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The k-colouring graph

A proper k-vertex-colouring of a graph H is a function
f:V(H)—{1,2,..., k} such that f(x) # f(y) for all xy € E(H).
Henceforth we call these k-colourings, since we are concerned only
with proper k-vertex-colourings.
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Choo and MacGillivray (2011) prove that for any graph H there is
a least integer ko(H) such that Gx(H) has a Hamilton cycle for all
k > ko(H). They call ko(H) the Gray code number of H, and
prove that ko(H) < col(H) + 2. They then prove that

e Complete Graphs. ky(K1) =3 (= col(K1) +2) and
ko(Kn) = n+1 (= col(K,) + 1) for all n > 2.

e Trees. ko(T) =4 (= col(T)+2) unless T is a star with an
odd number of vertices greater than one, in which case
ko(T) =3 (=col(T)+1).

e Cycles. ko(Cp) =4 (= col(C,) + 1) for all n > 3.

Celaya, Choo, MacGillivray and Seyffarth (2016) prove that

e Complete Bipartite Graphs. ko(K;,) = 3 when £ and r are

both odd, and ko(K¢,,) = 4 otherwise.



Gray code numbers for 2-trees

Theorem (Cavers, KS)

If His a 2-tree, then ko(H) = 4 unless H = T V {u} for some tree
T and vertex u, where T is a star with an odd number of vertices
greater than one, or the bipartition of V/(T) has two even parts; in
these cases, ko(H) = 5.
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Naive Approach

Proof by induction; base case K3.

Let H be a 2-tree with at least four vertices. Choose a leaf
u € V(H) (vertex with degree two), and let H' = H — u.
Apply the induction hypothesis to H’, and let
fo,f1,...,fn_1,fo be a Hamilton cycle in G4(H’).

For j=0,1,...,N—1, let F; C V(Ga(H)) be the set of
4-colouring of H that agree with f; on V(H’); then

{Fo, F1,...,Fn_1} is a partition of the vertices of G4(H).
H[Fj] = K; for each j, 0 <j < N —1.
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e The subgraph induced by F; is isomorphic to Qpiqg+r.
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e The subgraph induced by F; is isomorphic to Qpiqg+r.

e Let 5; C F; and 5:{+1 C Fj41 denote the vertices incident to
the edges of [F;, Fi11]. Then G[S;] and GI[S; ] are both
isomorphic to one of Qp, Q4 or Qr, and G[S; U Sj11] is
isomorphic to one of Qpi1, Qg+1 or Qr41, respectively.
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Lemma

Let T be a tree on at least three vertices. Then G4(T V {u}) has a
Hamilton cycle unless T is a star with at least three vertices, or
the bipartition of V(T) has two even parts.




The Lemma with the really long horrible proof!

Lemma
Let T be a tree with bipartition (A, B) where |A| = ¢ and |B| =r,
and let G3(T) be the 3-colouring graph of T with colours
C ={1,2,3}. Define ¢j; to be the vertex of G3(T) with ¢ji(a) =i
for all a € A and ¢jj(b) = j for all b € B.
e If £,r > 0 are both even, then G3(T) has no spanning
subgraph consisting only of paths whose ends are in
{c12, c13, €21, €23, C31, €32}
e If £ >1isodd and r > 0 is even, then G3(T) has a hamilton
path from c1» to ci3.
e If £>1and r > 1 are both odd, then G3(T) has a hamilton
path from c15 to cp3.
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Main idea of the proof

e Let H be a 2-tree, and let H' be a 2-tree obtained from H by
applying one of the operations | through IX.

o Let V(G4(H)) = {fo, flyo.., fol} and let FJ - V(G4(H/)) be
the set of 4-colourings of H' that agree with f; of the vertices
of H.

e Let T be a spanning tree of maximum degree at most four of
Ga[H] (such a spanning tree exists).
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e Gray code numbers of 3-trees?
e Gray code numbers of k-trees?

e Gray code numbers of chordal graphs?
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