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p-rank

k algebraically closed field of characteristic p > 0,
A abelian variety of dimension g over k ,
p-rank of A is the number fA such that #A[p](k) = pfA ,
If C is a curve of genus g over k then its p-rank is the
p-rank of Jac(C) and
0 ≤ fA ≤ g,
C is called ordinary if p-rank of C is g and almost ordinary
if p-rank of C is g − 1.
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Fundamental Questions

Question
Given (p,g, f ) is there a curve C of genus g with p-rank f
defined over an algebraically closed field of characteristic p?

YES, by Faber and Van der Geer

Stratify by p-rank: M0
g ⊂ . . . ⊂Mg−1

g ⊂Mg
g

Every component ofMf
g has codimension g − f inMg(i.e.

has dim 2g-3+f).
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Similar Questions

Similarly:

Faber and Van der Geer : Every component ofMf
g has

codimension g − f inMg(dim 2g-3+f).
Norman and Oort: Af

g has codimension g − f in Ag

Glass and Pries, Pries and Zhu: Every component of Hf
g

has codimension g − f in Hg(dim g-1+f).

where Ag abelian varieties, Hg hyperelliptic curves

By Chai and Oort Af
g is irreducible for g ≥ 3

in most cases it is not known whether or notMf
g , Hf

g are
irreducible.
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Similar Questions about Prym varieties

Suppose :
X has genus ≥ 2, ` 6= p, prime,
π : Y → X an unramified Z/`Z-cover.

Definition
The Prym variety Pπ is the connected component containing 0
of the norm map on Jacobians i.e.
if σ generates Gal(Y/X ) then Pπ = ker(1 + σ + . . .+ σ`−1)0.

If X ∈Mg then Y ∈M`(g−1)+1 and
Jac(Y ) ∼ Jac(X )⊕ Pπ, so Pπ ∈ A(g−1)(`−1) and

If X ∈Mf
g ,Pπ ∈ Af ′

(g−1)(`−1) then Y ∈Mf+f ′
g .
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Notation
π : Y → X , Jac(Y ) ∼ Jac(X )⊕ Pπ

Rg,` = {(π : Y → X ),X ∈Mg , π unramified Z/`Z− cover}
Π` : Rg,` →Mg , natural projection, (π : Y → X ) 7→ X
� Π` is finite
� dimRg,` = dimMg = 3g − 3

Question
What is the interaction between the p-ranks f and f’?

1

2

g − 1

1 2 g

f ′

f0
0
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Notation
π : Y → X , Jac(Y ) ∼ Jac(X )⊕ Pπ

Rg,` = {(π : Y → X ),X ∈Mg , π unramified Z/`Z− cover}
W f

g = {(π : Y → X )|(π : Y → X ) ∈ Rg,`,X ∈Mf
g}

� W f
g = Π−1

` (Mf
g) and dim W f

g = dimMf
g = 2g − 3 + f

1

2

g − 1

1 2 g

f ′

f

W 1
g W 2

g W g
g

W 0
g

0
0
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Main Result 1

Let g ≥ 2 and 0 ≤ f ≤ g.

Theorem 1 (O., Pries)
Let ` 6= p and (g, f ) 6= (2,0).

Prym varieties of all unramified cyclic degree ` covers of
a generic curve X of p−rank f is ordinary.

For each irreducible component S ofMf
g , Π−1

` (S) is
irreducible of dimension 2g − 3 + f and the cover represented
by the generic point of Π−1

` (S) has an ordinary Prym.

If Q is an irreducible component of W f
g then the Prym of

the cover represented by the generic point of Q is ordinary.
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Main Result 1

Theorem 1 (O., Pries)
Let ` 6= p and (g, f ) 6= (2,0). For each irreducible component S
ofMf

g , Π−1
` (S) is irreducible of dimension 2g − 3 + f and the

cover represented by the generic point of Π−1
` (S) has an

ordinary Prym.

By Theorem 1 we know the dimension of the folowing stratum:

1

2

g − 1

1 2 g

f ′

f0
0

2g − 3 + f
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Comparing with previous work

Theorem 1 (O., Pries)
Let ` 6= p and (g, f ) 6= (2,0). For each irreducible component S
ofMf

g , Π−1
` (S) is irreducible of dimension 2g − 3 + f and the

cover represented by the generic point of Π−1
` (S) has an

ordinary Prym.

This generalizes the following theorem:
Nakajima, 1983: The cover represented by the generic point of
Rg,` has an ordinary Prym.
and also:
Raynaud, 1982: For any genus g curve X and for sufficiently
large `, there is an unramified Z/`Z-cover π such that Pπ is
ordinary.
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Idea of the proof

Aim: is to produce unramified Z/`-cover π : Y → X such that
X ∈Mf

g and Pπ is ordinary.

Naive idea: Build a cover of singular curves, deform it to a
smooth curve and proceed by induction

STP 1 Let S0 be an irreducible component ofMf
g . Then Π−1

` (S0)
is also irreducible, follows from a result of Achter and Pries

STP 2 An irreducible component Q of W f
g intersects a particular

boundary
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Idea of the proof

STP 2 An irreducible component Q of W f
g intersects a particular

boundary.
In fact, Q contains a component of κi,g−i (W f1

i,1 ×W f2
g−i,1)

x1 = x2

C1 C2

C ′
1 C ′

2

x′1 = x′2

x′′1 = x′′2

1→ T→ Pπ → Pπ1 ⊕ Pπ2 → 1, where T is a torus of rank `− 1.
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Idea of the proof

STP 3 Inductive Step:
Choose C1,C2 with p-ranks f1, f2 s.t. f1 + f2 = f such that
there exists π1 : C′1 → C1, π2 : C′2 → C2 s.t. Pπ1 ,Pπ2 are
ordinary. Then

fπ = fπ1 + fπ2 + `− 1

fπ = (`− 1)(g1 − 1), fπ2 = (`− 1)(g2 − 1),

⇒ fπ = (`− 1)(g − 1)
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Notation
π : Y → X unramified double cover Jac(Y ) ∼ Jac(X )⊕ Pπ

Rg = {(π : Y → X ),X ∈Mg , π unramified Z/2Z− cover}
V f ′

g = {(π : Y → X )|(π : Y → X ) ∈ Rg ,Pπ has p-rank f ′}

0

2

g − 1

1 2 g

f ′

f

V g−1
g

V 2
g

V 1
g

V 0
g

1

0
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Notation
π : Y → X unramified double cover Jac(Y ) ∼ Jac(X )⊕ Pπ

Rg = {(π : Y → X ),X ∈Mg , π unramified Z/2Z− cover}
R(f ,f ′)

g = {(π : Y → X ) ∈ Rg ,X ∈Mf
g ,Pπ ∈ Af ′

g−1}
� R(f ,f ′)

g = W f
g ∩ V f ′

g

1

2

g − 1

1 2 g

f ′

f

W 1
g W 2

g W g
gW 0

g

0
0

V 0
g

V 1
g

V 2
g
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g
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Notation
π : Y → X unramified double cover Jac(Y ) ∼ Jac(X )⊕ Pπ

R(f ,f ′)
g = {(π : Y → X ) ∈ Rg ,X ∈Mf

g ,Pπ ∈ Af ′
g−1}

1

2

g − 1

1 2 g

f ′

f

R(g,2)
g

R(1,2)
g

0
0

Question
What is the interaction between the p-ranks f and f ′?
What can be said about the dimension of R(f ,f ′)

g ?
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Main Result 2

Let g ≥ 2 and 0 ≤ f ≤ g. For ` = 2 and p ≥ 5.

Theorem 2 (O., Pries)
For a curve of genus g and p-rank f there is an

unramified double cover π such that Pπ is almost ordinary(has
p-rank g − 2)

For each irreducible component S ofMf
g , the locus of

points for which there exists an unramified double cover π with
Pπ almost ordinary is nonempty with codimension one in S.

dimR(f ,g−2)
g = 2g − 4 + f

Raynaud, 2000: For any genus g curve X there is an
unramified solvable cover Z → X s.t. Z is not ordinary.
Pop, Saidi, 2003: If X is non-ordinary or if Jac(X ) is simple
then there is an unramified Z/`Z-cover π such that Pπ is not
ordinary for infinitely many `.
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Main Result 2

Theorem 2 (O., Pries)

dimR(f ,g−2)
g = 2g − 4 + f

This gives us:

1

g − 2

g − 1

1 2 g

f ′

f0
0

2g − 3 + f

2g − 4 + f
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An application

Let g ≥ 2 and 0 ≤ f ≤ g.

Corollary (O., Pries)
Let ` = 2,g ≥ 4 and p ≥ 5 and g

2 − 1 ≤ f ′ ≤ g − 3.
Then there exits a smooth curve X over Fp of genus g and
p-rank f having an unramified double cover π : Y → X for which
Pπ has p-rank f ′.
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Summary and Further Directions

Question
Given g, f , f ′ such that g ≥ 2,0 ≤ f ≤ g,0 ≤ f ′ ≤ g − 1, does
there exists a curve X over Fp of genus g and p-rank f having
an unramified double cover π : Y → X with p-rank of Pπ being
f ′?

The answer is YES for p ≥ 3 and 0 ≤ f ≤ g when:

g = 2, unless p = 3 and f = 0,1 and f ′ = 0, in which case
the anser is NO by Faber and van der Geer.
g ≥ 3 and f ′ = g − 1 by Theorem 1
g ≥ 3 and f ′ = g− 2 (with f ≥ 2 when p = 3) by Theorem 2
when p ≥ 5 and g ≥ 4 and g

2 − 1 ≤ f ′ ≤ g − 3 by Corollary
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Summary and Further Directions

Question
Given g, f , f ′ such that g ≥ 2,0 ≤ f ≤ g,0 ≤ f ′ ≤ g − 1, does
there exists a curve X over Fp of genus g and p-rank f having
an unramified double cover π : Y → X with p-rank of Pπ being
f ′?

First open case: g = 3,Pπ has p-rank 0 studied as part of
WINE 2 project and the answer is yes for 3 ≤ p ≤ 19,moreover

Theorem (CEGNOPT)
If 3 ≤ p ≤ 19, the answer to the question above is YES for all
g ≥ 2 as long as f is bigger than (appr.) 2g

3 and f ′ bigger than
(appr.) g

3 .
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Summary and Further Directions

Thm:[O., Pries] Once we know that R(f ,f ′)
g 6= ∅ then each of its

components has dimension at least g − 2 + f + f ′ (an
application of purity)

This lower bound is realized when:
� [Thm 1] f ′ = g − 1,dimR(f ,f ′)

g = 2g − 3 + f

� [Thm 2] f ′ = g − 2, with f ≥ 2 when p = 3, dimR(f ,f ′)
g = 2g − 4 + f

� [Cor.] p ≥ 5 and g
2 − 1 ≤ f ′ ≤ g − 3, at least one

component of R(f ,f ′)
g has dimension g − 2 + f + f ′
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Summary and Further Directions

Similarly:

Corollary (CEGNOPT)

If 3 ≤ p ≤ 19, R(f ,f ′)
g has a nonempty component of dimension

g − 2 + f + f ′ for all g ≥ 2 as long as f is bigger than (appr.)
2g/3 and f ′ bigger than (appr.) g/3.

Remark

Condition on p is needed to show that R(2,0)
3 has dimension 3

Open Question: What is the dimension of R(2,0)
3 ? Is there a

3-dimensional family of smooth plane quartics X with p-rank 2
having an unramified double cover π such that Pπ has p rank 0.
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