Progress on Mazur's Program B

David Zureick-Brown

Emory University
Slides available at http://www.mathcs.emory.edu/~dzb/slides/
BIRS

May 30, 2017

Gratuitous picture - subgroups of $\mathrm{GL}_{2}\left(\mathbb{Z}_{2}\right)$

Background - Image of Galois

$$
\begin{array}{r}
G_{\mathbb{Q}}:=\operatorname{Aut}(\overline{\mathbb{Q}} / \mathbb{Q}) \\
E[n](\overline{\mathbb{Q}}) \cong(\mathbb{Z} / n \mathbb{Z})^{2}
\end{array}
$$

$$
\begin{aligned}
& \rho_{E, n}: \quad G_{\mathbb{Q}} \rightarrow \text { Aut } E[n] \cong \mathrm{GL}_{2}(\mathbb{Z} / n \mathbb{Z}) \\
& \rho_{E, \ell^{\infty}}: G_{\mathbb{Q}} \rightarrow G L_{2}\left(\mathbb{Z}_{\ell}\right) \\
&=\underset{{ }_{n}}{\lim } G L_{2}\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right) \\
& \rho_{E}: G_{\mathbb{Q}} \rightarrow G L_{2}(\widehat{\mathbb{Z}})
\end{aligned}
$$

Background - Galois Representations

$$
\rho_{E, n}: G_{\mathbb{Q}} \rightarrow H(n) \hookrightarrow \mathrm{GL}_{2}(\mathbb{Z} / n \mathbb{Z})
$$

Problem (Mazur's "program B")

Classify all possibilities for $H(n)$.

Example - torsion on an ellitpic curve

If E has a K-rational torsion point $P \in E(K)[n]$ (of exact order n) then:

$$
H(n) \subset\left(\begin{array}{ll}
1 & * \\
0 & *
\end{array}\right)
$$

since for $\sigma \in G_{K}$ and $Q \in E(\bar{K})[n]$ such that $E(\bar{K})[n] \cong\langle P, Q\rangle$,

$$
\begin{aligned}
& \sigma(P)=P \\
& \sigma(Q)=a_{\sigma} P+b_{\sigma} Q
\end{aligned}
$$

Example - Isogenies

If E has a K-rational, cyclic isogeny $\phi: E \rightarrow E^{\prime}$ with $\operatorname{ker} \phi=\langle P\rangle$ then:

$$
H(n) \subset\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right)
$$

since for $\sigma \in G_{K}$ and $Q \in E(\bar{K})[n]$ such that $E(\bar{K})[n] \cong\langle P, Q\rangle$,

$$
\begin{aligned}
& \sigma(P)=a_{\sigma} P \\
& \sigma(Q)=b_{\sigma} P+c_{\sigma} Q
\end{aligned}
$$

Example - other maximal subgroups

Normalizer of a split Cartan:

$$
N_{\mathrm{sp}}=\left\langle\left(\begin{array}{ll}
* & 0 \\
0 & *
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right\rangle
$$

$H(n) \subset N_{\text {sp }}$ and $H(n) \not \subset C_{\text {sp }}$ iff

- there exists an unordered pair $\left\{\phi_{1}, \phi_{2}\right\}$ of cyclic isogenies,
- neither of which is defined over K
- but which are both defined over some quadratic extension of K
- and which are Galois conjugate.

Sample subgroup (Serre)

$$
\chi: \mathrm{GL}_{2}(\mathbb{Z} / 8 \mathbb{Z}) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 8 \mathbb{Z})^{*} \rightarrow \mathbb{F}_{2} \times(\mathbb{Z} / 8 \mathbb{Z})^{*} \cong \mathbb{F}_{2}^{3} .
$$

$$
\chi=\operatorname{sgn} \times \operatorname{det}
$$

$$
H(8):=\chi^{-1}(G), G \subset \mathbb{F}_{2}^{3} .
$$

Sample subgroup (Dokchitser ${ }^{2}$)

$$
\begin{aligned}
\left\langle I+2 E_{1,1}, I+2 E_{2,2}\right\rangle & \subset \underset{(4)}{H(4)} \subset \mathrm{GL}_{2}(\mathbb{Z} / 4 \mathbb{Z}) \\
\downarrow & \\
H(2) & =\mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z})
\end{aligned}
$$

$$
H(2)=\left\langle\left(\begin{array}{ll}
0 & 1 \\
3 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\right\rangle \cong \mathbb{F}_{3} \rtimes D_{8} .
$$

$$
\begin{aligned}
\operatorname{im} \rho_{E, 4} \subset H(4) & \Leftrightarrow j(E)=-4 t^{3}(t+8) . \\
X_{H} & \cong \mathbb{P}^{1} \xrightarrow{j} X(1) .
\end{aligned}
$$

A typical subgroup

$\operatorname{ker} \phi_{4}$	\subset	$H(32)$ ϕ_{4}	\subset	$\mathrm{GL}_{2}(\mathbb{Z} / 32 \mathbb{Z})$	$\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{ker} \phi_{2}=4$
ker ϕ_{3}	C	$H(16)$ ϕ_{3}	\subset	$\mathrm{GL}_{2}(\mathbb{Z} / 16 \mathbb{Z})$	$\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{ker} \phi_{2}=3$
$\operatorname{ker} \phi_{2}$	\subset	$\begin{gathered} H(8) \\ \downarrow_{\phi_{2}} \end{gathered}$	\subset	$\mathrm{GL}_{2}(\mathbb{Z} / 8 \mathbb{Z})$	$\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{ker} \phi_{2}=2$
$\operatorname{ker} \phi_{1}$	\subset	$\begin{gathered} H(4) \\ \forall \phi_{1} \\ \forall(2) \end{gathered}$	\subset $=$	$\begin{gathered} \mathrm{GL}_{2}(\mathbb{Z} / 4 \mathbb{Z}) \\ \vdots \\ \mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z}) \end{gathered}$	$\operatorname{dim}_{\mathbb{F}_{2}} \operatorname{ker} \phi_{2}=3$

Non-abelian entanglements

There exists a surjection $\theta: \mathrm{GL}_{2}(\mathbb{Z} / 3 \mathbb{Z}) \rightarrow \mathrm{GL}_{2}(\mathbb{Z} / 2 \mathbb{Z})$.

$$
\operatorname{im} \rho_{E, 6} \subset H(6) \Leftrightarrow K(E[2]) \subset K(E[3])
$$

Classification of Images - Mazur's Theorem

Theorem

Let E be an elliptic curve over \mathbb{Q}. Then for $\ell>11, E(\mathbb{Q})[\ell]=\{0\}$.
In other words, for $\ell>11$ the $\bmod \ell$ image is not contained in a subgroup conjugate to

$$
\left(\begin{array}{ll}
1 & * \\
0 & *
\end{array}\right)
$$

Classification of Images - Mazur; Bilu, Parent

Theorem (Mazur)

Let E be an elliptic curve over \mathbb{Q} without CM. Then for $\ell>37$ the mod ℓ image is not contained in a subgroup conjugate to

$$
\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right)
$$

Theorem (Bilu, Parent)

Let E be an elliptic curve over \mathbb{Q} without CM. Then for $\ell>13$ the $\bmod \ell$ image is not contained in a subgroup conjugate to

$$
\left\langle\left(\begin{array}{cc}
* & 0 \\
0 & *
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right\rangle .
$$

Main conjecture

Conjecture

Let E be an elliptic curve over \mathbb{Q} without CM. Then for $\ell>37, \rho_{E, \ell}$ is surjective.

Serre's Open Image Theorem

Theorem (Serre, 1972)

Let E be an elliptic curve over K without $C M$. The image of ρ_{E}

$$
\rho_{E}\left(G_{K}\right) \subset G L_{2}(\widehat{\mathbb{Z}})
$$

is open.

Note:

$$
\mathrm{GL}_{2}(\widehat{\mathbb{Z}}) \cong \prod_{p} \mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right)
$$

"Vertical" image conjecture

Conjecture

There exists a constant N such that for every E / \mathbb{Q} without CM

$$
\left[\rho_{E}\left(G_{\mathbb{Q}}\right): \mathrm{GL}_{2}(\widehat{\mathbb{Z}})\right] \leq N .
$$

Remark

This follows from the " $\ell>37$ " conjecture.

```
Problem
Assume the " \(\ell>37\) " conjecture and compute \(N\).
```


Main Theorems

Rouse, ZB (2-adic)

The index of $\rho_{E, 2^{\infty}}\left(G_{\mathbb{Q}}\right)$ divides 64 or 96 ; all such indicies occur.

Zywina (mod ℓ)

Classifies $\rho_{E, \ell}\left(G_{\mathbb{Q}}\right)$ (modulo some conjectures).
Zywina (all possible indicies)
The index of $\rho_{E, N}\left(G_{\mathbb{Q}}\right)$ divides $220,336,360,504,864,1152,1200,1296$ or 1536.
Morrow (composite level)
Classifies $\rho_{E, 2 \cdot \ell}\left(G_{\mathbb{Q}}\right)$.

Camacho-Li-Morrow-Petok-ZB (composite level)
Classifies $\rho_{E, \ell_{1}^{n} \cdot \ell_{2}^{m}}\left(G_{\mathbb{Q}}\right)$ (partially).

Main Theorems continued

Zywina-Sutherland (stay tuned!)
Parametrizations in all prime power level, $g=0$ and $g=1, r>0$ cases.
Gonzalez-Jimenez, Lozano-Robledo
Classify E / \mathbb{Q} with $\rho_{E, n}\left(G_{\mathbb{Q}}\right)$ abelian.
Brau-Jones, Jones-McMurdy (in progress)
Equations for X_{H} for entanglement groups H.
Rouse-ZB for other primes (tonite's problem session)
Partial progress; e.g. for $N=3^{n}$.
Derickx-Etropolski-Morrow-van Hoejk-ZB (in progress)
Classify possibilities for cubic torsion.

Some applications and complements

Theorem (R. Jones, Rouse, ZB)

(1) Arithmetic dynamics: let $P \in E(\mathbb{Q})$.
(2) How often is the order of $\widetilde{P} \in E\left(\mathbb{F}_{p}\right)$ odd?
(3) Answer depends on $\rho_{E, 2^{\infty}}\left(G_{\mathbb{Q}}\right)$.
(1) Examples: 11/21 (generic), 121/168 (maximal), 1/28 (minimal)

Theorem (Various authors)

Computation of $S_{\mathbb{Q}}(d)$ and $S(d)$ for particular d.

Theorem (Daniels, Lozano-Robledo, Najman, Sutherland)

Classification of $E\left(\mathbb{Q}\left(3^{\infty}\right)\right)_{\text {tors }}$

More applications

Theorem (Sporadic points)

Najman's example $X_{1}(21)^{(3)}(\mathbb{Q})$; "easy production" of other examples.

Theorem (Jack Thorne)

Elliptic curves over \mathbb{Q}_{∞} are modular. (One step is to show $X_{0}(15)\left(\mathbb{Q}_{\infty}\right)=X_{0}(15)(\mathbb{Q})=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$.)

Theorem (Zywina)

Constants in the Lang-Trotter conjecture.

Cremona Database, 2-adic images

```
Index, # of isogeny classes
1,727995
2,7281
3,175042
4,1769
6,57500
8,577
12,29900
16,235
24,5482
32,20
48,1544
64, 0 (two examples)
96,241 (first example - X (15))
CM , 1613
```


Cremona Database

Index, \# of isogeny classes
64, 0
$j=-3 \cdot 2^{18} \cdot 5 \cdot 13^{3} \cdot 41^{3} \cdot 107^{3} \cdot 17^{-16}$
$j=-2^{21} \cdot 3^{3} \cdot 5^{3} \cdot 7 \cdot 13^{3} \cdot 23^{3} \cdot 41^{3} \cdot 179^{3} \cdot 409^{3} \cdot 79^{-16}$
Rational points on $X_{n s}^{+}(16)$ (Heegner, Baran)

Fun 2-adic facts

(1) All indicies dividing 96 occur infinitely often; 64 occurs only twice.
(2) The 2-adic image is determined by the mod 32 image
(3) 1208 different images can occur for non-CM elliptic curves
(9) There are 8 "sporadic" subgroups.

More fun 2-adic facts

If E / \mathbb{Q} is a non- $C M$ elliptic curve whose $\bmod 2$ image has index

- 1, the 2 -adic image can have index as large as 64 .
- 2, the 2-adic image has index 2 or 4 .
- 3, the 2-adic image can have index as large as 96 .
- 6, the 2-adic image can have index as large as 96;
- (although some quadratic twist of E must have 2-adic image with index less than 96).

Modular curves

Definition

- $X(N)(K):=\{(E / K, P, Q): E[N]=\langle P, Q\rangle\} \cup\{$ cusps $\}$
- $X(N)(K) \ni(E / K, P, Q) \Leftrightarrow \rho_{E, N}\left(G_{K}\right)=\{I\}$

Definition

$\Gamma(N) \subset H \subset G L_{2}(\widehat{\mathbb{Z}})$ (finite index)

- $X_{H}:=X(N) / H$
- $X_{H}(K) \ni(E / K, \iota) \Leftrightarrow H(N) \subset H \bmod N$

Stacky disclaimer

This is only true up to twist; there are some subtleties if
(1) $j(E) \in\left\{0,12^{3}\right\}$ (plus some minor group theoretic conditions), or
(2) if $-I \in H$.

Rational Points on modular curves

Mazur's program B

Compute $X_{H}(\mathbb{Q})$ for all H.

Remark

- Sometimes $X_{H} \cong \mathbb{P}^{1}$ or elliptic with rank $X_{H}(\mathbb{Q})>0$.
- Some X_{H} have sporadic points.
- Can compute $g\left(X_{H}\right)$ group theoretically (via Riemann-Hurwitz).

Fact

$g\left(X_{H}\right), \gamma\left(X_{H}\right) \rightarrow \infty$ as $\left[H: \mathrm{GL}_{2}(\widehat{\mathbb{Z}})\right] \rightarrow \infty$.

Minimality

Definition

- $H \subset H^{\prime} \Leftrightarrow X_{H} \rightarrow X_{H^{\prime}}$
- Say that H is minimal if
(1) $g\left(X_{H}\right)>1$ and
(2) $H \subset H^{\prime} \Leftrightarrow g\left(X_{H^{\prime}}\right) \leq 1$
- Every modular curve maps to a minimal or genus ≤ 1 curve.

Definition

We say that H is arithmetically minimal if
(- $\operatorname{det}(H)=\widehat{\mathbb{Z}}^{*}$, and
© a few other conditions.

Template

(1) Compute all arithmetically minimal $H \subset \mathrm{GL}_{2}\left(\mathbb{Z}_{2}\right)$
(2) Compute equations for each X_{H}
(3) Find (with proof) all rational points on each X_{H}.

Gratuitous picture - subgroups of $\mathrm{GL}_{2}\left(\mathbb{Z}_{2}\right)$

Gratuitous picture - subgroups of $\mathrm{GL}_{2}\left(\mathbb{Z}_{3}\right)$

Gratuitous picture - subgroups of $\mathrm{GL}_{2}\left(\mathbb{Z}_{5}\right)$

Gratuitous picture - subgroups of $\mathrm{GL}_{2}\left(\mathbb{Z}_{11}\right)$

Numerics, $\ell=2$

318 curves X_{H} with $-I \in H$ (excluding pointless conics)

Genus	0	1	2	3	5	7
Number	175	52	57	18	20	4

Finding Equations - Basic idea

(1) The canoncial map $C \hookrightarrow \mathbb{P}^{g-1}$ is given by $P \mapsto\left[\omega_{1}(P): \cdots: \omega_{g}(P)\right]$.
(2) For a general curve, this is an embedding, and the relations are quadratic.
(3) For a modular curve,

$$
M_{k}(H) \cong H^{0}\left(X_{H}, \Omega^{1}(\Delta)^{\otimes k / 2}\right)
$$

given by

$$
f(z) \mapsto f(z) d z^{\otimes k / 2}
$$

Equations - Example: $X_{1}(17) \subset \mathbb{P}^{4}$

$$
\begin{array}{r}
q-11 q^{5}+10 q^{7}+O\left(q^{8}\right) \\
q^{2}-7 q^{5}+6 q^{7}+O\left(q^{8}\right) \\
q^{3}-4 q^{5}+2 q^{7}+O\left(q^{8}\right) \\
q^{4}-2 q^{5}+O\left(q^{8}\right) \\
q^{6}-3 q^{7}+O\left(q^{8}\right)
\end{array}
$$

$$
\begin{array}{r}
x u+2 x v-y z+y u-3 y v+z^{2}-4 z u+2 u^{2}+v^{2}=0 \\
x u+x v-y z+y u-2 y v+z^{2}-3 z u+2 u v=0 \\
2 x z-3 x u+x v-2 y^{2}+3 y z+7 y u-4 y v-5 z^{2}-3 z u+4 z v=0
\end{array}
$$

Equations - general

(1) $H^{\prime} \subset H$ of index $2, X_{H^{\prime}} \rightarrow X_{H}$ degree 2 .
(2) Given equations for X_{H}, compute equations for $X_{H^{\prime}}$.
(3) Compute a new modular form on H^{\prime}, compute (quadratic) relations between this and modular forms on H.
(9) Main technique - if $X_{H^{\prime}}$ has "new cusps", then write down Eisenstein series which vanish at "one new cusp, not others".

Rational points rundown, $\ell=2$

318 curves (excluding pointless conics)

Genus	0	1	2	3	5	7
Number	175	52	56	18	20	4
Rank of Jacobian						
0		25	46	-	-	$? ?$
1		27	3	9	10	$? ?$
2			7	-	-	$? ?$
3				9	-	$? ?$
4					-	$? ?$
5					10	$? ?$

More 2-adic facts

(1) There are 8 "sporadic" subgroups
(1) Only one genus 2 curve has a sporadic point
(2) Six genus 3 curves each have a single sporadic point
(3) The genus 1,5 , and 7 curves have no sporadic points
(2) Many accidental isomorphisms of $X_{H} \cong X_{H^{\prime}}$.
(3) There is one H such that $g\left(X_{H}\right)=1$ and $X_{H} \in X_{H}(\mathbb{Q})$.

Rational Points rundown: $\ell=3$

$3 g=0 \quad$ Handled by Sutherland-Zywina

$$
g=1 \quad \text { all rank zero }
$$

$$
g=4 \quad \text { map to } g=1
$$

$$
g=2 \quad \text { Chabauty works }
$$

$$
g=4 \quad \text { no } 3 \text {-adic points }
$$

$g=3 \quad$ Picard curves; descent works, try Chabauty
$g=4 \quad 3$ left; have models, ≥ 3 rational points
$g=6 \quad$ trigonal, with model, ≥ 3 rat pts
$g=12$ gonality ≤ 9, plane model, degree 121
$g=43$ New ideas needed

$\ell=3$ example

$$
X_{H}:-x^{3} y+x^{2} y^{2}-x y^{3}+3 x z^{3}+3 y z^{3}=0
$$

Rational Points rundown: $\ell=5$

$5 g=0(10$ level 5, 3 level 25)

$$
g=4(4 \text { level } 25)
$$

$g=2(2$ level 25$)$
$g=4(3$ level 25)

All level 5 curves are genus 0
No 5-adic points
Rank 2, $A_{5} \bmod 2$ image
All isomorphic.
Each has 5 rational points
Each admits an order 5 aut
Simple Jacobian
$g=8,14,22,36$ (levels 25 and 125) No models (or ideas, yet)

Rational Points rundown: $\ell=7$

$7 g=1,3$	$[\mathrm{Z}, 4.4]$ handles these, $X_{H}(\mathbb{Q})$ is finite.
$g=19,26$, level 49	Maps to one of the 6 above
$g=1$, level 49	$[\mathrm{SZ}]$ handles this one (rank 0$)$
$g=3,19,26$, level 49, 343	Map to curve on previous line
$g=12$, level 49	Handled by
	Greenberg-Rubin-Silverberg-Stoll
$g=9,12,69,94$	No models (or ideas, yet)

Rational Points rundown: $\ell=11$

11 all maximal are genus one
only positive rank is $X_{n s}(11)$
All but one are ruled out by Zywina some have sporadic points;
[Z, Theorem 1.6]
$g=5$, level 11
[Z, Lemma 4.5]
$g=5776$, level 121
Problem session

Rational Points rundown: $\ell=13$

Zywina handles all level 13 except for the cursed curve
$13 g=2,3$, level 13 (8 total)
$g=8$, level $169 \quad X_{0}\left(13^{2}\right)$, handled by Kenku
$X_{n s}(13)$
Cursed. Genus 3, rank 3.
No torsion. Some points
Probably has maximal mod 2 image

Explicit methods: highlight reel

- Local methods
- Chabauty
- Elliptic Chabauty
- Mordell-Weil sieve
- étale descent
- Pryms
- Equationless descent via group theory.
- New techniques for computing Aut C.

Pryms

$$
\underset{\substack{\text { et } \\ \underset{C}{D}}}{\substack{\iota-i d-(\iota(P)-P)}} \operatorname{ker}\left(J_{D} \rightarrow J_{C}\right)=: \operatorname{Prym}(D \rightarrow C)
$$

Example (Genus $C=3 \Rightarrow$ Genus $D=5$)

- $C: Q(x, y, z)=0$
- $Q=Q_{1} Q_{3}-Q_{2}^{2}$.

$$
\begin{aligned}
D_{\delta}: Q_{1}(x, y, z) & =\delta u^{2} \\
Q_{2}(x, y, z) & =\delta u v \\
Q_{3}(x, y, z) & =\delta v^{2}
\end{aligned}
$$

- $\operatorname{Prym}\left(D_{\delta} \rightarrow C\right) \cong \mathrm{Jac}_{H_{\delta}}$,
- $H_{\delta}: y^{2}=-\delta \operatorname{det}\left(M_{1}+2 x M_{2}+x^{2} M_{3}\right)$.

Thanks

Thank you!

