Generalisations of the 15-Puzzle
(Sliding Tokens on Graphs)

JAN VAN DEN HEUVEL

BIRS, Banff, 26 January 2017
A classical puzzle: the 15-Puzzle

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

1 2 3 12
9 11 1 10
6 4 14
15 8 7 5

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15
A classical puzzle: the 15-Puzzle

Can you always solve it?
Sliding token puzzles

we can interpret the 15-puzzle as a problem involving moving tokens on a given graph:
What if we would play on a different graph?
And maybe more empty spaces and/or repeated tokens?
Sliding token puzzles

- for a given graph G on n vertices, define $\text{puz}(G)$ as the graph that has:
 - **nodes:** all possible placements of $n - 1$ different tokens on G
 - **adjacency:** sliding one token along an edge of G to an empty vertex
Sliding token puzzles

- for a given graph G on n vertices, define $\text{puz}(G)$ as the graph that has:
 - nodes: all possible placements of $n - 1$ different tokens on G
 - adjacency: sliding one token along an edge of G to an empty vertex

- and our standard decision problems become:
 - are two token configurations in one component of $\text{puz}(G)$?
 - is $\text{puz}(G)$ connected?
Sliding token puzzles

Theorem (Wilson, 1974)

- if G is a 2-connected graph, then $\text{puz}(G)$ is connected, except if:
Theorem (Wilson, 1974)

- if G is a 2-connected graph, then $\text{puz}(G)$ is connected, except if:
 - G is a cycle on $n \geq 4$ vertices
 (then $\text{puz}(G)$ has $(n - 2)!$ components)
Theorem (Wilson, 1974)

- if \(G \) is a 2-connected graph, then \(\text{puz}(G) \) is connected, except if:
 - \(G \) is a cycle on \(n \geq 4 \) vertices
 (then \(\text{puz}(G) \) has \((n - 2)!\) components)
 - \(G \) is bipartite different from a cycle
 (then \(\text{puz}(G) \) has 2 components)
Sliding token puzzles

Theorem (Wilson, 1974)

- If \(G \) is a 2-connected graph, then \(\text{puz}(G) \) is connected, except if:
 - \(G \) is a cycle on \(n \geq 4 \) vertices
 - (then \(\text{puz}(G) \) has \((n-2)! \) components)
 - \(G \) is bipartite different from a cycle
 - (then \(\text{puz}(G) \) has 2 components)
 - \(G \) is the exceptional graph \(\Theta_0 \)
 - (\(\text{puz}(\Theta_0) \) has 6 components)
Why does Wilson only consider 2-connected graphs?
Why does Wilson only consider 2-connected graphs?

- since \(\text{puz}(G) \) is never connected if \(G \) has connectivity below 2:
Generalised sliding token puzzles

- what would happen if:
 - we have fewer than $n - 1$ tokens (i.e. more empty vertices)?
 - and/or not all tokens are the same?
Generalised sliding token puzzles

- what would happen if:
 - we have fewer than $n - 1$ tokens (i.e. more empty vertices)?
 - and/or not all tokens are the same?

- so suppose we have a set (k_1, k_2, \ldots, k_p) of labelled tokens
 - meaning: k_1 tokens with label 1, k_2 tokens with label 2, etc.
 - tokens with the same label are indistinguishable
 - we can assume that $k_1 \geq k_2 \geq \cdots \geq k_p$
 and their sum is at most $n - 1$
Generalised sliding token puzzles

what would happen if:

- we have fewer than \(n - 1 \) tokens (i.e. more empty vertices)?
- and/or not all tokens are the same?

so suppose we have a set \((k_1, k_2, \ldots, k_p)\) of labelled tokens

- meaning: \(k_1 \) tokens with label 1, \(k_2 \) tokens with label 2, etc.
- tokens with the same label are indistinguishable
- we can assume that \(k_1 \geq k_2 \geq \cdots \geq k_p \)
 and their sum is at most \(n - 1 \)

the corresponding graph of all token configurations on \(G \) is denoted by \(\text{puz}(G; k_1, \ldots, k_p) \)
Generalised sliding token puzzles

Theorem (Brightwell, vdH & Trakultraipruk, 2013)

- G a graph on n vertices, (k_1, k_2, \ldots, k_p) a token set, then $\text{puz}(G; k_1, \ldots, k_p)$ is connected, except if:
Generalised sliding token puzzles

Theorem (Brightwell, vdH & Trakultraipruk, 2013)

- G a graph on n vertices, (k_1, k_2, \ldots, k_p) a token set, then $\text{puz}(G; k_1, \ldots, k_p)$ is connected, except if:
 - G is not connected
Generalised sliding token puzzles

Theorem (Brightwell, vdH & Trakultraipruk, 2013)

- G a graph on n vertices, (k_1, k_2, \ldots, k_p) a token set, then $\text{puz}(G; k_1, \ldots, k_p)$ is connected, except if:
 - G is not connected
 - G is a path and $p \geq 2$
Generalised sliding token puzzles

Theorem (Brightwell, vdH & Trakultraipruk, 2013)

- G a graph on n vertices, (k_1, k_2, \ldots, k_p) a token set, then $\text{puz}(G; k_1, \ldots, k_p)$ is connected, except if:
 - G is not connected
 - G is a path and $p \geq 2$
 - G is a cycle, and $p \geq 3$, or $p = 2$ and $k_2 \geq 2$
Generalised sliding token puzzles

Theorem (Brightwell, vdH & Trakultraipruk, 2013)

- **G** a graph on n vertices, (k_1, k_2, \ldots, k_p) a token set, then $\text{puz}(G; k_1, \ldots, k_p)$ is connected, except if:
 - G is not connected
 - G is a path and $p \geq 2$
 - G is a cycle, and $p \geq 3$, or $p = 2$ and $k_2 \geq 2$
 - G is a 2-connected, bipartite graph with token set (1^{n-1})
Generalised sliding token puzzles

Theorem (Brightwell, vdH & Trakultraipruk, 2013)

- \(G \) a graph on \(n \) vertices, \((k_1, k_2, \ldots, k_p)\) a token set,
 then \(\text{puz}(G; k_1, \ldots, k_p) \) is connected, except if:
 - \(G \) is not connected
 - \(G \) is a path and \(p \geq 2 \)
 - \(G \) is a cycle, and \(p \geq 3 \), or \(p = 2 \) and \(k_2 \geq 2 \)
 - \(G \) is a 2-connected, bipartite graph with token set \((1^{n-1})\)
 - \(G \) is the exceptional graph \(\Theta_0 \) with token set \((2, 2, 2), (2, 2, 1, 1), (2, 1, 1, 1, 1) \) or \((1, 1, 1, 1, 1, 1)\)
Generalised sliding token puzzles

Theorem (Brightwell, vdH & Trakultraipruk, 2013)

- G a graph on n vertices, (k_1, k_2, \ldots, k_p) a token set, then $\text{puz}(G; k_1, \ldots, k_p)$ is connected, except if:
 - G is not connected
 - G is a path and $p \geq 2$
 - G is a cycle, and $p \geq 3$, or $p = 2$ and $k_2 \geq 2$
 - G is a 2-connected, bipartite graph with token set $(1^{(n-1)})$
 - G is the exceptional graph Θ_0 with some “bad” token sets
 - G has connectivity 1, $p \geq 2$ and there is a “separating path preventing tokens from moving between blocks”
Generalised sliding token puzzles

“separating paths” in graphs of connectivity one:

bad:

\[
\begin{array}{ccc}
2 & & 1 \\
1 & & 1 \\
1 & & 1 \\
\end{array}
\]

good:

\[
\begin{array}{ccc}
2 & & 1 \\
1 & & 1 \\
1 & & 1 \\
\end{array}
\]
Generalised sliding token puzzles

“separating paths” in graphs of connectivity one:

- **bad**
- **good**
The Structure of $T(\theta_0; (2, 1, 1, 1, 1))$

The following are the three groups of standard token configurations in the labelled token graph $T(\theta_0; (2, 1, 1, 1, 1))$.

Figure A.8: Part 1 of Group B_1 in $T(\theta_0; (2, 1, 1, 1, 1))$
Figure A.9: Part 2 of Group B_1 in $T(\theta_0; (2, 1, 1, 1, 1))$
Figure A.10: Part 1 of Group B_2 in $T(\theta_0; (2, 1, 1, 1))$
Figure A.11: Part 2 of Group B_2 in $T(\theta_0; (2, 1, 1, 1))$
Figure A.12: Part 1 of Group B_3 in $T(\theta_0; (2, 1, 1, 1))$
Figure A.13: Part 2 of Group B_3 in $T(\theta_0; (2, 1, 1, 1, 1))$
Generalised sliding token puzzles

we can also characterise:

- given a graph G, token set (k_1, \ldots, k_p), and two token configurations on G, are the two configurations in the same component of $\text{puz}(G; k_1, \ldots, k_p)$?
configuration α, let α_i be a token configuration obtained from α by moving some tokens (if necessary) to make all the vertices on P_i unoccupied.

Let G be a connected graph with connectivity 1, $n(G) - (k_1 + k_2 + \cdots + k_p) = 1$, and B a block in G. Then B contains at least one cut-vertex of G. Let v_B be one of these cut-vertices. Given a token configuration α, let α_{v_B} be a token configuration obtained from α by moving some tokens (if necessary) to make v_B unoccupied.

We denote the multiset of all the tokens used in a token configuration α by $\tau(\alpha)$. For example, if α is any of the token configurations in Figure 2.4, then $\tau(\alpha) = \{1, 1, 2, 2, 3, 3\} = (2, 2, 2)$.

Theorem 2.3

Let G be a connected graph with $n(G) \geq 3$, $k_1 \geq k_2 \geq \cdots \geq k_p$ positive integers for some integer $p \geq 2$, and $k_1 + k_2 + \cdots + k_p \leq n(G) - 1$. Then two token configurations α and β are in the same component of $T(G; (k_1, k_2, \ldots, k_p))$ if and only if at least one of the following conditions holds:

1. $T(G; (k_1, k_2, \ldots, k_p))$ is connected;
2. G is a path, and the orders of tokens on G of α and β are the same;
3. G is a cycle, and the cyclic orders of tokens on G of α and β are the same;
4. G is the graph θ_0, and

 (a) $(k_1, k_2, \ldots, k_p) = (2, 2, 2)$ or $(2, 2, 1, 1)$, and for any $(1,1)$-standard token configurations α' and β' which can be reached from α and β, respectively, we have that α' and β' are in the same group from the following two groups:
Group a_1: $(1,1)$-standard token configurations of which the cyclic order of tokens on the lower 5-cycle is $(2,2,s,t)$, where $s,t \in \{3,4\}$. I.e., token configurations which have the following forms:

\[
\begin{array}{c}
\begin{array}{cc}
1 & 1 \\
2 & t
\end{array}
\quad
\begin{array}{cc}
1 & 1 \\
2 & s
\end{array}
\quad
\begin{array}{cc}
1 & 1 \\
2 & s
\end{array}
\quad
\begin{array}{cc}
1 & 1 \\
2 & t
\end{array}
\end{array}
\]

Group a_2: $(1,1)$-standard token configurations of which the cyclic order of tokens on the lower 5-cycle is $(2,s,2,t)$, where $s,t \in \{3,4\}$,

(b) $(k_1,k_2,\ldots,k_p) = (2,1,1,1,1)$, and for any $(1,1)$-standard token configurations α' and β' which can be reached from α and β, respectively, we have α' and β' are in the same group from the following three groups:

Group b_1: $(1,1)$-standard token configurations of which the cyclic order of tokens on the lower 5-cycle is $(2,3,4,5)$ or $(2,5,4,3)$;

Group b_2: $(1,1)$-standard token configurations of which the cyclic order of tokens on the lower 5-cycle is $(2,4,3,5)$ or $(2,5,3,4)$;

Group b_3: $(1,1)$-standard token configurations of which the cyclic order of tokens on the lower 5-cycle is $(2,3,5,4)$ or $(2,4,5,3)$;

(c) $(k_1,k_2,\ldots,k_p) = (1,1,1,1,1,1)$, and for any $(1,6)$-standard token configurations α' and β' which can be reached from α and β, respectively, we have α' and β' are in the same group from the following six groups:

Group c_1: $(1,6)$-standard token configurations of which the cyclic order of tokens on the lower 5-cycle is $(2,3,4,5)$;

Group c_2: $(1,6)$-standard token configurations of which the cyclic order of tokens on the lower 5-cycle is $(2,5,4,3)$;

Group c_3: $(1,6)$-standard token configurations of which the cyclic order of tokens on the lower 5-cycle is $(2,4,3,5)$;
Group c_4: (1,6)-standard token configurations of which the cyclic order of tokens on the lower 5-cycle is $(2,5,3,4)$;

Group c_5: (1,6)-standard token configurations of which the cyclic order of tokens on the lower 5-cycle is $(2,3,5,4)$;

Group c_6: (1,6)-standard token configurations of which the cyclic order of tokens on the lower 5-cycle is $(2,4,5,3)$.

5. G is a 2-connected bipartite graph other than a cycle, there are $n(G) - 1$ different tokens, and one of the following holds:

(a) α and β have their unoccupied vertices at even distance in G, and $\alpha\beta^{-1}$ is an even permutation;

(b) α and β have their unoccupied vertices at odd distance in G, and $\alpha\beta^{-1}$ is an odd permutation.

6. G is a connected graph with connectivity 1 other than a path, $n(G) - (k_1 + k_2 + \cdots + k_p) = l \geq 2$, P_1, P_2, \ldots, P_m are all the separating paths of size l in G, and $\tau(\alpha_i|_{G_{i,1}}) = \tau(\beta_i|_{G_{i,1}})$ and $\tau(\alpha_i|_{G_{i,2}}) = \tau(\beta_i|_{G_{i,2}})$ for all $i = 1, 2, \ldots, m$.

7. G is a connected graph with connectivity 1 other than a path, $n(G) - (k_1 + k_2 + \cdots + k_p) = 1$, for each block B in G, $\tau(\alpha_{v_B}|_B) = \tau(\beta_{v_B}|_B)$, and at least one of the following conditions holds:

(a) $T(B; \tau(\alpha_{v_B}|_B))$ is connected;

(b) B is a cycle, and the cyclic orders of tokens of $\alpha_{v_B}|_B$ and $\beta_{v_B}|_B$ are the same;

(c) B is the graph θ_0, and $\alpha_{v_B}|_B$ and $\beta_{v_B}|_B$ satisfy 4(a), 4(b), or 4(c) above;

(d) B is a 2-connected bipartite graph other than a cycle, there are $n(B) - 1$ different tokens in $\alpha_{v_B}|_B$ and $\beta_{v_B}|_B$, and $\alpha_{v_B}|_B \cdot (\beta_{v_B}|_B)^{-1}$ is an even permutation.
Generalised sliding token puzzles

- we can also characterise:
 - given a graph G, token set (k_1, \ldots, k_p), and two token configurations on G,
 - are the two configurations in the same component of $\text{puz}(G; k_1, \ldots, k_p)$?

- so recognising connectivity properties of $\text{puz}(G; k_1, \ldots, k_p)$ is easy

- can we say something about the number of steps we would need?
The length of sliding token paths

Shortest-A-to-B-Token-Moves

Input: a graph G, a token set (k_1, \ldots, k_p), two token configurations A and B on G, and a positive integer N

Question: can we go from A to B in at most N steps?
The length of sliding token paths

Theorem (Goldreich, 1984-2011)

- restricted to the case that there are \(n - 1 \) different tokens,

 \texttt{SHORTEST-A-TO-B-TOKEN-MOVES} is \texttt{NP-complete}
The length of sliding token paths

Theorem (Goldreich, 1984-2011)

- restricted to the case that there are \(n - 1 \) different tokens,

 \(\text{SHORTEST-A-TO-B-TOKEN-MOVES} \) is **NP-complete**

Theorem (vdH & Trakultraipruk, 2013; probably others earlier)

- restricted to the case that all tokens are the same,

 \(\text{SHORTEST-A-TO-B-TOKEN-MOVES} \) is in **P**
The length of sliding token paths

Theorem (Goldreich, 1984-2011)
- restricted to the case that there are \(n - 1 \) different tokens,
 \(\text{SHORTEST-A-TO-B-TOKEN-MOVES} \) is \(\text{NP-complete} \)

Theorem (vdH & Trakultraipruk, 2013; probably others earlier)
- restricted to the case that all tokens are the same,
 \(\text{SHORTEST-A-TO-B-TOKEN-MOVES} \) is in \(\text{P} \)

Theorem (vdH & Trakultraipruk, 2013)
- restricted to the case that there is just one special token
 and all others are the same:
 \(\text{SHORTEST-A-TO-B-TOKEN-MOVES} \) is already \(\text{NP-complete} \)
Robot motion

- the proof of that last result uses ideas of the proof of

Theorem (Papadimitriou, Raghavan, Sudan & Tamaki, 1994)

- **Shortest-Robot-Motion-with-One-Robot** is NP-complete
Robot motion

- the proof of that last result uses ideas of the proof of

Theorem (Papadimitriou, Raghavan, Sudan & Tamaki, 1994)

- **SHORTEST-ROBOT-MOTION-WITH-ONE-ROBOT** is NP-complete

- **Robot Motion** problems on graphs are *sliding token* problems,
 - with some *special tokens* (the robots)
 - that have to *end in specified positions*
 - all *other tokens* are just *obstacles*
 - and it is *not important where those are at the end*