-4+f$
\diamond [Cor.] $p \geq 5$ and $\frac{g}{2}-1 \leq f^{\prime} \leq g-3$, at least one component of $\mathcal{R}_{g}^{\left(f, f^{\prime}\right)}$ has dimension $g-2+f+f^{\prime}$

Summary and Further Directions

Similarly:
Corollary (CEGNOPT)
If $3 \leq p \leq 19, \mathcal{R}_{g}^{\left(f, f^{\prime}\right)}$ has a nonempty component of dimension
$g-2+f+f^{\prime}$ for all $g \geq 2$ as long as f is bigger than (appr.) $2 g / 3$ and f^{\prime} bigger than (appr.) $g / 3$.

Remark

Open Question: What is the dimension of $\mathcal{R}_{3}^{(2,0)}$? Is there a 3-dimensional family of smooth plane quartics X with p-rank 2 having an unramified double cover π such that P_{π} has p rank 0 .

Summary and Further Directions

Similarly:

Corollary (CEGNOPT)
 If $3 \leq p \leq 19, \mathcal{R}_{g}^{\left(f, f^{\prime}\right)}$ has a nonempty component of dimension $g-2+f+f^{\prime}$ for all $g \geq 2$ as long as f is bigger than (appr.) $2 g / 3$ and f^{\prime} bigger than (appr.) $g / 3$.

Remark

Condition on p is needed to show that $\mathcal{R}_{3}^{(2,0)}$ has dimension 3

Summary and Further Directions

Similarly:

Corollary (CEGNOPT)

If $3 \leq p \leq 19, \mathcal{R}_{g}^{\left(f, f^{\prime}\right)}$ has a nonempty component of dimension
$g-2+f+f^{\prime}$ for all $g \geq 2$ as long as f is bigger than (appr.)
$2 g / 3$ and f^{\prime} bigger than (appr.) $g / 3$.

Remark

Condition on p is needed to show that $\mathcal{R}_{3}^{(2,0)}$ has dimension 3
Open Question: What is the dimension of $\mathcal{R}_{3}^{(2,0)}$? Is there a 3 -dimensional family of smooth plane quartics X with p-rank 2 having an unramified double cover π such that P_{π} has p rank 0 .

