Fully maximal and fully minimal abelian varieties and curves

Rachel Pries

Colorado State University pries@math.colostate.edu

Arithmetic Aspects of Explicit Moduli Problems May 29 - June 2, 2017

Motivating question

Let \mathbb{F}_q be a finite field, with cardinality $q = p^r$. Let X/\mathbb{F}_q be a smooth projective curve of genus g.

III-posed question

If X is supersingular, is it more likely to be maximal or minimal?

Outline (joint with V. Karemaker).

- Definitions of maximal, minimal, supersingular curves.
- A twisted example.
- Oefinitions of fully maximal, mixed, fully minimal curves.
- 4 Results
- Solution 9 Sector 4.1 Sector 4.1
- Open questions

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

1. Zeta functions of curves

Let X/\mathbb{F}_q be a smooth curve of genus g.

Weil Conjectures

The zeta function of X/\mathbb{F}_q is a rational function

$$Z(X/\mathbb{F}_q,T) = L(X/\mathbb{F}_q,T)/(1-T)(1-qT),$$

where the *L*-polynomial $L(X/\mathbb{F}_q, t) \in \mathbb{Z}[T]$ has degree 2g

and
$$L(X/\mathbb{F}_q, T) = \prod_{i=1}^{2g} (1 - \alpha_i T)$$
 with $|\alpha_i| = \sqrt{q}$.

Note that $P(\operatorname{Jac}(X)/\mathbb{F}_q, T) = T^{2g}L(X/\mathbb{F}_q, T^{-1})$ is the characteristic polynomial of the relative Frobenius endomorphism of $\operatorname{Jac}(X)$.

Let $\{\alpha_1, \bar{\alpha}_1, \dots, \alpha_g, \bar{\alpha}_g\}$ be the Weil numbers of X/\mathbb{F}_q .

1. Hasse-Weil bound and maximal/minimal

Let $\{\alpha_1, \bar{\alpha}_1, \dots, \alpha_g, \bar{\alpha}_g\}$ be the Weil numbers of X/\mathbb{F}_q . The normalized Weil numbers are $\{z_1, \bar{z}_1, \dots, z_g, \bar{z}_g\}$ where $z_i = \alpha_i / \sqrt{q}$.

Hasse-Weil

The number of points satisfies $\#X(\mathbb{F}_q) = q + 1 - \sum_{i=1}^{g} (\alpha_i + \bar{\alpha}_i)$, which implies the *Hasse-Weil bound*: $|\#X(\mathbb{F}_q) - (q+1)| \le 2g\sqrt{q}$.

Definition

The curve X/\mathbb{F}_q is *maximal* (resp. *minimal*) if its normalized Weil numbers all equal -1 (resp. 1). Need *q* square (*r* even).

Note that X/\mathbb{F}_q is maximal if and only if $L(X/\mathbb{F}_q, T) = (1 + \sqrt{q}T)^{2g}$ and minimal if and only if $L(X/\mathbb{F}_q, T) = (1 - \sqrt{q}T)^{2g}$.

Fact: if X/\mathbb{F}_q has NWNs $\{z_1, \overline{z}_1, \dots, z_g, \overline{z}_g\}$, then X/\mathbb{F}_{q^m} has NWNs $\{z_1^m, \overline{z}_1^m, \dots, z_g^m, \overline{z}_g^m\}$.

Rachel Pries (CSU)

イロン イロン イヨン イヨン 三日

1. Supersingular elliptic curves

If E/\mathbb{F}_q is an elliptic curve, then $\#E(\mathbb{F}_q) = q+1-a$. The zeta function of E is $Z(E/\mathbb{F}_q, T) = (1-aT+qT^2)/(1-T)(1-qT)$.

E supersingular if the Newton polygon of $1 - aT + qT^2$ has slopes 1/2.

Fact: $p \mid a$ iff E supersingular.

1. Facts about supersingular elliptic curves

For all *p*, there exists a supersingular elliptic curve E/\mathbb{F}_{p^2} (Igusa). The number of isomorphism classes of ss $E/\overline{\mathbb{F}}_p$ is $\lfloor \frac{p}{12} \rfloor + \epsilon$.

E is supersingular iff End(E) non-commutative (order in quat. algebra)

Example: $p \equiv 3 \mod 4$: $y^2 = x^3 - x$. Example: $p \equiv 2 \mod 3$: $y^2 = x^3 + 1$.

E is supersingular iff the Cartier operator annihilates $H^0(E, \Omega^1)$.

p odd: $y^2 = h(x)$, where h(x) cubic with distinct roots, is supersingular iff the coefficient c_{p-1} of x^{p-1} in $h(x)^{(p-1)/2}$ is zero. (Igusa) $y^2 = x(x-1)(x-\lambda)$ is supersingular for $\frac{p-1}{2}$ choices of $\lambda \in \overline{\mathbb{F}}_p$.

E supersingular iff its only *p*-torsion point is the identity: $E[p](\bar{\mathbb{F}}_p) = \{id\}.$

イロン イボン イヨン 一日

1. Definition of Newton polygon

Let X be a smooth projective curve defined over \mathbb{F}_q , with $q = p^r$. Zeta function of X is $Z(X/\mathbb{F}_q, T) = L(X/\mathbb{F}_q, T)/(1-T)(1-qT)$

where
$$L(X/\mathbb{F}_q, T) = \prod_{i=1}^{2g} (1 - \alpha_i T) \in \mathbb{Z}[T]$$
 and $|\alpha_i| = \sqrt{q}$.

The Newton polygon of *X* is the NP of the *L*-polynomial. Find *p*-adic valuation v_i of coefficient of T^i in $L(X/\mathbb{F}_q, T)$. Draw lower convex hull of $(i, v_i/r)$ where $q = p^r$.

Facts: The NP goes from (0,0) to (2g,g). NP line segments break at points with integer coefficients; If slope λ occurs with length m_{λ} , so does slope $1 - \lambda$.

Definition

 X/\mathbb{F}_q is *supersingular* if the Newton polygon of $L(X/\mathbb{F}_q, t)$ is a line segment of slope 1/2.

Rachel Pries (CSU)

BIRS 7 / 43

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let *X* be a smooth projective curve defined over \mathbb{F}_q , with $q = p^r$. The following are equivalent:

- X is supersingular;
- 2 the Newton polygon of $L(X/\mathbb{F}_q, T)$ is a line segment of slope 1/2;
- each eigenvalue of the relative Frobenius morphism equals $\zeta \sqrt{q}$ for some root of unity ζ ;
- X is minimal (satisfies lower bound in Hasse-Weil bound for number of points) over F_q for some r;
- Tate: End(Jac($X \times_{\mathbb{F}_q} k$)) $\otimes \mathbb{Q}_p \simeq M_g(D_p)$, D_p quat alg ram at p, ∞ ;
- Oort: Jac(X) is geometrically isogenous to a product of supersingular elliptic curves.

For all *p* and *g*, there exists:

a supersingular p.p. *abelian variety* of dimension g, namely E^g ; and a supersingular *singular* curve of genus g.

Open Question 1:

Does there exist a supersingular smooth curve of genus g defined over a finite field of characteristic p, for every p and g?

Yes: g = 1, 2, 3 for all p. Not known for all p when $g \ge 4$.

Yes when p = 2 (Van der Geer/Van der Vlugt) then there exists a supersingular curve of every genus.

If X/\mathbb{F}_q is supersingular, then $\{z_1, \overline{z}_1, \dots, z_g, \overline{z}_g\}$ are roots of unity.

Definition

The \mathbb{F}_q -period $\mu(X)$ is the smallest $m \in \mathbb{N}$ such that q^m is square (*rm* is even) and (i) $z_i^m = -1$ for all $1 \le i \le g$, or (ii) $z_i^m = 1$ for all $1 \le i \le g$.

The \mathbb{F}_q -parity $\delta(X)$ is 1 in case (i) and is -1 in case (ii).

Then $X/\mathbb{F}_{q^{\mu(X)}}$ is maximal in case (i) and minimal in case (ii).

Better question:

If X/\mathbb{F}_q is supersingular, is it more likely to have parity 1 or -1?

2. A curve of mixed type

Let X/\mathbb{F}_p be plane curve $x^d + y^d + z^d = 0$. Note g = (d-1)(d-2)/2.

Example

If $p \equiv -1 \mod d$, then X is maximal over \mathbb{F}_{p^2} . But if $d \equiv 0 \mod 4$, then X has a twist which is not maximal over any extension of \mathbb{F}_p .

Proof.

The Hermitian curve $\tilde{X} : x_1^{p+1} + y_1^{p+1} + z_1^{p+1} = 0$ is maximal over \mathbb{F}_{p^2} .

Since $p + 1 \equiv 0 \mod d$, there exists $\lambda \in \mathbb{F}_{p^2}^*$ with order s = (p+1)/d. There is a Galois cover $h : \tilde{X} \to X$ given by $(x_1, y_1, z_1) \mapsto (x_1^s, y_1^s, z_1^s)$. So X is a quotient of \tilde{X} by a subgroup of automorphisms def. over \mathbb{F}_{p^2} .

By Serre, X is also maximal over \mathbb{F}_{p^2} , proving the first claim.

The NWNs of X/\mathbb{F}_{p^2} are all -1. The NWNs of X/\mathbb{F}_p are $\pm i$ (mult. *g*).

2. A curve $x^d + y^d + z^d = 0$ of mixed type continued

Let $p \equiv -1 \mod d$ and $4 \mid d$. Let $\lambda_1 \in \mathbb{F}_{p^2}^*$ have order $d_1 = d/2$.

Let $g \in \operatorname{Aut}_{\mathbb{F}_{p^2}}(X)$ be the automorphism $g(x, y, z) = (\lambda_1 y, x, z)$. Note g has order d.

Let X_g/\mathbb{F}_p be the twist of X by g. Fact: the NWNs of X_g/\mathbb{F}_{p^2} depend on the action of $g({}^{Fr}g)$.

We compute that

$$g({}^{Fr}g)(x,y,z) = g(FrgFr^{-1})(x,y,z)$$

= $g(Fr(g(x^{1/p},y^{1/p},z^{1/p})))$
= $g(Fr(\lambda_1y^{1/p},x^{1/p},z^{1/p})) = g(\lambda_1^py,x,z)$
= $(\lambda_1x,\lambda_1^py,z) = (\lambda_1x,\lambda_1^{-1}y,z),$

where the last equality uses the fact that $p \equiv -1 \mod d$.

2. A curve $x^d + y^d + z^d = 0$ of mixed type continued

Claim: Case 1. d = 4

Then $X : x^4 + y^4 + z^4 = 0$ has a twist which is not maximal over \mathbb{F}_{p^m} .

Proof.

Auer/Top: $Jac(X) \sim_{\mathbb{F}_p} E^3$, where $E : 2y^2 = x^3 - x$ is maximal over \mathbb{F}_{p^2} . The NWNs of X/\mathbb{F}_{p^2} are $\{-1, \ldots, -1\}$ (maximal).

Now *g* has order 4 and the quotient of *X* by *g* has genus 1. Since $i \notin \mathbb{F}_p$, *g* acts on Jac(X) via two invariant factors, with minimal polynomials $x^2 + 1$ and x - 1. Note $g({}^{Fr}g) = g^2$ acts with eigenvalues -1, -1, 1 on $Jac(X)/\mathbb{F}_{p^2}$.

Then the twist X_g/\mathbb{F}_{p^2} has NWNs $\{1,1,1,1,-1,-1\}$. Thus the NWNs of the twist X_g/\mathbb{F}_p are ± 1 (mult. 4) and $\pm i$. Hence, the twist X_g/\mathbb{F}_p is not maximal over any extension of \mathbb{F}_p .

2. A curve $x^d + y^d + z^d = 0$ of mixed type continued

Claim:

Then $X : x^d + y^d + z^d = 0$ has a twist which is not maximal over \mathbb{F}_{p^m} .

Proof.

The NWNs of X/\mathbb{F}_{p^2} are all -1.

The NWNs of the twist X_g/\mathbb{F}_{p^2} include $-\varepsilon$ for ε eigenvalue for action of $g({}^{Fr}g)$ on $H^1(X, \mathcal{O})$. This includes $\varepsilon = 1$ and $\varepsilon = \lambda_1$.

Now -1 has order 2 but $-\lambda_1$ does not: (because $d_1 = d/2$ is even, so $-\lambda_1$ has order d_1 if $d_1 \equiv 0 \mod 4$ and has odd order if $d_1 \equiv 2 \mod 4$).

In either case, the twist X_g/\mathbb{F}_p is not maximal over any extension of \mathbb{F}_p since the 2-divisibility of the orders of its NWNs is not constant.

(joint with Valentijn Karemaker)

Abstract: We introduce and study a new way to catagorize supersingular abelian varieties or curves defined over a finite field by classifying them as fully maximal, mixed or fully minimal.

The type of A depends on the normalized Weil numbers of A and its twists over its minimal field of definition.

We analyze these types for supersingular abelian varieties and curves under conditions on the automorphism group.

In particular, we present a complete analysis of these properties for supersingular elliptic curves and supersingular abelian surfaces in arbitrary characteristic.

For supersingular curves of genus 3 in characteristic 2, we use a parametrization of a moduli space of such curves by Viana and Rodriguez to determine the L-polynomial and the type of each.

3. Definitions of fully maximal, fully minimal, mixed

Let $K = \mathbb{F}_q$ and $k = \overline{\mathbb{F}}_p$. Let X/\mathbb{F}_q be a smooth projective curve of genus g.

A twist of X/K is a curve X'/K for which there exists a geometric isomorphism $\phi: X \times_K k \to X' \times_K k$.

Let $\Theta(X/K)$ be the set of *K*-isomorphism classes of twists X'/K of *X*.

Definition of type: KP

A supersingular curve X with minimal field of definition K is of one of the following *types*:

- fully maximal if X'/K has K-parity $\delta = 1$ for all $X' \in \Theta(X/K)$;
- 2 *fully minimal* if X'/K has K-parity $\delta = -1$ for all $X' \in \Theta(X/K)$;
- *mixed* if there exist $X', X'' \in \Theta(X/K)$ with *K*-parities $\delta(X') = 1$ and $\delta(X'') = -1$.

If a maximal curve has a minimal twist, then X is hyperelliptic

Suppose that $\phi: X \times_K k \xrightarrow{\simeq} X' \times_K k$ where X/K is maximal and X'/K is minimal (or vice versa). Then X is hyperelliptic and $g_{\phi} = \iota$ and X'/K is a quadratic twist.

Despite this:

There are mixed curves that are not hyperelliptic (example above) and hyperelliptic curves that are not mixed (examples below).

The mixed property depends on more data: NWNs of *X* over minimal field of definition *K* orders of twists (*K*-Frobenius order of elements in Frobenius conjugacy classes in $Aut_k(X)$)

Proposition: K/P

Let *E* be a supersingular elliptic curve defined over a finite field of characteristic *p*. If *E* is defined over \mathbb{F}_p , then it is fully maximal; otherwise, it is mixed.

Proof: (uses work of Waterhouse) p = 2, all twists of $y^2 + y = x^3$ have parity 1.

p odd and $\operatorname{Aut}_k(E) \not\simeq \mathbb{Z}/2$: All twists of $y^2 = x^3 + 1$ (*j* = 0) and $y^2 = x^3 - x$ (*j* = 1728) have parity 1.

 $p \text{ odd and } \operatorname{Aut}_k(E) \simeq \mathbb{Z}/2$: If defined over \mathbb{F}_p then NWNs are $\{\pm i\}$; If not, then NWNs of E and E_i are $\{1,1\}$ and $\{-1,1\}$ or $\{\zeta_3, \overline{\zeta}_3\}$ and $\{\zeta_6, \overline{\zeta}_6\}$, parity -1 and 1.

イロト イ理ト イヨト イヨト 二臣

Let $\Theta(X/K)$ be the set of *K*-isomorphism classes of twists X'/K of *X*.

(Serre)

There are bijections:

 $\Theta(X/K) \to H^1(G_K, \operatorname{Aut}_k(X)) \to \{K \text{-Frobenius conjugacy classes of } \operatorname{Aut}_k(X)\}$

Definition: $g, h \in \operatorname{Aut}_k(X)$ are *K*-*Frobenius conjugate* if there exists $\tau \in \operatorname{Aut}_k(X)$ such that $g = \tau^{-1}h({}^{Fr_K}\tau)$, where $({}^{Fr_K}\tau) = Fr_K\tau Fr_K^{-1}$.

Notation: X'/K a K-twist of X/K with $\phi : X \times_K k \xrightarrow{\simeq} X' \times_K k$. Let ξ_{ϕ} and $g := g_{\phi}$ be the corresponding cocycle and automorphism. Let K_{T_g} be the field of definition of ϕ (of degree T_g over K).

A (10) A (10)

K-Frobenius order

The degree T_g is the smallest positive integer T such that

$$g(Fr_{\mathcal{K}}g)(Fr_{\mathcal{K}}^2g)\cdots(Fr_{\mathcal{K}}^{T-1}g)=\mathrm{id}.$$

Fact

Suppose that $\phi: X \times_{K_c} k \xrightarrow{\simeq} X' \times_{K_c} k$ is a geometric isomorphism. Suppose that $G_{\phi} = \xi_{\phi}(Fr_{K_c})$ is in $\operatorname{Aut}_{K_c}(X)$. Then the relative Frobenius endomorphism π' of X' satisfies

$$\phi^{-1} \circ \pi' \circ \phi = \pi_X \circ G_{\phi}^{-1}. \tag{1}$$

3. the 2-divisibility of orders of NWNs

Suppose that $\{z_1, \overline{z}_1, \dots, z_g, \overline{z}_g\}$ are the normalized Weil numbers of a supersingular curve X/K.

Recall that z_1, \ldots, z_q are roots of unity.

We measure the 2-divisibility of their orders in the next definition.

Definition

Let
$$e_i = \operatorname{ord}_2(|z_i|)$$
. The 2-valuation vector of X/K is
 $\underline{e} = \underline{e}(A/K) := \{e_1, \dots, e_g\}.$
The notation $\underline{e} = \{e\}$ means that $e_i = e$ for $1 \le i \le g$.

Parity=1 (maximal over \mathbb{F}_{q^m}) iff $\underline{e} = \{e\}$ with $e \ge 1$ ($e \ge 2$ if r odd).

Twists that don't change \vec{e}

Suppose that X'/K is a twist of X/K of order T. Let $e_T = \operatorname{ord}_2(T)$. If $e_T < \min\{e_i \mid 1 \le i \le g\}$, then $\underline{e}(X'/K) = \underline{e}$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Characterizing the mixed case when $Aut_k(A) \not\simeq \mathbb{Z}/2$

If X/K has parity +1 and its twist X'/K has parity -1, then the order T of the twist is even.

More precisely:

Suppose X/K has K-period M. Let $e_M = \operatorname{ord}_2(M)$.

Note that e_M is determined by the parity of X and \underline{e} , the 2-divisibility of the orders of the NWNs (roots of unity).

Let X'/K be a K-twist of order T. Let $e_T = \operatorname{ord}_2(T)$.

No switch of parity

If X/K has K-parity +1 and $e_T \le e_M$, then X'/K also has K-parity +1. If X/K has K-parity -1 and $e_T < e_M$, then X'/K also has K-parity -1.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

General results: K/P

Let $q = p^r$. Let *A* be p.p. abelian variety of dimension *g*.

Corollary 1

If A is simple and r is even, then A/\mathbb{F}_q is not fully minimal.

Proposition

Suppose that $|Aut_k(A)| = 2$. Then

- A is fully maximal if and only if (i) $\underline{e} = \{e\}$ with $e \ge 2$;
- 2 *A* is fully minimal if and only if (ii) the e_i are not all equal, or $\underline{e} = \{e\}$ with $e \in \{0, 1\}$ and *r* is odd;
- 3 *A* is mixed if and only if (iii) $\underline{e} = \{e\}$ with $e \in \{0, 1\}$ and *r* is even.

Corollary 2

If $|Aut_k(A)| = 2$, g is odd, and r is odd, then A is fully maximal.

・ロト ・ 四ト ・ ヨト ・ ヨト …

Is the condition that $\operatorname{Aut}_k(A) \simeq \mathbb{Z}/2$ restrictive?

Open Question 2:

What is the automorphism group of A_{η} for η a geometric generic point of the supersingular locus $\mathcal{A}_{g,ss}$ of the moduli space of p.p. abelian varieties of dimension $g \ge 2$?

g = 2, p odd: Using Katsura/Oort, Achter/Howe, the proportion of supersingular p.p. A/\mathbb{F}_{p^r} with $\operatorname{Aut}_k(A) \not\simeq \mathbb{Z}/2$ goes to 0 as $r \to \infty$.

(This is false when g = 2 and p = 2 by Van der Geer/Van der Vlugt).

g = 3, p = 2: we prove that automorphism group is $(\mathbb{Z}/2 \times \mathbb{Z}/2) \times \mathbb{Z}/3$ on an open, dense subset of $\mathcal{A}_{3,ss}$.

The proportion of \mathbb{F}_q -points of $\mathcal{A}_{g,ss}$ which represent abelian varieties A that are simple over K is not known in general.

Li/Oort: the generic supersingular abelian variety A_{η} has *a*-number 1 for all *g* and *p*.

If $\mathbb{Z}/2 \times \mathbb{Z}/2 \subset \operatorname{Aut}_{\mathcal{K}}(A)$, then *A* is not simple over *K* by Kani/Rosen. If *p* is odd, this also implies that *A* has *a*-number at least 2.

So, for *p* odd, one expects the proportion of supersingular A/K with $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \subset \operatorname{Aut}_{K}(A)$ to be small.

イロト イポト イヨト イヨト 三臣

Analysis for g = 2

 A/\mathbb{F}_q simple abelian surface. $P(A/\mathbb{F}_q, T) = T^4 + a_1T^3 + a_2T^2 + qa_1T + q^2 \in \mathbb{Z}[T].$

The typical situation is when $\operatorname{Aut}_k(A) \simeq \mathbb{Z}/2$. What types occur?

Proposition (KP):

Let *A* be a supersingular simple p.p. abelian surface with minimal field of definition \mathbb{F}_{p^r} . Assume $\operatorname{Aut}_k(A) \simeq \mathbb{Z}/2$.

If r is odd, then A is not mixed; Cases (1), (2b), (3a), (6) are fully maximal and Cases (2a), (5), (7a) are fully minimal.

If *r* is even, then *A* is not fully minimal; Cases (1), (3a), and (7b) are fully maximal and Cases (4) and (8) are mixed.

Cases as listed in following table.

Analysis for g = 2

First 4 columns from Maisner/Nart (see also HMNR)

Let L/\mathbb{F}_q minimal over which $A \sim_L E_1 \times E_2$. Let $t_0 = \deg(L/\mathbb{F}_q)$. Let $n_E = n_{E_1} = n_{E_2}$ label E_1/L and E_2/L .

We compute z/L, one of the NWNs $(z, \overline{z}, z, \overline{z})$ of A/L. We compute NWN (A/\mathbb{F}_q) . We compute the period P and parity δ of A/\mathbb{F}_q .

	(a ₁ ,a ₂)	r, p	t ₀	n _E	z/L	$NWN(A/\mathbb{F}_q)$	Р	δ
1a	(0,0)	<i>r</i> odd, $p \equiv 3 \mod 4$ or <i>r</i> even, $p \not\equiv 1 \mod 4$	2	3	i	$(\zeta_8, \zeta_8^7, \zeta_8^3, \zeta_8^5)$	4	1
1b	(0,0)	$r \text{ odd}, p \equiv 1 \mod 4 \text{ or } r \text{ even}, p \equiv 5 \mod 8$	4	1	-1	$(\zeta_8,\zeta_8^7,\zeta_8^3,\zeta_8^5)$	4	1
2a	(0, <i>q</i>)	$r \text{ odd}, p \not\equiv 1 \mod 3$	2	2	ζ3	$(\zeta_6, \zeta_6^5, \zeta_6^2, \zeta_6^4)$	6	-1
2b	(0, <i>q</i>)	$r \text{ odd}, p \equiv 1 \mod 3$	6	1	-1	$(\zeta_{12}, \zeta_{12}^{11}, \zeta_{12}^{5}, \zeta_{12}^{7})$	6	1
За	(0,- <i>q</i>)	<i>r</i> odd and $p \neq 3$ or <i>r</i> even and $p \not\equiv 1 \mod 3$	2	2	$-\zeta_3$	$(\zeta_{12},\zeta_{12}^{1\overline{1}},\zeta_{12}^{5^{-}},\zeta_{12}^{7^{-}})$	6	1
3b	(0,- <i>q</i>)	<i>r</i> odd and $p \equiv 1 \mod 3$ or <i>r</i> even and $p \equiv 4, 7, 10 \mod 12$	3	3	i	$(\zeta_{12},\zeta_{12}^{11},\zeta_{12}^5,\zeta_{12}^7)$	6	1
4a	(\sqrt{q}, q)	r even and $p \neq 1 \mod 5$	5	1	1	$(\zeta_5, \zeta_5^4, \zeta_5^2, \zeta_5^3)$	5	-1
4b	$(-\sqrt{q},q)$	<i>r</i> even and $p \neq 1 \mod 5$	5	1	-1	$(\zeta_{10}, \tilde{\zeta}_{10}^9, \zeta_{10}^3, \zeta_{10}^7)$	5	1
5a	$(\sqrt{5q}, 3q)$	r odd and $p = 5$	5	1	±1	$(\zeta_{10}^3, \zeta_{10}^7, \zeta_{2}^2, \zeta_{5}^3)^{-1}$	10	-1
5b	$(-\sqrt{5q}, 3q)$	r odd and $p = 5$	5	1	±1	$(\zeta_{10}, \zeta_{10}^9, \zeta_5, \zeta_5^4)$	10	-1
6a	$(\sqrt{2q},q)$	r odd and $p = 2$	4	2	$-\zeta_3$	$(\zeta_{24}^{13}, \zeta_{24}^{11}, \zeta_{24}^{19}, \zeta_{24}^{5})$	12	1
6b	$\left(-\sqrt{2q},q\right)$	r odd and $p = 2$	4	2	$-\zeta_3$	$(\zeta_{24}^{-}, \zeta_{24}^{23}, \zeta_{24}^{7}, \zeta_{24}^{17})$	12	1
7a	(0,-2q)	r odd	2	1	1	(1, 1, -1 - 1)	2	-1
7b	(0,2 <i>q</i>)	r even and $p \equiv 1 \mod 4$	2	2	-1	(i, -i, i, -i)	2	1
8a	(2√q,3q)	r even and $p \equiv 1 \mod 3$	3	1	1	$(\zeta_3, \zeta_3^2, \zeta_3, \zeta_3^2)$	3	-1
8b	$(-2\sqrt{q},3q)$	r even and $p \equiv 1 \mod 3$	3	1	-1	$(\zeta_6, \zeta_6^5, \zeta_6, \zeta_6^5)$	3	1

Rachel Pries (CSU)

イロト イ理ト イヨト イヨト

Also deal with simple supersingular surfaces with $\operatorname{Aut}_k(A) \not\simeq \mathbb{Z}/2$.

Igusa: 6 equations of curves of genus 2 with $Aut_k(X) \not\simeq \mathbb{Z}/2$. Ibukiyama/Katsura/Oort - determine when these are supersingular.

Using Cardona/Nart, we determine the type for each of these.

Open Question 3:

What are the sizes of the isogeny classes listed in the table?

The answer to Open Question 3 would shed light on the probability that a supersingular abelian surface A/\mathbb{F}_q is fully maximal, mixed, or fully minimal.

The key information to retain about the normalized Weil numbers is the divisibility of their orders by 2.

We summarize this information in a multiset $\underline{e}(A/K)$.

The key information to retain about the twist is its effect on the NWNs, which can be controlled by the divisibility of its order T by 2.

If the structure of $\operatorname{Aut}_k(X)$ is complicated, then the order of the twist is not easily determined from the order of $g \in \operatorname{Aut}_k(X)$.

In particular, if G is non-abelian, then an automorphism g of order 2 can produce a twist of order 4.

イロン イロン イヨン イヨン 二日

5. Supersingular moduli for g = 3 and p = 2

When p = 2 and g = 3, the supersingular locus of the moduli space $\mathcal{M}_3 \otimes \mathbb{F}_2$ is irreducible of dimension 2.

Viana and Rodriguez parametrize it by the 2-dimensional family

$$X_{a,b}: x + y + a(x^3y + xy^3) + bx^2y^2 = 0.$$
 (2)

For each supersingular curve $X_{a,b}$ of genus 3 over a finite field of characteristic 2, we determine whether $X_{a,b}$ is fully maximal, fully minimal, or mixed.

This involves an analysis of twists by $g \in Aut_k(X_{a,b})$, which is a group of order either 12 or 36.

In fact, we determine $L(X_{a,b}/K, T)$ almost completely.

(See related results by Nart/Ritzenthaler).

Rachel Pries (CSU)

イロン 不良 とくほど 不良 とうせい

Main result when g = 3 and p = 2

Let $K = \mathbb{F}_{2^r}$ be the smallest field containing a, b. Let $h \in \mathbb{F}_{q^2}$ be such that $h^2 + h = \frac{a}{b}$. Note that $h \in \mathbb{F}_q$ iff $\operatorname{Tr}_r(\frac{a}{b}) = 0$, where $\operatorname{Tr}_r : \mathbb{F}_{2^r} \to \mathbb{F}_2$ denotes the trace map. Let $K' = \mathbb{F}_q(h)$.

Theorem K/P:

- **1** If *r* is odd, then $X_{a,b}$ is fully maximal if $h \in \mathbb{F}_q$ and mixed if $h \notin \mathbb{F}_q$.
- ② If $r \equiv 2 \mod 4$, then $X_{a,b}$ is fully minimal if $h \notin \mathbb{F}_q$ and mixed if $h \in \mathbb{F}_q$.
- **③** If $r \equiv 0 \mod 4$, then $X_{a,b}$ is fully minimal.

Moreover, $Jac(X_{a,b})$ has the same type as $X_{a,b}$, unless $r \equiv 0 \mod 4$ and $h \in \mathbb{F}_q$, in which case $Jac(X_{a,b})$ is mixed.

The proportion of $(a,b) \in (\mathbb{F}_q^*)^2$ for which $X_{a,b}$ is mixed is slightly greater than $\frac{1}{2}$ when *r* is odd and slightly smaller than $\frac{1}{2}$ when $r \equiv 2 \mod 4$.

The *L*-polynomial of $X_{a,b}$ over K'

For $K = \mathbb{F}_{2^r}$, define

$$L_{c,K}(T) = (1 - (\sqrt{2}i)^r T)(1 - (-\sqrt{2}i)^r T),$$
(3)

and, when r is even, define

$$L_{n,K}(T) = (1 - (2\zeta_6)^{r/2}T)(1 - (2\zeta_6^{-1})^{r/2}T).$$
(4)

A D M A A A M M

The NWNs are $\{(\pm i)^r\}$ for $L_{c,K}(T)$ and $\{\zeta_6^{r/2}, \zeta_6^{-r/2}\}$ for $L_{n,K}(T)$.

Proposition

Let
$$K' = \mathbb{F}_q(h)$$
, where $h \in \mathbb{F}_{q^2}$ is such that $h^2 + h = \frac{a}{b}$.
Define $c_1 = ab$, $c_2 = (\frac{1}{h+1})^2 \frac{1}{b}$, $c_3 = (\frac{1}{h})^2 \frac{1}{b}$.
Then $L(X_{a,b}/K', T) = L_{c,K'}(T)^m L_{n,K'}(T)^{3-m}$, where $m = \#\{i \in \{1,2,3\} \mid c_i \text{ is a cube in } (K')^*\}$.

Key facts about the geometry of $X_{a,b}$

 $X_{a,b}$ has an involution $\tau(x, y) = (y, x)$ and the quotient is $E_1 : R^2 + R = c_1 S^3$. The cover $X_{a,b} \to E_1$ has equation $Z^2 + Z = \frac{a}{b}R$. The involution $\upsilon : R \mapsto R + 1$ on E_1 lifts to $X_{a,b}$, via $\upsilon(Z) = Z + h$. Let $E_2 : T^2 + T = c_2(aS)^3$ and $E_3 : U^2 + U = c_3(aS)^3$.

Lemma

• The cover $X_{a,b} \to E_{a,b} \to \mathbb{P}^1_S$ is Galois with group $S_0 = \langle \tau, \upsilon \rangle \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and equation

$$Z^4 + (1 + \frac{a}{b})Z^2 + \frac{a}{b}Z = \frac{1}{b}a^3S^3.$$

Over K', the quotients of X_{a,b} by τ, υ and τυ are E₁, E₂, and E₃.
 Finally, Jac(X_{a,b}) ~_{K'} E₁ ⊕ E₂ ⊕ E₃.

(日)

The *L*-polynomial of $X_{a,b}$ over *K*

When $h \notin \mathbb{F}_q$, this is not quite strong enough, because it only gives information about the *L*-polynomial over \mathbb{F}_{q^2} .

This ambiguity can be partially resolved using the Artin *L*-series $L(E_{a,b}/\mathbb{F}_q, T, \chi)$, where χ is the nontrivial character of $\mathbb{Z}/2\mathbb{Z}$.

Note
$$L(X_{a,b}/\mathbb{F}_q, T) = L(E_{a,b}/\mathbb{F}_q, T)L(E_{a,b}/\mathbb{F}_q, T, \chi).$$

Let ρ_1 be the coefficient of *T* in $L(E_{a,b}/K, T, \chi)$.

Let I_1 (resp. S_1) be the number of *K*-points of $E_{a,b}$ that are inert (resp. split) in $X_{a,b}$. Then $\rho_1 = S_1 - I_1$.

Using quadratic twists, one can see that $\rho_1 = 0$.

This suffices to determine $\underline{e}(X_{a,b}/K)$.

Let $G = \operatorname{Aut}_k(X_{a,b})$. It contains $S_0 = \langle \tau, \upsilon \rangle \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

There is an order 3 automorphism of $X_{a,b}$, given by

$$\sigma: (x, y) \mapsto (\zeta_3 x, \zeta_3 y) \text{ or } \sigma: (S, R, Z) \mapsto (\zeta_3^2 S, R, Z).$$

Note that σ is defined over \mathbb{F}_q if *r* is even and over \mathbb{F}_{q^2} if *r* is odd. Also, σ centralizes S_0 .

Lemma

If $a \neq b$, then $G = S_0 \times \langle \sigma \rangle$ is an abelian group of order 12. If $a \neq b$, then G is a semidirect product $S_0 \rtimes H$ where H is a cyclic group of order 9.

イロト イ押ト イヨト イヨト

Let *r* be odd and $h \in \mathbb{F}_q$.

The *L*-polynomial shows that NWNs are $\pm i$ (multiplicity 3).

So $\underline{e} = \{2, 2, 2\}$ and $X_{a,b}$ has parity 1.

There are 4 Frobenius conjugacy classes of twists, represented by elements of S_0 , which are defined over K and thus have order T = 2. So $e_T = 1$.

This means the twists do not change <u>e</u>, so all twists have parity 1.

Example: $X_{a,b}$ is mixed when r odd and $h \notin \mathbb{F}_q$

Let *r* be odd and $h \notin \mathbb{F}_q$.

The *L*-polynomial shows that the NWNs are in $\{\pm i\} \cup \mu_{12}$. In any case, $\underline{e}(X_{a,b}/K) = \{2,2,2\}$ so $X_{a,b}$ has parity 1.

There are 2 Frobenius conjugacy classes, thus one non-trivial twist, which is represented by $\upsilon.$

Over K', $\underline{e}(X_{a,b}/K') = \{1, 1, 1\}.$

The nontrivial twist corresponds to $v^{Fr_K}v = \tau$, which negates the two conjugate pairs of NWNs for E_2 and E_3 .

Thus the twist has $\underline{e}(X'_{a,b}/K') = \{1,0,0\}$. One checks that $\underline{e}(X'_{a,b}/K) = \{2,0,1\}$, of parity -1.

Thus, $X_{a,b}$ is mixed.

★個 ▶ ★ 国 ▶ ★ 国 ▶ → 国

6. Why supersingular Jacobians are unlikely

Let \mathcal{A}_g be the moduli space of p.p. abelian varieties of dimension g. The image of \mathcal{M}_g in \mathcal{A}_g is open and dense for $g \leq 3$. Observation (Oort 2005) dim $(\mathcal{A}_g) = g(g+1)/2$ and the dimension of the supersingular locus $\mathcal{A}_{g,ss}$ is $\lfloor g^2/4 \rfloor$.

The difference δ_g is length of longest chain of NPs connecting the supersingular NP σ_g to the ordinary NP v_g .

If
$$g \ge 9$$
, then $\delta_g > 3g - 3 = \dim(\mathcal{M}_g)$.

Either (i) \mathcal{M}_g does not admit a perfect stratification by NP (i.e., there are two NPs ξ_1 and ξ_2 such that $\mathcal{A}_g[\xi_1]$ is in the closure of $\mathcal{A}_g[\xi_2]$ but $\mathcal{M}_g[\xi_1]$ is not in the closure of $\mathcal{M}_g[\xi_2]$.)

or (ii) some NPs do not occur for Jacobians of smooth curves.

Test case: g = 11 with NP $G_{5,6} \oplus G_{6,5}$ having slopes of 5/11, 6/11 (does occur when p = 2 - Blache).

Rachel Pries (CSU)

Supersingular case sometimes does not occur among wildly ramified covers

Deuring-Shafarevich formula restricts *p*-rank.

Oort: If p = 2, there does not exist a hyperelliptic supersingular curve of genus 3.

Scholten/Zhu: p = 2, $n \ge 2$, there is no hyperelliptic supersingular curve with $g = 2^n - 1$.

(for odd p, generalized for Artin-Schreier covers $X \stackrel{\mathbb{Z}/p}{\to} \mathbb{P}^1$ by Blache, who studied first slope of NP of more general AS curves)

But....

Van der Geer/Van der Vlugt: If p = 2, then there exists a supersingular curve of every genus.

Def: $R[x] \in k[x]$ is an additive polynomial if $R(x_1 + x_2) = R(x_1) + R(x_2)$. Then $R[x] = c_0 x + c_1 x^p + c_2 x^{p^2} + c_h x^{p^h}$.

Supersingular Artin-Schreier curves VdG/VdV

If $R(x) \in k[x]$ is an additive polynomial of degree p^h , then $X: y^p - y = xR(x)$ is supersingular with genus $p^h(p-1)/2$.

Proof: Induction on *h*, starting with h = 0. Key fact: Jac(X) is isogenous to a product of Jacobians of Artin-Schreier curves for additive polynomials of smaller degree.

Remark: BHMSSV studied *L*-polynomials, automorphism groups of *X*.

・ロト ・四ト ・ヨト ・ヨト

Van der Geer and Van der Vlugt

If p = 2, then there exists a supersingular curve over $\overline{\mathbb{F}}_2$ of every genus.

Proof sketch: Expand *g* as (with $s_i \le s_{i-1} + r_{i-1} + 2$) $g = 2^{s_1}(1 + 2 + \dots + 2^{r_1}) + 2^{s_2}(1 + 2 + \dots + 2^{r_2}) + \dots + 2^{s_t}(1 + 2 + \dots + 2^{r_t})$.

Let $\mathbf{L} = \bigoplus_{i=1}^{t} L_i$ for L_i subspace of dim $d_i := r_i + 1$ in vector space of additive polynomials of deg 2^{u_i} , with $u_i = (s_i + 1) - \sum_{i=1}^{i-1} (r_i + 1)$.

If $f \in L$, let $C_f : y^p - y = xf$. Let Y be fiber product of $C_f \to \mathbb{P}^1$ for all $f \in L$. Then $J_Y \sim \bigoplus_{f \neq 0} J_{C_f}$ (thus supersingular). Also, $g_Y = \sum_{f \neq 0} g_{C_f}$.

The number of $f \in \mathbf{L}$ which have a non-zero contribution from L_i , but not from L_j for j > i, is $(2^{d_i} - 1)\prod_{j=1}^{i-1} 2^{d_j}$. Each adds 2^{u_i-1} to g. So $g_Y = \sum_{i=1}^t (2^{d_i} - 1)\prod_{j=1}^{i-1} 2^{d_j} 2^{u_i-1} = \sum_{i=1}^t 2^{s_i} (1 + \dots + 2^{r_i}) = g$. Here is what VdG/VdV's method produces for odd *p*.

Proposition: K/P

Let $g = Gp(p-1)^2/2$ where $G = \sum_{i=1}^t p^{s_i}(1+p+\cdots p^{r_i})$. Then there exists a supersingular curve over $\overline{\mathbb{F}}_p$ of genus g.

VdG/VdV also prove that there exists a supersingular curve defined over \mathbb{F}_2 of every genus. The construction is a little more complicated.

Open Question 4:

Determine the type (fully maximal, mixed, fully minimal) for known classes of supersingular curves:

g = 2, p = 2: Van der Geer/Van der Vlugt;

 $g = p^{h}(p-1)/2$, $X : y^{p} - y = xR(x)$, Bouw/Ho/Malmskog/Scheidler/Srinivasan/Vincent;

arbitrary g, over \mathbb{F}_2 : Van der Geer/Van der Vlugt;

the odd *p* generalization of the previous line;

covers of Hermitian curve: Gieulietti/Korchmáros, Garcia/Gúneri/Stichtenoth.

< ロ > < 同 > < 回 > < 回 >