# Fully maximal and fully minimal abelian varieties and curves 

Rachel Pries

Colorado State University
pries@math.colostate.edu
Arithmetic Aspects of Explicit Moduli Problems
May 29 - June 2, 2017

## Motivating question

Let $\mathbb{F}_{q}$ be a finite field, with cardinality $q=p^{r}$.
Let $X / \mathbb{F}_{q}$ be a smooth projective curve of genus $g$.

## III-posed question

If $X$ is supersingular, is it more likely to be maximal or minimal?

## Outline (joint with V. Karemaker).

(1) Definitions of maximal, minimal, supersingular curves.
(2) A twisted example.
(3) Definitions of fully maximal, mixed, fully minimal curves.
(4) Results
(5) Arithmetic analysis for the explicit moduli space $g=3, p=2$.
(6) Open questions

## 1. Zeta functions of curves

Let $X / \mathbb{F}_{q}$ be a smooth curve of genus $g$.

## Weil Conjectures

The zeta function of $X / \mathbb{F}_{q}$ is a rational function
$Z\left(X / \mathbb{F}_{q}, T\right)=L\left(X / \mathbb{F}_{q}, T\right) /(1-T)(1-q T)$,
where the $L$-polynomial $L\left(X / \mathbb{F}_{q}, t\right) \in \mathbb{Z}[T]$ has degree $2 g$
and $L\left(X / \mathbb{F}_{q}, T\right)=\prod_{i=1}^{2 g}\left(1-\alpha_{i} T\right)$ with $\left|\alpha_{i}\right|=\sqrt{q}$.

Note that $P\left(\operatorname{Jac}(X) / \mathbb{F}_{q}, T\right)=T^{2 g} L\left(X / \mathbb{F}_{q}, T^{-1}\right)$ is the characteristic polynomial of the relative Frobenius endomorphism of $\operatorname{Jac}(X)$.

Let $\left\{\alpha_{1}, \bar{\alpha}_{1}, \ldots, \alpha_{g}, \bar{\alpha}_{g}\right\}$ be the Weil numbers of $X / \mathbb{F}_{q}$.

## 1. Hasse-Weil bound and maximal/minimal

Let $\left\{\alpha_{1}, \bar{\alpha}_{1}, \ldots, \alpha_{g}, \bar{\alpha}_{g}\right\}$ be the Weil numbers of $X / \mathbb{F}_{q}$.
The normalized Weil numbers are $\left\{z_{1}, \bar{z}_{1}, \ldots, z_{g}, \bar{z}_{g}\right\}$ where $z_{i}=\alpha_{i} / \sqrt{q}$.

## Hasse-Weil

The number of points satisfies $\# X\left(\mathbb{F}_{q}\right)=q+1-\sum_{i=1}^{g}\left(\alpha_{i}+\bar{\alpha}_{i}\right)$, which implies the Hasse-Weil bound: $\left|\# X\left(\mathbb{F}_{q}\right)-(q+1)\right| \leq 2 g \sqrt{q}$.

## Definition

The curve $X / \mathbb{F}_{q}$ is maximal (resp. minimal) if its normalized Weil numbers all equal -1 (resp. 1). Need $q$ square ( $r$ even).

Note that $X / \mathbb{F}_{q}$ is maximal if and only if $L\left(X / \mathbb{F}_{q}, T\right)=(1+\sqrt{q} T)^{2 g}$ and minimal if and only if $L\left(X / \mathbb{F}_{q}, T\right)=(1-\sqrt{q} T)^{2 g}$.

Fact: if $X / \mathbb{F}_{q}$ has NWNs $\left\{z_{1}, \bar{z}_{1}, \ldots, z_{g}, \bar{z}_{g}\right\}$, then $X / \mathbb{F}_{q^{m}}$ has NWNs $\left\{z_{1}^{m}, \bar{z}_{1}^{m}, \ldots, z_{g}^{m}, \bar{z}_{g}^{m}\right\}$.

## 1. Supersingular elliptic curves

If $E / \mathbb{F}_{q}$ is an elliptic curve, then $\# E\left(\mathbb{F}_{q}\right)=q+1-a$.
The zeta function of $E$ is $Z\left(E / \mathbb{F}_{q}, T\right)=\left(1-a T+q T^{2}\right) /(1-T)(1-q T)$.
$E$ supersingular if the Newton polygon of $1-a T+q T^{2}$ has slopes $1 / 2$.

$E$ ordinary if the Newton polygon has slopes 0 and 1 .


Fact: $p \mid a$ iff $E$ supersingular.

## 1. Facts about supersingular elliptic curves

For all $p$, there exists a supersingular elliptic curve $E / \mathbb{F}_{p^{2}}$ (lgusa). The number of isomorphism classes of ss $E / \mathbb{F}_{p}$ is $\left\lfloor\frac{p}{12}\right\rfloor+\varepsilon$.
$E$ is supersingular iff $\operatorname{End}(E)$ non-commutative (order in quat. algebra)
Example: $p \equiv 3 \bmod 4: y^{2}=x^{3}-x$. Example: $p \equiv 2 \bmod 3: y^{2}=x^{3}+1$.
$E$ is supersingular iff the Cartier operator annihilates $H^{0}\left(E, \Omega^{1}\right)$.
p odd: $y^{2}=h(x)$, where $h(x)$ cubic with distinct roots, is supersingular iff the coefficient $c_{p-1}$ of $x^{p-1}$ in $h(x)^{(p-1) / 2}$ is zero.
(Igusa) $y^{2}=x(x-1)(x-\lambda)$ is supersingular for $\frac{p-1}{2}$ choices of $\lambda \in \overline{\mathbb{F}}_{p}$.
$E$ supersingular iff its only $p$-torsion point is the identity: $E[p]\left(\overline{\mathbb{F}}_{p}\right)=\{\mathrm{id}\}$.

## 1. Definition of Newton polygon

Let $X$ be a smooth projective curve defined over $\mathbb{F}_{q}$, with $q=p^{r}$. Zeta function of $X$ is $Z\left(X / \mathbb{F}_{q}, T\right)=L\left(X / \mathbb{F}_{q}, T\right) /(1-T)(1-q T)$
where $L\left(X / \mathbb{F}_{q}, T\right)=\prod_{i=1}^{2 g}\left(1-\alpha_{i} T\right) \in \mathbb{Z}[T]$ and $\left|\alpha_{i}\right|=\sqrt{q}$.
The Newton polygon of $X$ is the NP of the $L$-polynomial. Find $p$-adic valuation $v_{i}$ of coefficient of $T^{i}$ in $L\left(X / \mathbb{F}_{q}, T\right)$. Draw lower convex hull of $\left(i, v_{i} / r\right)$ where $q=p^{r}$.

Facts: The NP goes from $(0,0)$ to $(2 g, g)$.
NP line segments break at points with integer coefficients; If slope $\lambda$ occurs with length $m_{\lambda}$, so does slope $1-\lambda$.

## Definition

$X / \mathbb{F}_{q}$ is supersingular if the Newton polygon of $L\left(X / \mathbb{F}_{q}, t\right)$ is a line segment of slope $1 / 2$.

## 1. The supersingular property

Let $X$ be a smooth projective curve defined over $\mathbb{F}_{q}$, with $q=p^{r}$. The following are equivalent:
(1) $X$ is supersingular;
(2) the Newton polygon of $L\left(X / \mathbb{F}_{q}, T\right)$ is a line segment of slope $1 / 2$;
( each eigenvalue of the relative Frobenius morphism equals $\zeta \sqrt{q}$ for some root of unity $\zeta$;
(0) $X$ is minimal (satisfies lower bound in Hasse-Weil bound for number of points) over $\mathbb{F}_{q^{r}}$ for some $r$;
(6) Tate: $\operatorname{End}\left(\operatorname{Jac}\left(X \times_{\mathbb{F}_{q}} k\right)\right) \otimes \mathbb{Q}_{p} \simeq M_{g}\left(D_{p}\right), D_{p}$ quat alg ram at $p, \infty$;
(0) $\operatorname{Oort:~} \operatorname{Jac}(X)$ is geometrically isogenous to a product of supersingular elliptic curves.

## 6. Existence of supersingular curves?

For all $p$ and $g$, there exists:
a supersingular p.p. abelian variety of dimension $g$, namely $E^{g}$; and a supersingular singular curve of genus $g$.

## Open Question 1:

Does there exist a supersingular smooth curve of genus $g$ defined over a finite field of characteristic $p$, for every $p$ and $g$ ?

Yes: $g=1,2,3$ for all $p$. Not known for all $p$ when $g \geq 4$.
Yes when $p=2$ (Van der Geer/Van der Vlugt) then there exists a supersingular curve of every genus.

## 1. Period and parity

If $X / \mathbb{F}_{q}$ is supersingular, then $\left\{z_{1}, \bar{z}_{1}, \ldots, z_{g}, \bar{z}_{g}\right\}$ are roots of unity.

## Definition

The $\mathbb{F}_{q}$-period $\mu(X)$ is the smallest $m \in \mathbb{N}$ such that $q^{m}$ is square ( $r m$ is even) and (i) $z_{i}^{m}=-1$ for all $1 \leq i \leq g$, or (ii) $z_{i}^{m}=1$ for all $1 \leq i \leq g$.

The $\mathbb{F}_{q}$-parity $\delta(X)$ is 1 in case (i) and is -1 in case (ii).
Then $X / \mathbb{F}_{\left.q^{\mu( }\right)}$ is maximal in case (i) and minimal in case (ii).

## Better question:

If $X / \mathbb{F}_{q}$ is supersingular, is it more likely to have parity 1 or $-1 ?$

## 2. A curve of mixed type

Let $X / \mathbb{F}_{p}$ be plane curve $x^{d}+y^{d}+z^{d}=0$. Note $g=(d-1)(d-2) / 2$.

## Example

If $p \equiv-1 \bmod d$, then $X$ is maximal over $\mathbb{F}_{p^{2}}$. But if $d \equiv 0 \bmod 4$, then $X$ has a twist which is not maximal over any extension of $\mathbb{F}_{p}$.

## Proof.

The Hermitian curve $\tilde{X}: x_{1}^{p+1}+y_{1}^{p+1}+z_{1}^{p+1}=0$ is maximal over $\mathbb{F}_{p^{2}}$.
Since $p+1 \equiv 0 \bmod d$, there exists $\lambda \in \mathbb{F}_{p^{2}}^{*}$ with order $s=(p+1) / d$. There is a Galois cover $h: \tilde{X} \rightarrow X$ given by $\left(x_{1}, y_{1}, z_{1}\right) \mapsto\left(x_{1}^{s}, y_{1}^{s}, z_{1}^{s}\right)$. So $X$ is a quotient of $\tilde{X}$ by a subgroup of automorphisms def. over $\mathbb{F}_{p^{2}}$.

By Serre, $X$ is also maximal over $\mathbb{F}_{p^{2}}$, proving the first claim.
The NWNs of $X / \mathbb{F}_{p^{2}}$ are all -1 . The NWNs of $X / \mathbb{F}_{p}$ are $\pm i$ (mult. $g$ ).

## 2. A curve $x^{d}+y^{d}+z^{d}=0$ of mixed type continued

Let $p \equiv-1 \bmod d$ and $4 \mid d$.
Let $\lambda_{1} \in \mathbb{F}_{p^{2}}^{*}$ have order $d_{1}=d / 2$.
Let $g \in \operatorname{Aut}_{p_{p^{2}}}(X)$ be the automorphism $g(x, y, z)=\left(\lambda_{1} y, x, z\right)$. Note $g$ has order $d$.

Let $X_{g} / \mathbb{F}_{p}$ be the twist of $X$ by $g$.
Fact: the NWNs of $X_{g} / \mathbb{F}_{p^{2}}$ depend on the action of $g\left({ }^{F r} g\right)$.
We compute that

$$
\begin{aligned}
g\left({ }^{(F r} g\right)(x, y, z) & =g\left(\operatorname{Frg}^{-1}\right)(x, y, z) \\
& =g\left(\operatorname{Fr}\left(g\left(x^{1 / p}, y^{1 / p}, z^{1 / p}\right)\right)\right) \\
& =g\left(\operatorname{Fr}\left(\lambda_{1} y^{1 / p}, x^{1 / p}, z^{1 / p}\right)\right)=g\left(\lambda_{1}^{p} y, x, z\right) \\
& =\left(\lambda_{1} x, \lambda_{1}^{p} y, z\right)=\left(\lambda_{1} x, \lambda_{1}^{-1} y, z\right)
\end{aligned}
$$

where the last equality uses the fact that $p \equiv-1 \bmod d$.

## 2. A curve $x^{d}+y^{d}+z^{d}=0$ of mixed type continued

## Claim: Case 1. $d=4$

Then $X: x^{4}+y^{4}+z^{4}=0$ has a twist which is not maximal over $\mathbb{F}_{p^{m}}$.

## Proof.

Auer/Top: $\operatorname{Jac}(X) \sim_{\mathbb{F}_{p}} E^{3}$, where $E: 2 y^{2}=x^{3}-x$ is maximal over $\mathbb{F}_{p^{2}}$. The NWNs of $X / \mathbb{F}_{p^{2}}$ are $\{-1, \ldots,-1\}$ (maximal).

Now $g$ has order 4 and the quotient of $X$ by $g$ has genus 1 .
Since $i \notin \mathbb{F}_{p}, g$ acts on $\operatorname{Jac}(X)$ via two invariant factors, with minimal polynomials $x^{2}+1$ and $x-1$. Note $g\left({ }^{\mathrm{Fr}} g\right)=g^{2}$ acts with eigenvalues $-1,-1,1$ on $\operatorname{Jac}(X) / \mathbb{F}_{p^{2}}$.

Then the twist $X_{g} / \mathbb{F}_{p^{2}}$ has NWNs $\{1,1,1,1,-1,-1\}$. Thus the NWNs of the twist $X_{g} / \mathbb{F}_{p}$ are $\pm 1$ (mult. 4) and $\pm i$. Hence, the twist $X_{g} / \mathbb{F}_{p}$ is not maximal over any extension of $\mathbb{F}_{p}$.

## 2. A curve $x^{d}+y^{d}+z^{d}=0$ of mixed type continued

## Claim:

Then $X: x^{d}+y^{d}+z^{d}=0$ has a twist which is not maximal over $\mathbb{F}_{p^{m}}$.

## Proof.

The NWNs of $X / \mathbb{F}_{p^{2}}$ are all -1 .
The NWNs of the twist $X_{g} / \mathbb{F}_{p^{2}}$ include $-\varepsilon$ for $\varepsilon$ eigenvalue for action of $g\left({ }^{\left({ }^{F r} g\right)}\right.$ on $H^{1}(X, O)$. This includes $\varepsilon=1$ and $\varepsilon=\lambda_{1}$.

Now -1 has order 2 but $-\lambda_{1}$ does not: (because $d_{1}=d / 2$ is even, so $-\lambda_{1}$ has order $d_{1}$ if $d_{1} \equiv 0 \bmod 4$ and has odd order if $\left.d_{1} \equiv 2 \bmod 4\right)$.

In either case, the twist $X_{g} / \mathbb{F}_{p}$ is not maximal over any extension of $\mathbb{F}_{p}$ since the 2-divisibility of the orders of its NWNs is not constant.

## 3. Fully maximal/minimal abelian varieties and curves

(joint with Valentijn Karemaker)
Abstract: We introduce and study a new way to catagorize supersingular abelian varieties or curves defined over a finite field by classifying them as fully maximal, mixed or fully minimal.

The type of A depends on the normalized Weil numbers of A and its twists over its minimal field of definition.

We analyze these types for supersingular abelian varieties and curves under conditions on the automorphism group.

In particular, we present a complete analysis of these properties for supersingular elliptic curves and supersingular abelian surfaces in arbitrary characteristic.

For supersingular curves of genus 3 in characteristic 2, we use a parametrization of a moduli space of such curves by Viana and Rodriguez to determine the L-polynomial and the type of each.

## 3. Definitions of fully maximal, fully minimal, mixed

Let $K=\mathbb{F}_{q}$ and $k=\overline{\mathbb{F}}_{p}$.
Let $X / \mathbb{F}_{q}$ be a smooth projective curve of genus $g$.
A twist of $X / K$ is a curve $X^{\prime} / K$ for which there exists a geometric isomorphism $\phi: X \times_{K} k \rightarrow X^{\prime} \times_{K} k$.

Let $\Theta(X / K)$ be the set of $K$-isomorphism classes of twists $X^{\prime} / K$ of $X$.

## Definition of type: KP

A supersingular curve $X$ with minimal field of definition $K$ is of one of the following types:
(1) fully maximal if $X^{\prime} / K$ has $K$-parity $\delta=1$ for all $X^{\prime} \in \Theta(X / K)$;
(2) fully minimal if $X^{\prime} / K$ has $K$-parity $\delta=-1$ for all $X^{\prime} \in \Theta(X / K)$;
(3) mixed if there exist $X^{\prime}, X^{\prime \prime} \in \Theta(X / K)$ with $K$-parities $\delta\left(X^{\prime}\right)=1$ and $\delta\left(X^{\prime \prime}\right)=-1$.

## 3. Mixed is not the same as hyperelliptic

## If a maximal curve has a minimal twist, then $X$ is hyperelliptic

Suppose that $\phi: X \times_{K} k \xrightarrow{\simeq} X^{\prime} \times_{K} k$ where $X / K$ is maximal and $X^{\prime} / K$ is minimal (or vice versa). Then $X$ is hyperelliptic and $g_{\phi}=1$ and $X^{\prime} / K$ is a quadratic twist.

## Despite this:

There are mixed curves that are not hyperelliptic (example above) and hyperelliptic curves that are not mixed (examples below).

The mixed property depends on more data: NWNs of $X$ over minimal field of definition $K$ orders of twists ( $K$-Frobenius order of elements in Frobenius conjugacy classes in $\operatorname{Aut}_{k}(X)$ )

## Analysis $g=1$

## Proposition: K/P

Let $E$ be a supersingular elliptic curve defined over a finite field of characteristic $p$. If $E$ is defined over $\mathbb{F}_{p}$, then it is fully maximal; otherwise, it is mixed.

Proof: (uses work of Waterhouse)
$p=2$, all twists of $y^{2}+y=x^{3}$ have parity 1 .
$p$ odd and $\operatorname{Aut}_{k}(E) \not \approx \mathbb{Z} / 2$ :
All twists of $y^{2}=x^{3}+1(j=0)$ and $y^{2}=x^{3}-x(j=1728)$ have parity 1 .
$p$ odd and $\operatorname{Aut}_{k}(E) \simeq \mathbb{Z} / 2$ :
If defined over $\mathbb{F}_{p}$ then NWNs are $\{ \pm i\}$;
If not, then NWNs of $E$ and $E_{1}$ are $\{1,1\}$ and $\{-1,1\}$ or $\left\{\zeta_{3}, \bar{\zeta}_{3}\right\}$ and $\left\{\zeta_{6}, \bar{\zeta}_{6}\right\}$, parity -1 and 1 .

## 3. Twists

Let $\Theta(X / K)$ be the set of $K$-isomorphism classes of twists $X^{\prime} / K$ of $X$.

## (Serre)

There are bijections:
$\Theta(X / K) \rightarrow H^{1}\left(G_{K}, \operatorname{Aut}_{k}(X)\right) \rightarrow\left\{K\right.$-Frobenius conjugacy classes of $\left.\operatorname{Aut}_{k}(X)\right\}$
Definition: $g, h \in \operatorname{Aut}_{k}(X)$ are $K$-Frobenius conjugate if there exists $\tau \in \operatorname{Aut}_{k}(X)$ such that $g=\tau^{-1} h\left({ }^{\left(F_{K}\right.} \tau\right)$, where $\left({ }^{\left(F_{K}\right.} \tau\right)=F r_{K} \tau r_{K}^{-1}$.

Notation: $X^{\prime} / K$ a $K$-twist of $X / K$ with $\phi: X \times_{K} k \xrightarrow{\simeq} X^{\prime} \times_{K} k$.
Let $\xi_{\phi}$ and $g:=g_{\phi}$ be the corresponding cocycle and automorphism. Let $K_{T_{g}}$ be the field of definition of $\phi$ (of degree $T_{g}$ over $K$ ).

## 3. Facts about twists

## K-Frobenius order

The degree $T_{g}$ is the smallest positive integer $T$ such that

$$
g\left(r_{r_{K}} g\right)\left({ }^{F r_{K}^{2}} g\right) \cdots\left(r_{K}^{T-1} g\right)=\mathrm{id} .
$$

## Fact

Suppose that $\phi: X \times{ }_{K_{c}} k \xrightarrow{\simeq} X^{\prime} \times K_{c} k$ is a geometric isomorphism. Suppose that $G_{\phi}=\xi_{\phi}\left(F r_{K_{c}}\right)$ is in $\operatorname{Aut}_{K_{c}}(X)$. Then the relative Frobenius endomorphism $\pi^{\prime}$ of $X^{\prime}$ satisfies

$$
\begin{equation*}
\phi^{-1} \circ \pi^{\prime} \circ \phi=\pi_{X} \circ G_{\phi}^{-1} \tag{1}
\end{equation*}
$$

## 3. the 2-divisibility of orders of NWNs

Suppose that $\left\{z_{1}, \bar{z}_{1}, \ldots, z_{g}, \bar{z}_{g}\right\}$ are the normalized Weil numbers of a supersingular curve $X / K$.
Recall that $z_{1}, \ldots, z_{g}$ are roots of unity.
We measure the 2-divisibility of their orders in the next definition.

## Definition

Let $e_{i}=\operatorname{ord}_{2}\left(\left|z_{i}\right|\right)$. The 2-valuation vector of $X / K$ is
$\underline{e}=\underline{e}(A / K):=\left\{e_{1}, \ldots, e_{g}\right\}$.
The notation $\underline{e}=\{e\}$ means that $e_{i}=e$ for $1 \leq i \leq g$.
Parity $=1$ (maximal over $\mathbb{F}_{q^{m}}$ ) iff $\underline{e}=\{e\}$ with $e \geq 1$ ( $e \geq 2$ if $r$ odd).

## Twists that don't change $\vec{e}$

Suppose that $X^{\prime} / K$ is a twist of $X / K$ of order $T$. Let $e_{T}=\operatorname{ord}_{2}(T)$. If $e_{T}<\min \left\{e_{i} \mid 1 \leq i \leq g\right\}$, then $\underline{e}\left(X^{\prime} / K\right)=\underline{e}$.

## Characterizing the mixed case when $\operatorname{Aut}_{k}(A) \not \nsim \mathbb{Z} / 2$

If $X / K$ has parity +1 and its twist $X^{\prime} / K$ has parity -1 , then the order $T$ of the twist is even.

More precisely:
Suppose $X / K$ has $K$-period $M$. Let $e_{M}=\operatorname{ord}_{2}(M)$.
Note that $e_{M}$ is determined by the parity of $X$ and $\underline{e}$, the 2-divisibility of the orders of the NWNs (roots of unity).

Let $X^{\prime} / K$ be a $K$-twist of order $T$. Let $e_{T}=\operatorname{ord}_{2}(T)$.

## No switch of parity

If $X / K$ has $K$-parity +1 and $e_{T} \leq e_{M}$, then $X^{\prime} / K$ also has $K$-parity +1 . If $X / K$ has $K$-parity -1 and $e_{T}<e_{M}$, then $X^{\prime} / K$ also has $K$-parity -1 .

## General results: K/P

Let $q=p^{r}$. Let $A$ be p.p. abelian variety of dimension $g$.

## Corollary 1

If $A$ is simple and $r$ is even, then $A / \mathbb{F}_{q}$ is not fully minimal.

## Proposition

Suppose that $\left|\operatorname{Aut}_{k}(A)\right|=2$. Then
(1) A is fully maximal if and only if (i) $\underline{e}=\{e\}$ with $e \geq 2$;
(2) $A$ is fully minimal if and only if (ii) the $e_{i}$ are not all equal, or $\underline{e}=\{e\}$ with $e \in\{0,1\}$ and $r$ is odd;
(3) $A$ is mixed if and only if (iii) $\underline{e}=\{e\}$ with $e \in\{0,1\}$ and $r$ is even.

## Corollary 2

If $\left|\operatorname{Aut}_{k}(A)\right|=2, g$ is odd, and $r$ is odd, then $A$ is fully maximal.

## Philosophical digression

Is the condition that $\operatorname{Aut}_{k}(A) \simeq \mathbb{Z} / 2$ restrictive?

## Open Question 2:

What is the automorphism group of $A_{\eta}$ for $\eta$ a geometric generic point of the supersingular locus $\mathcal{A}_{g, s s}$ of the moduli space of p.p. abelian varieties of dimension $g \geq 2$ ?
$g=2, p$ odd: Using Katsura/Oort, Achter/Howe, the proportion of supersingular p.p. $A / \mathbb{F}_{p^{r}}$ with $\operatorname{Aut}_{k}(A) \nsucceq \mathbb{Z} / 2$ goes to 0 as $r \rightarrow \infty$.
(This is false when $g=2$ and $p=2$ by Van der Geer/Van der Vlugt).
$g=3, p=2$ : we prove that automorphism group is $(\mathbb{Z} / 2 \times \mathbb{Z} / 2) \times \mathbb{Z} / 3$ on an open, dense subset of $\mathcal{A}_{3, s s}$.

## Philosophical digression continued

The proportion of $\mathbb{F}_{q}$-points of $\mathcal{A}_{g, s s}$ which represent abelian varieties $A$ that are simple over $K$ is not known in general.

Li/Oort: the generic supersingular abelian variety $A_{\eta}$ has a-number 1 for all $g$ and $p$.

If $\mathbb{Z} / 2 \times \mathbb{Z} / 2 \subset \operatorname{Aut}_{K}(A)$, then $A$ is not simple over $K$ by Kani/Rosen. If $p$ is odd, this also implies that $A$ has a-number at least 2.

So, for $p$ odd, one expects the proportion of supersingular $A / K$ with $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \subset \operatorname{Aut}_{K}(A)$ to be small.

## Analysis for $g=2$

$A / \mathbb{F}_{q}$ simple abelian surface.
$P\left(A / \mathbb{F}_{q}, T\right)=T^{4}+a_{1} T^{3}+a_{2} T^{2}+q a_{1} T+q^{2} \in \mathbb{Z}[T]$.
The typical situation is when $\operatorname{Aut}_{k}(A) \simeq \mathbb{Z} / 2$. What types occur?

## Proposition (KP):

Let $A$ be a supersingular simple p.p. abelian surface with minimal field of definition $\mathbb{F}_{p^{r}}$. Assume $\operatorname{Aut}_{k}(A) \simeq \mathbb{Z} / 2$.

If $r$ is odd, then $A$ is not mixed; Cases (1), (2b), (3a), (6) are fully maximal and Cases (2a), (5), (7a) are fully minimal.

If $r$ is even, then $A$ is not fully minimal; Cases (1), (3a), and (7b) are fully maximal and Cases (4) and (8) are mixed.

Cases as listed in following table.

## Analysis for $g=2$

First 4 columns from Maisner/Nart (see also HMNR)
Let $L / \mathbb{F}_{q}$ minimal over which $A \sim_{L} E_{1} \times E_{2}$. Let $t_{0}=\operatorname{deg}\left(L / \mathbb{F}_{q}\right)$. Let $n_{E}=n_{E_{1}}=n_{E_{2}}$ label $E_{1} / L$ and $E_{2} / L$.
We compute $z / L$, one of the NWNs $(z, \bar{z}, z, \bar{z})$ of $A / L$. We compute $\operatorname{NWN}\left(A / \mathbb{F}_{q}\right)$. We compute the period $P$ and parity $\delta$ of $A / \mathbb{F}_{q}$.

|  | $\left(a_{1}, a_{2}\right)$ | $r, p$ | $t_{0}$ | $n_{E}$ | $z / L$ | $\operatorname{NWN}\left(A / \mathbb{F}_{q}\right)$ | P | $\delta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1a | $(0,0)$ | $r$ odd, $p \equiv 3 \bmod 4$ or $r$ even, $p \not \equiv 1 \bmod 4$ | 2 | 3 | $i$ | $\left(\zeta_{8}, \zeta_{8}^{7}, \zeta_{8}^{3}, \zeta_{8}^{5}\right)$ | 4 | 1 |
| 1b | $(0,0)$ | $r$ odd, $p \equiv 1 \bmod 4$ or $r$ even, $p \equiv 5 \bmod 8$ | 4 | 1 | -1 | $\left(\zeta_{8}, \zeta_{8}^{7}, \zeta_{8}^{3}, \zeta_{8}^{5}\right)$ | 4 | 1 |
| 2a | $(0, q)$ | $r$ odd, $p \not \equiv 1 \bmod 3$ | 2 | 2 | $\zeta_{3}$ | $\left(\zeta_{6}, \zeta_{6}^{5}, \zeta_{6}^{2}, \zeta_{6}^{4}\right)$ | 6 | -1 |
| 2b | $(0, q)$ | $r$ odd, $p \equiv 1 \bmod 3$ | 6 | 1 | -1 | $\left(\zeta_{12}, \zeta_{12}^{11}, \zeta_{12}^{5}, \zeta_{12}^{7}\right)$ | 6 | 1 |
| 3a | (0,-q) | $r$ odd and $p \neq 3$ or $r$ even and $p \not \equiv 1 \bmod 3$ | 2 | 2 | $-\zeta_{3}$ | $\left(\zeta_{12}, \zeta_{12}^{11}, \zeta_{12}^{5}, \zeta_{12}^{7}\right)$ | 6 | 1 |
| 3b | ( $0,-q$ ) | $r$ odd and $p \equiv 1 \bmod 3$ or $r$ even and $p \equiv 4,7,10 \bmod 12$ | 3 | 3 | i | $\left(\zeta_{12}, \zeta_{12}^{11}, \zeta_{12}^{5}, \zeta_{12}^{7}\right)$ | 6 | 1 |
| 4a | $(\sqrt{q}, q)$ | $r$ even and $p \not \equiv 1 \bmod 5$ | 5 | 1 | 1 | $\left(\zeta_{5}, \zeta_{5}^{4}, \zeta_{5}^{2}, \zeta_{5}^{3}\right)$ | 5 | -1 |
| 4b | $(-\sqrt{9}, q)$ | $r$ even and $p \not \equiv 1 \bmod 5$ | 5 | 1 | -1 | $\left(\zeta_{10}, \zeta_{10}^{9}, \zeta_{10}^{3}, \zeta_{10}^{7}\right)$ | 5 | 1 |
| 5a | $(\sqrt{5 q}, 3 q)$ | $r$ odd and $p=5$ | 5 | 1 | $\pm 1$ | $\left(\zeta_{10}^{3}, \zeta_{10}^{7}, \zeta_{5}^{2}, \zeta_{5}^{3}\right)$ | 10 | -1 |
| 5b | $(-\sqrt{5 q}, 3 q)$ | $r$ odd and $p=5$ | 5 | 1 | $\pm 1$ | $\left(\zeta_{10}, \zeta_{10}^{9}, \zeta_{5}, \zeta_{5}^{4}\right)$ | 10 | -1 |
| 6a | $(\sqrt{2 q}, q)$ | $r$ odd and $p=2$ | 4 | 2 | $-\zeta_{3}$ | $\left(\zeta_{24}^{13}, \zeta_{24}^{11}, \zeta_{24}^{19}, \zeta_{24}^{5}\right)$ | 12 | 1 |
| 6b | $(-\sqrt{2 q}, q)$ | $r$ odd and $p=2$ | 4 | 2 | $-\zeta_{3}$ | $\left(\zeta_{24}, \zeta_{24}^{23}, \zeta_{24}^{7}, \zeta_{24}^{47}\right)$ | 12 | 1 |
| 7 a | (0,-2q) | $r$ odd | 2 | 1 | 1 | ( $1,1,-1-1$ ) | 2 | -1 |
| 7 b | $(0,2 q)$ | $r$ even and $p \equiv 1 \bmod 4$ | 2 | 2 | -1 | ( $i,-i, i,-i$ ) | 2 | 1 |
| 8a | $(2 \sqrt{q}, 3 q)$ | $r$ even and $p \equiv 1 \bmod 3$ | 3 | 1 | 1 | $\left(\zeta_{3}, \zeta_{3}^{2}, \zeta_{3}, \zeta_{3}^{2}\right)$ | 3 | -1 |
| 8b | $(-2 \sqrt{9}, 3 q)$ | $r$ even and $p \equiv 1 \bmod 3$ | 3 | 1 | -1 | $\left(\zeta_{6}, \zeta_{6}^{5}, \zeta_{6}, \zeta_{6}^{5}\right)$ | 3 | 1 |

## Analysis when $g=2$

Also deal with simple supersingular surfaces with $\operatorname{Aut}_{k}(A) \not \approx \mathbb{Z} / 2$.
Igusa: 6 equations of curves of genus 2 with $\operatorname{Aut}_{k}(X) \not \not \mathbb{Z} / 2$. Ibukiyama/Katsura/Oort - determine when these are supersingular.

Using Cardona/Nart, we determine the type for each of these.

## Open Question 3:

What are the sizes of the isogeny classes listed in the table?

The answer to Open Question 3 would shed light on the probability that a supersingular abelian surface $A / \mathbb{F}_{q}$ is fully maximal, mixed, or fully minimal.

## A procedure for studying parities of twists

The key information to retain about the normalized Weil numbers is the divisibility of their orders by 2.

We summarize this information in a multiset $\underline{e}(A / K)$.
The key information to retain about the twist is its effect on the NWNs, which can be controlled by the divisibility of its order $T$ by 2 .

If the structure of $\operatorname{Aut}_{k}(X)$ is complicated, then the order of the twist is not easily determined from the order of $g \in \operatorname{Aut}_{k}(X)$.

In particular, if $G$ is non-abelian, then an automorphism $g$ of order 2 can produce a twist of order 4.

## 5. Supersingular moduli for $g=3$ and $p=2$

When $p=2$ and $g=3$, the supersingular locus of the moduli space $\mathcal{M}_{3} \otimes \mathbb{F}_{2}$ is irreducible of dimension 2.

Viana and Rodriguez parametrize it by the 2-dimensional family

$$
\begin{equation*}
x_{a, b}: x+y+a\left(x^{3} y+x y^{3}\right)+b x^{2} y^{2}=0 \tag{2}
\end{equation*}
$$

For each supersingular curve $X_{a, b}$ of genus 3 over a finite field of characteristic 2 , we determine whether $X_{a, b}$ is fully maximal, fully minimal, or mixed.

This involves an analysis of twists by $g \in \operatorname{Aut}_{k}\left(X_{a, b}\right)$, which is a group of order either 12 or 36.

In fact, we determine $L\left(X_{a, b} / K, T\right)$ almost completely.
(See related results by Nart/Ritzenthaler).

## Main result when $g=3$ and $p=2$

Let $K=\mathbb{F}_{2^{r}}$ be the smallest field containing $a, b$.
Let $h \in \mathbb{F}_{q^{2}}$ be such that $h^{2}+h=\frac{a}{b}$. Note that $h \in \mathbb{F}_{q}$ iff $\operatorname{Tr}_{r}\left(\frac{a}{b}\right)=0$, where $\operatorname{Tr}_{r}: \mathbb{F}_{2^{r}} \rightarrow \mathbb{F}_{2}$ denotes the trace map. Let $K^{\prime}=\mathbb{F}_{q}(h)$.

## Theorem K/P:

(1) If $r$ is odd, then $X_{a, b}$ is fully maximal if $h \in \mathbb{F}_{q}$ and mixed if $h \notin \mathbb{F}_{q}$.
(2) If $r \equiv 2 \bmod 4$, then $X_{a, b}$ is fully minimal if $h \notin \mathbb{F}_{q}$ and mixed if $h \in \mathbb{F}_{q}$.
(3) If $r \equiv 0 \bmod 4$, then $X_{a, b}$ is fully minimal.

Moreover, $\operatorname{Jac}\left(X_{a, b}\right)$ has the same type as $X_{a, b}$, unless $r \equiv 0 \bmod 4$ and $h \in \mathbb{F}_{q}$, in which case $\operatorname{Jac}\left(X_{a, b}\right)$ is mixed.

The proportion of $(a, b) \in\left(\mathbb{F}_{q}^{*}\right)^{2}$ for which $X_{a, b}$ is mixed is slightly greater than $\frac{1}{2}$ when $r$ is odd and slightly smaller than $\frac{1}{2}$ when $r \equiv 2 \bmod 4$.

## The L-polynomial of $X_{a, b}$ over $K^{\prime}$

For $K=\mathbb{F}_{2^{r}}$, define

$$
\begin{equation*}
L_{c, K}(T)=\left(1-(\sqrt{2} i)^{r} T\right)\left(1-(-\sqrt{2} i)^{r} T\right) \tag{3}
\end{equation*}
$$

and, when $r$ is even, define

$$
\begin{equation*}
L_{n, K}(T)=\left(1-\left(2 \zeta_{6}\right)^{r / 2} T\right)\left(1-\left(2 \zeta_{6}^{-1}\right)^{r / 2} T\right) \tag{4}
\end{equation*}
$$

The NWNs are $\left\{( \pm i)^{r}\right\}$ for $L_{c, K}(T)$ and $\left\{\zeta_{6}^{r / 2}, \zeta_{6}^{-r / 2}\right\}$ for $L_{n, K}(T)$.

## Proposition

Let $K^{\prime}=\mathbb{F}_{q}(h)$, where $h \in \mathbb{F}_{q^{2}}$ is such that $h^{2}+h=\frac{a}{b}$.
Define $c_{1}=a b, c_{2}=\left(\frac{1}{h+1}\right)^{2} \frac{1}{b}, c_{3}=\left(\frac{1}{h}\right)^{2} \frac{1}{b}$.
Then $L\left(X_{a, b} / K^{\prime}, T\right)=L_{c, K^{\prime}}(T)^{m} L_{n, K^{\prime}}(T)^{3-m}$, where $m=\#\left\{i \in\{1,2,3\} \mid c_{i}\right.$ is a cube in $\left.\left(K^{\prime}\right)^{*}\right\}$.

## Key facts about the geometry of $X_{a, b}$

$X_{a, b}$ has an involution $\tau(x, y)=(y, x)$ and the quotient is
$E_{1}: R^{2}+R=c_{1} S^{3}$.
The cover $X_{a, b} \rightarrow E_{1}$ has equation $Z^{2}+Z=\frac{a}{b} R$.
The involution $v: R \mapsto R+1$ on $E_{1}$ lifts to $X_{a, b}$, via $v(Z)=Z+h$. Let $E_{2}: T^{2}+T=c_{2}(a S)^{3}$ and $E_{3}: U^{2}+U=c_{3}(a S)^{3}$.

## Lemma

(1) The cover $X_{a, b} \rightarrow E_{a, b} \rightarrow \mathbb{P}_{S}^{1}$ is Galois with group

$$
S_{0}=\langle\tau, v\rangle \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \text { and equation }
$$

$$
Z^{4}+\left(1+\frac{a}{b}\right) Z^{2}+\frac{a}{b} Z=\frac{1}{b} a^{3} S^{3}
$$

(2) Over $K^{\prime}$, the quotients of $X_{a, b}$ by $\tau$, $v$ and $\tau v$ are $E_{1}, E_{2}$, and $E_{3}$.
(3) Finally, $\operatorname{Jac}\left(X_{a, b}\right) \sim K^{\prime} E_{1} \oplus E_{2} \oplus E_{3}$.

## The L-polynomial of $X_{a, b}$ over K

When $h \notin \mathbb{F}_{q}$, this is not quite strong enough, because it only gives information about the $L$-polynomial over $\mathbb{F}_{q^{2}}$.

This ambiguity can be partially resolved using the Artin $L$-series $L\left(E_{a, b} / \mathbb{F}_{q}, T, \chi\right)$, where $\chi$ is the nontrivial character of $\mathbb{Z} / 2 \mathbb{Z}$.

Note $L\left(X_{a, b} / \mathbb{F}_{q}, T\right)=L\left(E_{a, b} / \mathbb{F}_{q}, T\right) L\left(E_{a, b} / \mathbb{F}_{q}, T, \chi\right)$.
Let $\rho_{1}$ be the coefficient of $T$ in $L\left(E_{a, b} / K, T, \chi\right)$.
Let $I_{1}$ (resp. $S_{1}$ ) be the number of $K$-points of $E_{a, b}$ that are inert (resp. split) in $X_{a, b}$. Then $\rho_{1}=S_{1}-I_{1}$.

Using quadratic twists, one can see that $\rho_{1}=0$.
This suffices to determine $\underline{e}\left(X_{a, b} / K\right)$.

## The twists of $X_{a, b}$

Let $G=\operatorname{Aut}_{k}\left(X_{a, b}\right)$. It contains $S_{0}=\langle\tau, v\rangle \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
There is an order 3 automorphism of $X_{a, b}$, given by

$$
\sigma:(x, y) \mapsto\left(\zeta_{3} x, \zeta_{3} y\right) \text { or } \sigma:(S, R, Z) \mapsto\left(\zeta_{3}^{2} S, R, Z\right)
$$

Note that $\sigma$ is defined over $\mathbb{F}_{q}$ if $r$ is even and over $\mathbb{F}_{q^{2}}$ if $r$ is odd. Also, $\sigma$ centralizes $S_{0}$.

## Lemma

If $a \neq b$, then $G=S_{0} \times\langle\sigma\rangle$ is an abelian group of order 12 . If $a \neq b$, then $G$ is a semidirect product $S_{0} \rtimes H$ where $H$ is a cyclic group of order 9 .

## Example: $X_{a, b}$ is fully maximal when $r$ odd and $h \in \mathbb{F}_{q}$

Let $r$ be odd and $h \in \mathbb{F}_{q}$.
The L-polynomial shows that NWNs are $\pm i$ (multiplicity 3 ).
So $\underline{e}=\{2,2,2\}$ and $X_{a, b}$ has parity 1 .
There are 4 Frobenius conjugacy classes of twists, represented by elements of $S_{0}$, which are defined over $K$ and thus have order $T=2$. So $e_{T}=1$.

This means the twists do not change $\underline{e}$, so all twists have parity 1.

## Example: $X_{a, b}$ is mixed when $r$ odd and $h \notin \mathbb{F}_{q}$

Let $r$ be odd and $h \notin \mathbb{F}_{q}$.
The L-polynomial shows that the NWNs are in $\{ \pm i\} \cup \mu_{12}$. In any case, $\underline{e}\left(X_{a, b} / K\right)=\{2,2,2\}$ so $X_{a, b}$ has parity 1 .

There are 2 Frobenius conjugacy classes, thus one non-trivial twist, which is represented by $v$.

Over $K^{\prime}, \underline{e}\left(X_{a, b} / K^{\prime}\right)=\{1,1,1\}$.
The nontrivial twist corresponds to $v^{F r_{K}} v=\tau$, which negates the two conjugate pairs of NWNs for $E_{2}$ and $E_{3}$.

Thus the twist has $\underline{e}\left(X_{a, b}^{\prime} / K^{\prime}\right)=\{1,0,0\}$. One checks that $\underline{e}\left(X_{a, b}^{\prime} / K\right)=\{2,0,1\}$, of parity -1 .

Thus, $X_{a, b}$ is mixed.

## 6. Why supersingular Jacobians are unlikely

Let $\mathcal{A}_{g}$ be the moduli space of p.p. abelian varieties of dimension $g$. The image of $\mathcal{M}_{g}$ in $\mathcal{A}_{g}$ is open and dense for $g \leq 3$. Observation (Oort 2005) $\operatorname{dim}\left(\mathcal{A}_{g}\right)=g(g+1) / 2$ and the dimension of the supersingular locus $\mathcal{A}_{g, s s}$ is $\left\lfloor g^{2} / 4\right\rfloor$.

The difference $\delta_{g}$ is length of longest chain of NPs connecting the supersingular NP $\sigma_{g}$ to the ordinary NP $v_{g}$.

If $g \geq 9$, then $\delta_{g}>3 g-3=\operatorname{dim}\left(\mathcal{M}_{g}\right)$.
Either (i) $\mathcal{M}_{g}$ does not admit a perfect stratification by NP (i.e., there are two NPs $\xi_{1}$ and $\xi_{2}$ such that $\mathcal{A}_{g}\left[\xi_{1}\right]$ is in the closure of $\mathcal{A}_{g}\left[\xi_{2}\right]$ but $\mathscr{M}_{g}\left[\xi_{1}\right]$ is not in the closure of $\mathcal{M}_{g}\left[\xi_{2}\right]$.)
or (ii) some NPs do not occur for Jacobians of smooth curves.
Test case: $g=11$ with NP $G_{5,6} \oplus G_{6,5}$ having slopes of $5 / 11,6 / 11$ (does occur when $p=2$ - Blache).

## Supersingular case sometimes does not occur among wildly ramified covers

Deuring-Shafarevich formula restricts p-rank.
Oort: If $p=2$, there does not exist a hyperelliptic supersingular curve of genus 3.

Scholten/Zhu: $p=2, n \geq 2$, there is no hyperelliptic supersingular curve with $g=2^{n}-1$.
(for odd $p$, generalized for Artin-Schreier covers $X \xrightarrow{\mathbb{Z} / p} \mathbb{P}^{1}$ by Blache, who studied first slope of NP of more general AS curves)

But.....

Van der Geer/Van der Vlugt: If $p=2$, then there exists a supersingular curve of every genus.

## Supersingular Artin-Schreier curves

Def: $R[x] \in k[x]$ is an additive polynomial if $R\left(x_{1}+x_{2}\right)=R\left(x_{1}\right)+R\left(x_{2}\right)$. Then $R[x]=c_{0} x+c_{1} x^{p}+c_{2} x^{p^{2}}+c_{h} x^{p^{h}}$.

## Supersingular Artin-Schreier curves VdG/VdV

If $R(x) \in k[x]$ is an additive polynomial of degree $p^{h}$, then
$X: y^{p}-y=x R(x)$ is supersingular with genus $p^{h}(p-1) / 2$.

Proof: Induction on $h$, starting with $h=0$.
Key fact: $\operatorname{Jac}(X)$ is isogenous to a product of Jacobians of Artin-Schreier curves for additive polynomials of smaller degree.

Remark: BHMSSV studied L-polynomials, automorphism groups of $X$.

## Existence of supersingular curves when $p=2$

## Van der Geer and Van der Vlugt

If $p=2$, then there exists a supersingular curve over $\overline{\mathbb{F}}_{2}$ of every genus.
Proof sketch: Expand $g$ as (with $s_{i} \leq s_{i-1}+r_{i-1}+2$ ) $g=2^{s_{1}}\left(1+2+\cdots+2^{r_{1}}\right)+2^{s_{2}}\left(1+2+\cdots 2^{r_{2}}\right)+\cdots+2^{s_{t}}\left(1+2+\cdots+2^{r_{t}}\right)$.

Let $\mathbf{L}=\oplus_{i=1}^{t} L_{i}$ for $L_{i}$ subspace of $\operatorname{dim} d_{i}:=r_{i}+1$ in vector space of additive polynomials of deg $2^{u_{i}}$, with $u_{i}=\left(s_{i}+1\right)-\sum_{j=1}^{i-1}\left(r_{j}+1\right)$.

If $f \in \mathbf{L}$, let $C_{f}: y^{p}-y=x f$. Let $Y$ be fiber product of $C_{f} \rightarrow \mathbb{P}^{1}$ for all $f \in \mathbf{L}$. Then $J_{Y} \sim \oplus_{f \neq 0} J_{C_{f}}$ (thus supersingular). Also, $g_{Y}=\sum_{f \neq 0} g_{C_{f}}$.

The number of $f \in \mathbf{L}$ which have a non-zero contribution from $L_{i}$, but not from $L_{j}$ for $j>i$, is $\left(2^{d_{i}}-1\right) \prod_{j=1}^{i-1} 2^{d_{j}}$. Each adds $2^{u_{i}-1}$ to $g$. So $g_{Y}=\sum_{i=1}^{t}\left(2^{d_{i}}-1\right) \prod_{j=1}^{i-1} 2^{d_{j}} 2^{u_{i}-1}=\sum_{i=1}^{t} 2^{s_{i}}\left(1+\cdots+2^{r_{i}}\right)=g$.

## Supersingular Artin-Schreier curves for odd $p$

Here is what VdG/VdV's method produces for odd $p$.

## Proposition: K/P

Let $g=G p(p-1)^{2} / 2$ where $G=\sum_{i=1}^{t} p^{s_{i}}\left(1+p+\cdots p^{r_{i}}\right)$. Then there exists a supersingular curve over $\overline{\mathbb{F}}_{p}$ of genus $g$.

VdG/VdV also prove that there exists a supersingular curve defined over $\mathbb{F}_{2}$ of every genus. The construction is a little more complicated.

## An accessible open question

## Open Question 4:

Determine the type (fully maximal, mixed, fully minimal) for known classes of supersingular curves:
$g=2, p=2:$ Van der Geer/Van der Vlugt;
$g=p^{h}(p-1) / 2, X: y^{p}-y=x R(x)$,
Bouw/Ho/Malmskog/Scheidler/Srinivasan/Vincent;
arbitrary $g$, over $\mathbb{F}_{2}$ : Van der Geer/Van der Vlugt;
the odd $p$ generalization of the previous line;
covers of Hermitian curve: Gieulietti/Korchmáros, Garcia/Gúneri/Stichtenoth.

