Progress on Mazur's Program B

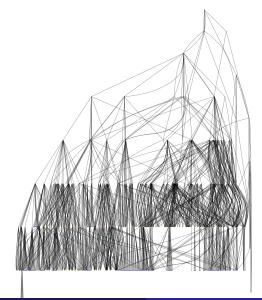
David Zureick-Brown

Emory University Slides available at http://www.mathcs.emory.edu/~dzb/slides/

BIRS

May 30, 2017

Gratuitous picture – subgroups of $GL_2(\mathbb{Z}_2)$



 $G_{\mathbb{Q}} := \operatorname{Aut}(\overline{\mathbb{Q}}/\mathbb{Q})$ $E[n](\overline{\mathbb{Q}}) \cong (\mathbb{Z}/n\mathbb{Z})^2$

$$\rho_{E,n}: \ G_{\mathbb{Q}} \to \operatorname{Aut} E[n] \cong \operatorname{GL}_{2}(\mathbb{Z}/n\mathbb{Z})$$

$$\rho_{E,\ell^{\infty}}: \ G_{\mathbb{Q}} \to \operatorname{GL}_{2}(\mathbb{Z}_{\ell}) = \varprojlim_{n} \operatorname{GL}_{2}(\mathbb{Z}/\ell^{n}\mathbb{Z})$$

$$\rho_{E}: \ G_{\mathbb{Q}} \to \operatorname{GL}_{2}(\widehat{\mathbb{Z}}) = \varprojlim_{n} \operatorname{GL}_{2}(\mathbb{Z}/n\mathbb{Z})$$

$$\rho_{E,n} \colon G_{\mathbb{Q}} \twoheadrightarrow H(n) \hookrightarrow \operatorname{GL}_2(\mathbb{Z}/n\mathbb{Z})$$

$$G_{\mathbb{Q}} \begin{cases} \overline{\mathbb{Q}} \\ | \\ \overline{\mathbb{Q}}^{\ker \rho_{E,n}} = \mathbb{Q}(E[n]) \\ | \\ \mathbb{Q} \end{cases} \end{pmatrix} H(n)$$

Problem (Mazur's "program B")

Classify all possibilities for H(n).

If E has a K-rational torsion point $P \in E(K)[n]$ (of exact order n) then:

$$H(n) \subset \left(\begin{array}{cc} 1 & * \\ 0 & * \end{array}\right)$$

since for $\sigma \in G_K$ and $Q \in E(\overline{K})[n]$ such that $E(\overline{K})[n] \cong \langle P, Q \rangle$,

$$\sigma(P) = P$$

 $\sigma(Q) = a_{\sigma}P + b_{\sigma}Q$

If *E* has a *K*-rational, cyclic isogeny $\phi \colon E \to E'$ with ker $\phi = \langle P \rangle$ then:

$$H(n) \subset \left(\begin{array}{cc} * & * \\ & * \\ & 0 & * \end{array}\right)$$

since for $\sigma \in G_K$ and $Q \in E(\overline{K})[n]$ such that $E(\overline{K})[n] \cong \langle P, Q \rangle$,

$$\sigma(P) = a_{\sigma}P$$

 $\sigma(Q) = b_{\sigma}P + c_{\sigma}Q$

Normalizer of a split Cartan:

$$N_{\rm sp} = \left\langle \left(\begin{array}{cc} * & 0 \\ 0 & * \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \right\rangle$$

$H(n) \subset N_{\rm sp}$ and $H(n) \not\subset C_{\rm sp}$ iff

- there exists an unordered pair $\{\phi_1, \phi_2\}$ of cyclic isogenies,
- neither of which is defined over K
- but which are both defined over some quadratic extension of K
- and which are Galois conjugate.

Sample subgroup (Serre)

 $\chi\colon \operatorname{GL}_2(\mathbb{Z}/8\mathbb{Z}) \to \operatorname{GL}_2(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/8\mathbb{Z})^* \to \mathbb{F}_2 \times (\mathbb{Z}/8\mathbb{Z})^* \cong \mathbb{F}_2^3.$

 $\chi = \mathsf{sgn} \times \mathsf{det}$

$$H(8) := \chi^{-1}(G), \ G \subset \mathbb{F}_2^3$$

$$\begin{array}{cccc} \langle I+2E_{1,1}, I+2E_{2,2} \rangle & \subset & H(4) & \subset & \mathsf{GL}_2(\mathbb{Z}/4\mathbb{Z}) & & \dim_{\mathbb{F}_2} \ker \phi_1 = 2 \\ & & \downarrow & & \downarrow \\ & & & \downarrow & & \downarrow \\ & & & H(2) & = & \mathsf{GL}_2(\mathbb{Z}/2\mathbb{Z}) \end{array}$$

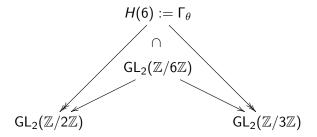
$$H(2) = \left\langle \left(\begin{array}{cc} 0 & 1 \\ 3 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right) \right\rangle \cong \mathbb{F}_3 \rtimes D_8.$$

$$\begin{split} & \text{im } \rho_{E,4} \subset H(4) \Leftrightarrow j(E) = -4t^3(t+8). \\ & X_H \cong \mathbb{P}^1 \xrightarrow{j} X(1). \end{split}$$

$$\begin{array}{rcl} \ker \phi_4 & \subset & H(32) & \subset & \operatorname{GL}_2(\mathbb{Z}/32\mathbb{Z}) & & \dim_{\mathbb{F}_2} \ker \phi_2 = 4 \\ & & & \downarrow \\ \ker \phi_3 & & & \downarrow \\ \ker \phi_2 & \subset & H(16) & \subset & \operatorname{GL}_2(\mathbb{Z}/16\mathbb{Z}) & & \dim_{\mathbb{F}_2} \ker \phi_2 = 3 \\ & & & \downarrow \\ \ker \phi_2 & & & \downarrow \\ \ker \phi_1 & \subset & H(4) & \subset & \operatorname{GL}_2(\mathbb{Z}/8\mathbb{Z}) & & \dim_{\mathbb{F}_2} \ker \phi_2 = 2 \\ & & & \downarrow \\ \ker \phi_1 & & & \downarrow \\ & & & H(2) & = & \operatorname{GL}_2(\mathbb{Z}/2\mathbb{Z}) \end{array}$$

Non-abelian entanglements

There exists a surjection θ : $GL_2(\mathbb{Z}/3\mathbb{Z}) \to GL_2(\mathbb{Z}/2\mathbb{Z})$.



 $\operatorname{im} \rho_{E,6} \subset H(6) \Leftrightarrow K(E[2]) \subset K(E[3])$

Theorem

Let E be an elliptic curve over \mathbb{Q} . Then for $\ell > 11$, $E(\mathbb{Q})[\ell] = \{0\}$.

In other words, for $\ell > 11$ the mod ℓ image is not contained in a subgroup conjugate to

$$\left(\begin{array}{c}
1 & * \\
0 & *
\end{array}\right)$$

•

Classification of Images - Mazur; Bilu, Parent

Theorem (Mazur)

Let E be an elliptic curve over \mathbb{Q} without CM. Then for $\ell > 37$ the mod ℓ image is not contained in a subgroup conjugate to

Theorem (Bilu, Parent)

Let E be an elliptic curve over \mathbb{Q} without CM. Then for $\ell > 13$ the mod ℓ image is not contained in a subgroup conjugate to

$$\left\langle \left(\begin{array}{cc} * & 0 \\ 0 & * \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right) \right\rangle$$

Conjecture

Let *E* be an elliptic curve over \mathbb{Q} without CM. Then for $\ell > 37$, $\rho_{E,\ell}$ is surjective.

Theorem (Serre, 1972)

Let E be an elliptic curve over K without CM. The image of ρ_E

 $\rho_E(G_K) \subset \operatorname{GL}_2(\widehat{\mathbb{Z}})$

is open.

Note:

 $\operatorname{GL}_2(\widehat{\mathbb{Z}}) \cong \prod_p \operatorname{GL}_2(\mathbb{Z}_p)$

Conjecture

There exists a constant N such that for every E/\mathbb{Q} without CM

$$\left[
ho_E(G_{\mathbb{Q}}):\operatorname{GL}_2(\widehat{\mathbb{Z}})\right]\leq N.$$

Remark

This follows from the " $\ell > 37$ " conjecture.

Problem

Assume the " $\ell > 37$ " conjecture and compute N.

Main Theorems

Rouse, ZB (2-adic)

The index of $\rho_{E,2^{\infty}}(G_{\mathbb{Q}})$ divides 64 or 96; all such indicies occur.

Zywina (mod ℓ)

Classifies $\rho_{E,\ell}(G_{\mathbb{Q}})$ (modulo some conjectures).

Zywina (all possible indicies)

The index of $\rho_{E,N}(G_{\mathbb{Q}})$ divides 220, 336, 360, 504, 864, 1152, 1200, 1296 or 1536.

Morrow (composite level)

Classifies $\rho_{E,2\cdot\ell}(G_{\mathbb{Q}})$.

Camacho-Li-Morrow-Petok-ZB (composite level)

Classifies $\rho_{E,\ell_1^n\cdot\ell_2^m}(G_{\mathbb{Q}})$ (partially).

David Zureick-Brown (Emory University)

Progress on Mazur's Program B

May 30, 2017 17 / 47

Zywina-Sutherland (stay tuned!)

Parametrizations in all **prime power** level, g = 0 and g = 1, r > 0 cases.

Gonzalez-Jimenez, Lozano-Robledo

Classify E/\mathbb{Q} with $\rho_{E,n}(G_{\mathbb{Q}})$ abelian.

Brau–Jones, Jones–McMurdy (in progress)

Equations for X_H for entanglement groups H.

Rouse–ZB for other primes (tonite's problem session)

Partial progress; e.g. for $N = 3^n$.

Derickx–Etropolski–Morrow–van Hoejk–ZB (in progress)

Classify possibilities for cubic torsion.

David Zureick-Brown (Emory University)

Progress on Mazur's Program B

Theorem (R. Jones, Rouse, ZB)

- Arithmetic dynamics: let $P \in E(\mathbb{Q})$.
- ② How often is the order of $\widetilde{P}\in E(\mathbb{F}_p)$ odd?
- **3** Answer depends on $\rho_{E,2^{\infty}}(G_{\mathbb{Q}})$.
- Examples: 11/21 (generic), 121/168 (maximal), 1/28 (minimal)

Theorem (Various authors)

Computation of $S_{\mathbb{Q}}(d)$ and S(d) for particular d.

Theorem (Daniels, Lozano-Robledo, Najman, Sutherland)

Classification of $E(\mathbb{Q}(3^{\infty}))_{tors}$

Theorem (Sporadic points)

Najman's example $X_1(21)^{(3)}(\mathbb{Q})$; "easy production" of other examples.

Theorem (Jack Thorne)

Elliptic curves over \mathbb{Q}_{∞} are modular. (One step is to show $X_0(15)(\mathbb{Q}_{\infty}) = X_0(15)(\mathbb{Q}) = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}.$)

Theorem (Zywina)

Constants in the Lang-Trotter conjecture.

Cremona Database, 2-adic images

Index, # of isogeny classes 1,727995 2,7281 3, 175042 4, 1769 6.57500 8.577 12.29900 16.235 24,5482 32.20 48.1544 64, 0 (two examples) 96, 241 (first example - $X_0(15)$) CM . 1613

Index, # of isogeny classes 64, 0 $j = -3 \cdot 2^{18} \cdot 5 \cdot 13^3 \cdot 41^3 \cdot 107^3 \cdot 17^{-16}$ $j = -2^{21} \cdot 3^3 \cdot 5^3 \cdot 7 \cdot 13^3 \cdot 23^3 \cdot 41^3 \cdot 179^3 \cdot 409^3 \cdot 79^{-16}$ Rational points on $X_{ns}^+(16)$ (Heegner, Baran)

- **1** All indicies dividing 96 occur infinitely often; 64 occurs only twice.
- In the 2-adic image is determined by the mod 32 image
- **③** 1208 different images can occur for non-CM elliptic curves
- There are 8 "sporadic" subgroups.

If E/\mathbb{Q} is a non-CM elliptic curve whose mod 2 image has index

- 1, the 2-adic image can have index as large as 64.
- 2, the 2-adic image has index 2 or 4.
- 3, the 2-adic image can have index as large as 96.
- 6, the 2-adic image can have index as large as 96;
- (although some quadratic twist of E must have 2-adic image with index less than 96).

Modular curves

Definition

• $X(N)(K) := \{(E/K, P, Q) : E[N] = \langle P, Q \rangle\} \cup \{\text{cusps}\}$

•
$$X(N)(K) \ni (E/K, P, Q) \Leftrightarrow \rho_{E,N}(G_K) = \{I\}$$

Definition

$$\Gamma(N) \subset H \subset \mathsf{GL}_2(\widehat{\mathbb{Z}})$$
 (finite index)

•
$$X_H := X(N)/H$$

•
$$X_H(K) \ni (E/K, \iota) \Leftrightarrow H(N) \subset H \mod N$$

Stacky disclaimer

This is only true up to twist; there are some subtleties if

Mazur's program B

Compute $X_H(\mathbb{Q})$ for all H.

Remark

- Sometimes $X_H \cong \mathbb{P}^1$ or elliptic with rank $X_H(\mathbb{Q}) > 0$.
- Some X_H have sporadic points.
- Can compute $g(X_H)$ group theoretically (via Riemann–Hurwitz).

Fact

$$g(X_H), \gamma(X_H) o \infty$$
 as $\left[H: \mathsf{GL}_2(\widehat{\mathbb{Z}})\right] o \infty.$

Minimality

Definition

- $H \subset H' \Leftrightarrow X_H \to X_{H'}$
- Say that *H* is **minimal** if
 - 1 $g(X_H) > 1$ and $H \subset H' \Leftrightarrow g(X_{H'}) \leq 1$
- Every modular curve maps to a minimal or genus ≤ 1 curve.

Definition

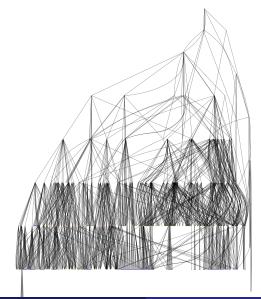
We say that H is **arithmetically minimal** if

• det
$$(H)=\widehat{\mathbb{Z}}^*$$
, and

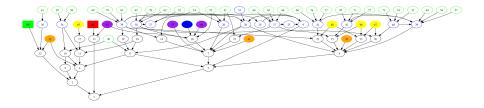
2 a few other conditions.

- **(**) Compute all arithmetically minimal $H \subset GL_2(\mathbb{Z}_2)$
- 2 Compute equations for each X_H
- Sind (with proof) all rational points on each X_H .

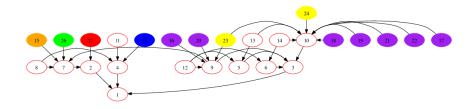
Gratuitous picture – subgroups of $GL_2(\mathbb{Z}_2)$



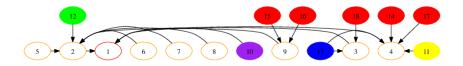
Gratuitous picture – subgroups of $GL_2(\mathbb{Z}_3)$



Gratuitous picture – subgroups of $GL_2(\mathbb{Z}_5)$



Gratuitous picture – subgroups of $GL_2(\mathbb{Z}_{11})$



318 curves X_H with $-I \in H$ (excluding pointless conics)

Genus	0	1	2	3	5	7
Number	175	52	57	18	20	4

- **1** The canoncial map $C \hookrightarrow \mathbb{P}^{g-1}$ is given by $P \mapsto [\omega_1(P) : \cdots : \omega_g(P)]$.
- For a general curve, this is an embedding, and the relations are quadratic.
- For a modular curve,

$$M_k(H) \cong H^0(X_H, \Omega^1(\Delta)^{\otimes k/2})$$

given by

$$f(z)\mapsto f(z)\,dz^{\otimes k/2}$$

Equations – Example: $X_1(17) \subset \mathbb{P}^4$

$$egin{aligned} q &-11q^5+10q^7+O(q^8)\ q^2-7q^5+6q^7+O(q^8)\ q^3-4q^5+2q^7+O(q^8)\ q^4-2q^5+O(q^8)\ q^6-3q^7+O(q^8) \end{aligned}$$

$$xu + 2xv - yz + yu - 3yv + z^{2} - 4zu + 2u^{2} + v^{2} = 0$$

$$xu + xv - yz + yu - 2yv + z^{2} - 3zu + 2uv = 0$$

$$2xz - 3xu + xv - 2y^{2} + 3yz + 7yu - 4yv - 5z^{2} - 3zu + 4zv = 0$$

- $H' \subset H$ of index 2, $X_{H'} \to X_H$ degree 2.
- **2** Given equations for X_H , compute equations for $X_{H'}$.
- Sompute a new modular form on H', compute (quadratic) relations between this and modular forms on H.
- Main technique if X_{H'} has "new cusps", then write down Eisenstein series which vanish at "one new cusp, not others".

Rational points rundown, $\ell=2$

		.0 6.0)	
Genus	0	1	2	3	5	7
Number	175	52	56	18	20	4
Rank of Jacobian						
0		25	46	_	_	??
1		27	3	9	10	??
2			7	_	_	??
3				9	_	??
4					-	??
5					10	??

318 curves (excluding pointless conics)

David Zureick-Brown (Emory University)

There are 8 "sporadic" subgroups

- Only one genus 2 curve has a sporadic point
- Six genus 3 curves each have a single sporadic point
- The genus 1, 5, and 7 curves have no sporadic points
- **2** Many accidental isomorphisms of $X_H \cong X_{H'}$.
- **③** There is one H such that $g(X_H) = 1$ and $X_H \in X_H(\mathbb{Q})$.

Rational Points rundown: $\ell = 3$

3	g = 0	Handled by Sutherland-Zywina	
	g = 1	all rank zero	
	<i>g</i> = 4	map to $g=1$	
	<i>g</i> = 2	Chabauty works	
	<i>g</i> = 4	no 3-adic points	
	<i>g</i> = 3	Picard curves; descent works, try Chabauty	
		Picard curves; descent works, try Chabauty 3 left; have models, \geq 3 rational points	
	<i>g</i> = 4		
	g = 4 g = 6	3 left; have models, \geq 3 rational points	

$$\ell = 3$$
 example

$$X_H: -x^3y + x^2y^2 - xy^3 + 3xz^3 + 3yz^3 = 0$$

5	g=0~(10 level 5, 3 level 25)	All level 5 curves are genus 0
	g = 4 (4 level 25)	No 5-adic points
	g = 2 (2 level 25)	Rank 2, A ₅ mod 2 image
	g = 4 (3 level 25)	All isomorphic.
		Each has 5 rational points
		Each admits an order 5 aut
		Simple Jacobian
	g = 8, 14, 22, 36 (levels 25 and 125)	No models (or ideas, yet)

7	g = 1, 3	[Z, 4.4] handles these, $X_H(\mathbb{Q})$ is finite.
	g = 19, 26, level 49	Maps to one of the 6 above
	g=1, level 49	[SZ] handles this one (rank 0)
	g = 3, 19, 26, level 49, 343	Map to curve on previous line
	g = 12, level 49	Handled by
		Greenberg–Rubin–Silverberg–Stoll
	g = 9, 12, 69, 94	No models (or ideas, yet)

11 all maximal are genus one

only positive rank is $X_{ns}(11)$

All but one are ruled out by Zywina some have sporadic points;

[Z, Theorem 1.6]

g = 5, level 11 [Z, Lemma 4.5]

g = 5776, level 121 Problem session

Zywina handles all level 13 except for the cursed curve

13	g = 2, 3, level 13 (8 total)	
	g = 8, level 169	$X_0(13^2)$, handled by Kenku
	X _{ns} (13)	Cursed. Genus 3, rank 3.
		No torsion. Some points
		Probably has maximal mod 2 image

- Local methods
- Chabauty
- Elliptic Chabauty
- Mordell–Weil sieve
- étale descent
- Pryms
- Equationless descent via group theory.
- New techniques for computing Aut C.

Pryms

$$D \xrightarrow{\iota - \mathrm{id} - (\iota(P) - P)} \ker_0(J_D \to J_C) =: \operatorname{Prym}(D \to C)$$

Example (Genus $C = 3 \Rightarrow$ Genus D = 5)

•
$$C: Q(x, y, z) = 0$$

•
$$Q = Q_1 Q_3 - Q_2^2$$
.

$$D_{\delta}: Q_1(x, y, z) = \delta u^2$$
$$Q_2(x, y, z) = \delta u v$$
$$Q_3(x, y, z) = \delta v^2$$

•
$$\operatorname{Prym}(D_{\delta} \to C) \cong \operatorname{Jac}_{H_{\delta}},$$

• $H_{\delta}: y^2 = -\delta \det(M_1 + 2xM_2 + x^2M_3).$

Thank you!