Polytopes of maximal volume product

Matt Alexander
Kent State University

(based on a joint work with Matthieu Fradelizi and Artem Zvavitch)

May 25, 2017
BIRS, Banff, Canada

Definition (Origin Symmetric)
A convex body is origin symmetric if $K=-K$

Definition (Origin Symmetric)

A convex body is origin symmetric if $K=-K$

Definition (Polar Body)

The polar body of an origin symmetric convex body K in \mathbb{R}^{n} is

$$
K^{o}=\left\{x \in \mathbb{R}^{n} \mid\langle x, y\rangle \leq 1 \quad \forall y \in K\right\}
$$

Definition (Origin Symmetric)

A convex body is origin symmetric if $K=-K$

Definition (Polar Body)

The polar body of an origin symmetric convex body K in \mathbb{R}^{n} is

$$
K^{o}=\left\{x \in \mathbb{R}^{n} \mid\langle x, y\rangle \leq 1 \quad \forall y \in K\right\}
$$

Definition (Volume Product)

The Volume Product of an origin symmetric convex body K is

$$
\mathcal{P}(K)=|K|\left|K^{o}\right|
$$

Definition (Origin Symmetric)

A convex body is origin symmetric if $K=-K$

Definition (Polar Body)

The polar body of an origin symmetric convex body K in \mathbb{R}^{n} is

$$
K^{o}=\left\{x \in \mathbb{R}^{n} \mid\langle x, y\rangle \leq 1 \quad \forall y \in K\right\}
$$

Definition (Volume Product)

The Volume Product of an origin symmetric convex body K is

$$
\mathcal{P}(K)=|K|\left|K^{o}\right|
$$

Notice that for a non-degenerate linear transform $T, \mathcal{P}(T K)=\mathcal{P}(K)$.

Definition (Polar Body)

The polar body of a convex body K in \mathbb{R}^{n} with respect to a point z is

$$
K^{z}=\left\{x \in \mathbb{R}^{n} \mid\langle x-z, y-z\rangle \leq 1 \quad \forall y \in K\right\}
$$

Definition (Polar Body)

The polar body of a convex body K in \mathbb{R}^{n} with respect to a point z is

$$
K^{z}=\left\{x \in \mathbb{R}^{n} \mid\langle x-z, y-z\rangle \leq 1 \quad \forall y \in K\right\}
$$

Definition (Santaló Point)

For a convex body K the Santaló point is the unique point $s(K) \in \operatorname{int}(K)$ such that

$$
\left|K^{s(K)}\right|=\min _{z \in \operatorname{int}(K)}\left|K^{z}\right|
$$

Definition (Polar Body)

The polar body of a convex body K in \mathbb{R}^{n} with respect to a point z is

$$
K^{z}=\left\{x \in \mathbb{R}^{n} \mid\langle x-z, y-z\rangle \leq 1 \quad \forall y \in K\right\}
$$

Definition (Santaló Point)

For a convex body K the Santaló point is the unique point $s(K) \in \operatorname{int}(K)$ such that

$$
\left|K^{s(K)}\right|=\min _{z \in \operatorname{int}(K)}\left|K^{z}\right|
$$

Definition (Volume Product)

The Volume Product of a convex body K is

$$
\mathcal{P}(K)=\inf \left\{|K|\left|K^{z}\right|: z \in \operatorname{int}(K)\right\}=|K|\left|K^{s(K)}\right|
$$

Mahler's conjecture for $\mathcal{P}(K)=|K|\left|K^{\circ}\right|$:

For any convex symmetric body $K \subset \mathbb{R}^{n}: \mathcal{P}(K) \geq \mathcal{P}\left(B_{\infty}^{n}\right)=\frac{4^{n}}{n!}$, where B_{∞}^{n}-cube.
True if $n=2$ (Mahler,1939); Open if $n \geq 3$.
True for

Mahler's conjecture for $\mathcal{P}(K)=|K|\left|K^{\circ}\right|$:

For any convex symmetric body $K \subset \mathbb{R}^{n}: \mathcal{P}(K) \geq \mathcal{P}\left(B_{\infty}^{n}\right)=\frac{4^{n}}{n!}$, where B_{∞}^{n}-cube.
True if $n=2$ (Mahler,1939); Open if $n \geq 3$.
True for

- Zonoids (Reisner, 1986), (Gordon, Meyer, Reisner,1988).
- Unconditional convex bodies (Saint-Raymond,1981),
- Equality case (Meyer, 1986), (Reisner, 1987).

For any convex symmetric body $K \subset \mathbb{R}^{n}: \mathcal{P}(K) \geq \mathcal{P}\left(B_{\infty}^{n}\right)=\frac{4^{n}}{n!}$, where B_{∞}^{n}-cube.
True if $n=2$ (Mahler,1939); Open if $n \geq 3$.
True for

- Zonoids (Reisner, 1986), (Gordon, Meyer, Reisner,1988).
- Unconditional convex bodies (Saint-Raymond,1981),
- Equality case (Meyer, 1986), (Reisner, 1987).
- Convex bodies with 'many’ symmetries (Barthe, Fradelizi, 2010).
- Polytopes with at most a few vertices (Lopez, Reisner 1998), (Meyer, Reisner, 2006).
- $K \subset \mathbb{R}^{3}$ which is the convex hull of two 2-dimensional convex bodies (Meyer, Fradelizi, Zvavitch, 2011).

For any convex symmetric body $K \subset \mathbb{R}^{n}: \mathcal{P}(K) \geq \mathcal{P}\left(B_{\infty}^{n}\right)=\frac{4^{n}}{n!}$, where B_{∞}^{n}-cube.
True if $n=2$ (Mahler,1939); Open if $n \geq 3$.
True for

- Zonoids (Reisner, 1986), (Gordon, Meyer, Reisner,1988).
- Unconditional convex bodies (Saint-Raymond,1981),
- Equality case (Meyer, 1986), (Reisner, 1987).
- Convex bodies with 'many’ symmetries (Barthe, Fradelizi, 2010).
- Polytopes with at most a few vertices (Lopez, Reisner 1998), (Meyer, Reisner, 2006).
- $K \subset \mathbb{R}^{3}$ which is the convex hull of two 2-dimensional convex bodies (Meyer, Fradelizi, Zvavitch, 2011).
Other results
- Curvature Conditions: If a body has a point of positive curvature then it is not a minimizer. (Stancu, 2009), (Reisner, Schütt, Werner, 2010), (Gordon, Meyer, 2011).

For any convex symmetric body $K \subset \mathbb{R}^{n}: \mathcal{P}(K) \geq \mathcal{P}\left(B_{\infty}^{n}\right)=\frac{4^{n}}{n!}$, where B_{∞}^{n}-cube.
True if $n=2$ (Mahler,1939); Open if $n \geq 3$.
True for

- Zonoids (Reisner, 1986), (Gordon, Meyer, Reisner,1988).
- Unconditional convex bodies (Saint-Raymond,1981),
- Equality case (Meyer, 1986), (Reisner, 1987).
- Convex bodies with 'many’ symmetries (Barthe, Fradelizi, 2010).
- Polytopes with at most a few vertices (Lopez, Reisner 1998), (Meyer, Reisner, 2006).
- $K \subset \mathbb{R}^{3}$ which is the convex hull of two 2-dimensional convex bodies (Meyer, Fradelizi, Zvavitch, 2011).
Other results
- Curvature Conditions: If a body has a point of positive curvature then it is not a minimizer. (Stancu, 2009), (Reisner, Schütt, Werner, 2010), (Gordon, Meyer, 2011).
- Bourgain-Milman Inequality: $\mathcal{P}(K) \geq c^{n} \mathcal{P}\left(B_{\infty}^{n}\right) \quad$ for all convex $K \subset \mathbb{R}^{n}$ (Bourgain, Milman,1987), (Kuperberg, 2008), (Nazarov, 2009), (Giannopoulos, Paouris, Vritsiou, 2012).

For any convex symmetric body $K \subset \mathbb{R}^{n}: \mathcal{P}(K) \geq \mathcal{P}\left(B_{\infty}^{n}\right)=\frac{4^{n}}{n!}$, where B_{∞}^{n}-cube.
True if $n=2$ (Mahler,1939); Open if $n \geq 3$.
True for

- Zonoids (Reisner, 1986), (Gordon, Meyer, Reisner,1988).
- Unconditional convex bodies (Saint-Raymond,1981),
- Equality case (Meyer, 1986), (Reisner, 1987).
- Convex bodies with 'many’ symmetries (Barthe, Fradelizi, 2010).
- Polytopes with at most a few vertices (Lopez, Reisner 1998), (Meyer, Reisner, 2006).
- $K \subset \mathbb{R}^{3}$ which is the convex hull of two 2-dimensional convex bodies (Meyer, Fradelizi, Zvavitch, 2011).
Other results
- Curvature Conditions: If a body has a point of positive curvature then it is not a minimizer. (Stancu, 2009), (Reisner, Schütt, Werner, 2010), (Gordon, Meyer, 2011).
- Bourgain-Milman Inequality: $\mathcal{P}(K) \geq c^{n} \mathcal{P}\left(B_{\infty}^{n}\right) \quad$ for all convex $K \subset \mathbb{R}^{n}$ (Bourgain, Milman,1987), (Kuperberg, 2008), (Nazarov, 2009), (Giannopoulos, Paouris, Vritsiou, 2012).
- Functional forms (for log-concave functions): (Klartag, Milman, 2005), (Fradelizi, Meyer, 2008, 2010), (Gordon, Fradelizi, Meyer, Reisner, 2010).

Blaschke - Santaló Inequality: Let $B_{2}^{n}=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$.

Then for any convex (symmetric) body $K \subset \mathbb{R}^{n}$,

$$
\mathcal{P}(K) \leq \mathcal{P}\left(B_{2}^{n}\right)=\left|B_{2}^{n}\right|^{2}
$$

Moreover, equality holds iff K is an ellipsoid.

Blaschke - Santaló Inequality: Let $B_{2}^{n}=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$.

Then for any convex (symmetric) body $K \subset \mathbb{R}^{n}$,

$$
\mathcal{P}(K) \leq \mathcal{P}\left(B_{2}^{n}\right)=\left|B_{2}^{n}\right|^{2}
$$

Moreover, equality holds iff K is an ellipsoid.

- (Blaschke, 1923) for $n \leq 3$, (Santaló,1948) for $n>3$.
- (Saint-Raymond, 1981), (Petty, 1985) for the equality case.
- Other proofs (using Steiner symmetrization): (Ball, 1986), (Meyer, Pajor, 1990).

Blaschke - Santaló Inequality: Let $B_{2}^{n}=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$.

Then for any convex (symmetric) body $K \subset \mathbb{R}^{n}$,

$$
\mathcal{P}(K) \leq \mathcal{P}\left(B_{2}^{n}\right)=\left|B_{2}^{n}\right|^{2}
$$

Moreover, equality holds iff K is an ellipsoid.

- (Blaschke, 1923) for $n \leq 3$, (Santaló,1948) for $n>3$.
- (Saint-Raymond, 1981), (Petty, 1985) for the equality case.
- Other proofs (using Steiner symmetrization): (Ball, 1986), (Meyer, Pajor, 1990).
- Stability Results: (Böröczky 2010), (Barthe, Böröczky, Fradelizi, 2012).
- Functional forms (for log-concave functions): (Ball,1986), (Artstein, Klartag, Milman, 2004), (Fradelizi, Meyer, 2007).

Our Direction

Some notation:

- For $n \geq 1$ denote by \mathcal{K}^{n} the set of all convex bodies in \mathbb{R}^{n} endowed with the Hausdorff distance.

Some notation:

- For $n \geq 1$ denote by \mathcal{K}^{n} the set of all convex bodies in \mathbb{R}^{n} endowed with the Hausdorff distance.
- For $m \geq n+1$, denote by \mathcal{P}_{m}^{n} the subset of \mathcal{K}^{n} consisting of the polytopes in \mathbb{R}^{n} with non-empty interior having at most m vertices.

Some notation:

- For $n \geq 1$ denote by \mathcal{K}^{n} the set of all convex bodies in \mathbb{R}^{n} endowed with the Hausdorff distance.
- For $m \geq n+1$, denote by \mathcal{P}_{m}^{n} the subset of \mathcal{K}^{n} consisting of the polytopes in \mathbb{R}^{n} with non-empty interior having at most m vertices.
- $\mathcal{P}^{n}=\cup_{m \in \mathbb{N}} \mathcal{P}_{m}^{n}$, the dense subset of \mathcal{K}^{n} consisting of all polytopes with non empty interior.

Some notation:

- For $n \geq 1$ denote by \mathcal{K}^{n} the set of all convex bodies in \mathbb{R}^{n} endowed with the Hausdorff distance.
- For $m \geq n+1$, denote by \mathcal{P}_{m}^{n} the subset of \mathcal{K}^{n} consisting of the polytopes in \mathbb{R}^{n} with non-empty interior having at most m vertices.
- $\mathcal{P}^{n}=\cup_{m \in \mathbb{N}} \mathcal{P}_{m}^{n}$, the dense subset of \mathcal{K}^{n} consisting of all polytopes with non empty interior.
- We denote by M_{m}^{n} the supremum of the volume product of polytopes with at most m vertices and non-empty interior in \mathbb{R}^{n}

$$
M_{m}^{n}:=\sup _{K \in \mathcal{P}_{m}^{n}} \mathcal{P}(K)
$$

Theorem (Meyer, Reisner '11 / A., Fradelizi, Zvavitch '16+)

Let $N \geq 3$. The regular N-gon has maximal volume product among all polygons with at most N vertices, that is, polygons in \mathcal{P}_{N}^{2}. More precisely, for every polygon K with at most N vertices, one has

$$
\mathcal{P}(K) \leq \mathcal{P}\left(P_{N}\right)
$$

with equality if and only if K is an affine image of P_{N}.

Theorem (Meyer, Reisner '11 / A., Fradelizi, Zvavitch '16+)

Let $N \geq 3$. The regular N-gon has maximal volume product among all polygons with at most N vertices, that is, polygons in \mathcal{P}_{N}^{2}. More precisely, for every polygon K with at most N vertices, one has

$$
\mathcal{P}(K) \leq \mathcal{P}\left(P_{N}\right)
$$

with equality if and only if K is an affine image of P_{N}.
Note, $\mathcal{P}\left(R_{N}\right)=N^{2} \sin ^{2}\left(\frac{\pi}{N}\right)$

- We denote by M_{m}^{n} the supremum of the volume product of polytopes with at most m vertices and non-empty interior in \mathbb{R}^{n}

$$
M_{m}^{n}:=\sup _{K \in \mathcal{P}_{m}^{n}} \mathcal{P}(K)
$$

- We denote by M_{m}^{n} the supremum of the volume product of polytopes with at most m vertices and non-empty interior in \mathbb{R}^{n}

$$
M_{m}^{n}:=\sup _{K \in \mathcal{P}_{m}^{n}} \mathcal{P}(K)
$$

Theorem (A., Fradelizi, Zvavitch)

Let $n \geq 1$ and $m \geq n+1$. Then the supremum M_{m}^{n} is achieved at some polytope with exactly m vertices and the sequence M_{m}^{n} is strictly increasing in m.

- We denote by M_{m}^{n} the supremum of the volume product of polytopes with at most m vertices and non-empty interior in \mathbb{R}^{n}

$$
M_{m}^{n}:=\sup _{K \in \mathcal{P}_{m}^{n}} \mathcal{P}(K)
$$

Theorem (A., Fradelizi, Zvavitch)

Let $n \geq 1$ and $m \geq n+1$. Then the supremum M_{m}^{n} is achieved at some polytope with exactly m vertices and the sequence M_{m}^{n} is strictly increasing in m.

Notice that simply adding a vertex will not necessarily increase the volume product. Consider $K=B_{\infty}^{2}$ and $x_{\epsilon}=(10,1-\epsilon)$. Then

- We denote by M_{m}^{n} the supremum of the volume product of polytopes with at most m vertices and non-empty interior in \mathbb{R}^{n}

$$
M_{m}^{n}:=\sup _{K \in \mathcal{P}_{m}^{n}} \mathcal{P}(K)
$$

Theorem (A., Fradelizi, Zvavitch)

Let $n \geq 1$ and $m \geq n+1$. Then the supremum M_{m}^{n} is achieved at some polytope with exactly m vertices and the sequence M_{m}^{n} is strictly increasing in m.

Notice that simply adding a vertex will not necessarily increase the volume product. Consider $K=B_{\infty}^{2}$ and $x_{\epsilon}=(10,1-\epsilon)$. Then
$\lim _{\epsilon \rightarrow 0} \mathcal{P}\left(\operatorname{conv}\left\{B_{\infty}^{2}, x_{\epsilon}\right\}\right)=\mathcal{P}(\operatorname{conv}\{(1,-1) ;(-1,-1) ;(-1,1) ;(10,1)\})<\mathcal{P}\left(B_{\infty}^{2}\right)$.

- We denote by M_{m}^{n} the supremum of the volume product of polytopes with at most m vertices and non-empty interior in \mathbb{R}^{n}

$$
M_{m}^{n}:=\sup _{K \in \mathcal{P}_{m}^{n}} \mathcal{P}(K)
$$

Theorem (A., Fradelizi, Zvavitch)

Let $n \geq 1$ and $m \geq n+1$. Then the supremum M_{m}^{n} is achieved at some polytope with exactly m vertices and the sequence M_{m}^{n} is strictly increasing in m.

Notice that simply adding a vertex will not necessarily increase the volume product. Consider $K=B_{\infty}^{2}$ and $x_{\epsilon}=(10,1-\epsilon)$. Then

$$
\lim _{\epsilon \rightarrow 0} \mathcal{P}\left(\operatorname{conv}\left\{B_{\infty}^{2}, x_{\epsilon}\right\}\right)=\mathcal{P}(\operatorname{conv}\{(1,-1) ;(-1,-1) ;(-1,1) ;(10,1)\})<\mathcal{P}\left(B_{\infty}^{2}\right)
$$

The final inequality follows from the previous slide.

General Characterization of a Maximum

Definition (Simplicial)

A polytope P in \mathbb{R}^{n} is simplicial if every facet is a simplex.

General Characterization of a Maximum

Definition (Simplicial)

A polytope P in \mathbb{R}^{n} is simplicial if every facet is a simplex.

Theorem (A., Fradelizi, Zvavitch)

Let $n \geq 1$ and $m \geq n+1$. Let K be of maximal volume product among polytopes with at most m vertices. Then K is a simplicial polytope.

Theorem (A., Fradelizi, Zvavitch)

Let K be the convex hull of $n+2$ points. Let $m=\left\lfloor\frac{n}{2}\right\rfloor$ and $p=\left\lceil\frac{n}{2}\right\rceil=n-m$. Then K is the convex hull of two simplices Δ_{m} and Δ_{p} living in supplementary affine subspaces of dimensions m and p respectively.

Theorem (A., Fradelizi, Zvavitch)

Let K be the convex hull of $n+2$ points. Let $m=\left\lfloor\frac{n}{2}\right\rfloor$ and $p=\left\lceil\frac{n}{2}\right\rceil=n-m$. Then K is the convex hull of two simplices Δ_{m} and Δ_{p} living in supplementary affine subspaces of dimensions m and p respectively.

Open for $m>n+2$

Exact Solution for symmetric case in \mathbb{R}^{3} with 8 points

Theorem (A., Fradelizi, Zvavitch)

Let K be an origin symmetric body in \mathcal{P}_{8}^{3}. Then the maximal volume product of such bodies is the double cone on a regular hexagonal base.

Exact Solution for symmetric case in \mathbb{R}^{3} with 8 points

Theorem (A., Fradelizi, Zvavitch)

Let K be an origin symmetric body in \mathcal{P}_{8}^{3}. Then the maximal volume product of such bodies is the double cone on a regular hexagonal base.

Open for symmetric bodies with $m=2 n+2$ in \mathbb{R}^{n} with $n>3$

Exact Solution for symmetric case in \mathbb{R}^{3} with 8 points

Theorem (A., Fradelizi, Zvavitch)

Let K be an origin symmetric body in \mathcal{P}_{8}^{3}. Then the maximal volume product of such bodies is the double cone on a regular hexagonal base.

Open for symmetric bodies with $m=2 n+2$ in \mathbb{R}^{n} with $n>3$ Open for symmetric bodies with $m>2 n+2$ in \mathbb{R}^{n} with $n \geq 3$

Main tools

Definition (Shadow System)

A shadow system in direction $\vec{\theta} \in S^{n-1}$ is given by

$$
K_{t}=\operatorname{conv}\{x+\alpha(x) t \vec{\theta} \mid x \in M\}
$$

where $M \subset \mathbb{R}^{n}$ is bounded, $\alpha: M \rightarrow \mathbb{R}$ is bounded, and $t \in[a, b] \subset \mathbb{R}$.

Definition (Shadow System)

A shadow system in direction $\vec{\theta} \in S^{n-1}$ is given by

$$
K_{t}=\operatorname{conv}\{x+\alpha(x) t \vec{\theta} \mid x \in M\}
$$

where $M \subset \mathbb{R}^{n}$ is bounded, $\alpha: M \rightarrow \mathbb{R}$ is bounded, and $t \in[a, b] \subset \mathbb{R}$.

Definition (Shadow System)

A shadow system in direction $\vec{\theta} \in S^{n-1}$ is given by

$$
K_{t}=\operatorname{conv}\{x+\alpha(x) t \vec{\theta} \mid x \in M\}
$$

where $M \subset \mathbb{R}^{n}$ is bounded, $\alpha: M \rightarrow \mathbb{R}$ is bounded, and $t \in[a, b] \subset \mathbb{R}$.

Theorem (Rogers \& Shephard '58)

Let $K_{t}, t \in[0,1]$ be a shadow system of origin symmetric convex bodies in \mathbb{R}^{n} then $\left|K_{t}\right|$ is a convex function of t.

Definition (Shadow System)

A shadow system in direction $\vec{\theta} \in S^{n-1}$ is given by

$$
K_{t}=\operatorname{conv}\{x+\alpha(x) t \vec{\theta} \mid x \in M\}
$$

where $M \subset \mathbb{R}^{n}$ is bounded, $\alpha: M \rightarrow \mathbb{R}$ is bounded, and $t \in[a, b] \subset \mathbb{R}$.

Theorem (Rogers \& Shephard '58)

Let $K_{t}, t \in[0,1]$ be a shadow system of origin symmetric convex bodies in \mathbb{R}^{n} then $\left|K_{t}\right|$ is a convex function of t.

Theorem (Campi \& Gronchi '06)

Let $K_{t}, t \in[0,1]$ be a shadow system of origin symmetric convex bodies in \mathbb{R}^{n} then $\left|K_{t}^{o}\right|^{-1}$ is convex in t.

Theorem (Campi \& Gronchi '06)

Let $K_{t}, t \in[0,1]$ be a shadow system of origin symmetric convex bodies in \mathbb{R}^{n} with $\left|K_{t}\right|$ constant, then $\left(\left|K \| K_{t}^{o}\right|\right)^{-1}$ is convex in t.

Theorem (Campi \& Gronchi '06)

Let $K_{t}, t \in[0,1]$ be a shadow system of origin symmetric convex bodies in \mathbb{R}^{n} with $\left|K_{t}\right|$ constant, then $\left(\left|K \| K_{t}^{o}\right|\right)^{-1}$ is convex in t.

Theorem (Meyer \& Reisner '07)

Let $K_{t}, t \in[0,1]$ be a shadow system of convex bodies in \mathbb{R}^{n} with $\left|K_{t}\right|$ constant, then $\left(|K|\left|K_{t}^{s\left(K_{t}\right)}\right|\right)^{-1}$ is convex in t.

Theorem (Campi \& Gronchi '06)

Let $K_{t}, t \in[0,1]$ be a shadow system of origin symmetric convex bodies in \mathbb{R}^{n} with $\left|K_{t}\right|$ constant, then $\left(|K|\left|K_{t}^{o}\right|\right)^{-1}$ is convex in t.

Theorem (Meyer \& Reisner '07)

Let $K_{t}, t \in[0,1]$ be a shadow system of convex bodies in \mathbb{R}^{n} with $\left|K_{t}\right|$ constant, then $\left(|K|\left|K_{t}^{s\left(K_{t}\right)}\right|\right)^{-1}$ is convex in t.

Theorem (Fradelizi, Meyer, \& Zvavitch)

Let $K_{t}, t \in[0,1]$ be a shadow system of convex bodies in \mathbb{R}^{n} with $\left|K_{t}\right|$ an affine function on $[-a, a]$, then $\left(\left|K_{t}\right|\left|K_{t}^{s\left(K_{t}\right)}\right|\right)^{-1}$ is quasi-convex in t. That is, for any $[c, d] \subset[-a, a], \min _{[c, d]} \mathcal{P}\left(K_{t}\right)=\min \left\{\mathcal{P}\left(K_{c}\right), \mathcal{P}\left(K_{d}\right)\right\}$

Adding one point

Lemma

Let $n, m \in \mathbb{N}$ with $m \geq n+1$ and $K \in \mathcal{P}_{m}^{n}$. Let F be a facet of K with exterior normal $u \in S^{n-1}$, let x_{F} be in the relative interior of F and let $K_{t}=\operatorname{conv}\left(K, x_{F}+t u\right)$, for $t>0$. Then for t small enough the volume product of K_{t} is strictly larger than the volume product of K :

$$
\mathcal{P}\left(K_{t}\right)>\mathcal{P}(K) .
$$

Adding one point

Lemma

Let $n, m \in \mathbb{N}$ with $m \geq n+1$ and $K \in \mathcal{P}_{m}^{n}$. Let F be a facet of K with exterior normal $u \in S^{n-1}$, let x_{F} be in the relative interior of F and let $K_{t}=\operatorname{conv}\left(K, x_{F}+t u\right)$, for $t>0$. Then for t small enough the volume product of K_{t} is strictly larger than the volume product of K :

$$
\mathcal{P}\left(K_{t}\right)>\mathcal{P}(K) .
$$

- Take the point x_{F} and move it slightly adding volume to K.

Adding one point

Lemma

Let $n, m \in \mathbb{N}$ with $m \geq n+1$ and $K \in \mathcal{P}_{m}^{n}$. Let F be a facet of K with exterior normal $u \in S^{n-1}$, let x_{F} be in the relative interior of F and let $K_{t}=\operatorname{conv}\left(K, x_{F}+t u\right)$, for $t>0$. Then for t small enough the volume product of K_{t} is strictly larger than the volume product of K :

$$
\mathcal{P}\left(K_{t}\right)>\mathcal{P}(K) .
$$

- Take the point x_{F} and move it slightly adding volume to K.
- This move cuts some volume from $K^{s(K)}$

Lemma

Let $n, m \in \mathbb{N}$ with $m \geq n+1$ and $K \in \mathcal{P}_{m}^{n}$. Let F be a facet of K with exterior normal $u \in S^{n-1}$, let x_{F} be in the relative interior of F and let $K_{t}=\operatorname{conv}\left(K, x_{F}+t u\right)$, for $t>0$. Then for t small enough the volume product of K_{t} is strictly larger than the volume product of K :

$$
\mathcal{P}\left(K_{t}\right)>\mathcal{P}(K) .
$$

- Take the point x_{F} and move it slightly adding volume to K.
- This move cuts some volume from $K^{s(K)}$
- For t small enough we get

$$
\mathcal{P}\left(K_{t}\right) \geq \mathcal{P}(K)+t\left|K^{s(K)} \| F\right| / n+o(t)>\mathcal{P}(K)
$$

Lemma

Let $n, m \in \mathbb{N}$ with $m \geq n+1$ and $K \in \mathcal{P}_{m}^{n}$. Let F be a facet of K with exterior normal $u \in S^{n-1}$, let x_{F} be in the relative interior of F and let $K_{t}=\operatorname{conv}\left(K, x_{F}+t u\right)$, for $t>0$. Then for t small enough the volume product of K_{t} is strictly larger than the volume product of K :

$$
\mathcal{P}\left(K_{t}\right)>\mathcal{P}(K)
$$

- Take the point x_{F} and move it slightly adding volume to K.
- This move cuts some volume from $K^{s(K)}$
- For t small enough we get

$$
\mathcal{P}\left(K_{t}\right) \geq \mathcal{P}(K)+t\left|K^{s(K)} \| F\right| / n+o(t)>\mathcal{P}(K)
$$

- Essential to use result of Kim and Reisner on stability of the volume product with respect to small changes to the center of duality

Theorem

Let $n \geq 1$ and $m \geq n+1$. Then the supremum M_{m}^{n} is achieved at some polytope with exactly m vertices and the sequence M_{m}^{n} is strictly increasing in m.

$$
M_{m}^{n}:=\sup _{K \in \mathcal{P}_{m}^{n}} \mathcal{P}(K)=\sup \left\{\mathcal{P}(K): K \in \mathcal{P}_{m}^{n}, B_{2}^{n} \subset K \subset n B_{2}^{n}\right\} .
$$

Theorem

Let $n \geq 1$ and $m \geq n+1$. Then the supremum M_{m}^{n} is achieved at some polytope with exactly m vertices and the sequence M_{m}^{n} is strictly increasing in m.
-

$$
M_{m}^{n}:=\sup _{K \in \mathcal{P}_{m}^{n}} \mathcal{P}(K)=\sup \left\{\mathcal{P}(K): K \in \mathcal{P}_{m}^{n}, B_{2}^{n} \subset K \subset n B_{2}^{n}\right\}
$$

- This set is compact in the Hausdorff metric.

Theorem

Let $n \geq 1$ and $m \geq n+1$. Then the supremum M_{m}^{n} is achieved at some polytope with exactly m vertices and the sequence M_{m}^{n} is strictly increasing in m.

$$
M_{m}^{n}:=\sup _{K \in \mathcal{P}_{m}^{n}} \mathcal{P}(K)=\sup \left\{\mathcal{P}(K): K \in \mathcal{P}_{m}^{n}, B_{2}^{n} \subset K \subset n B_{2}^{n}\right\}
$$

- This set is compact in the Hausdorff metric.
- The volume product is a continuous function on \mathcal{K}^{n}.

Theorem

Let $n \geq 1$ and $m \geq n+1$. Then the supremum M_{m}^{n} is achieved at some polytope with exactly m vertices and the sequence M_{m}^{n} is strictly increasing in m.

$$
M_{m}^{n}:=\sup _{K \in \mathcal{P}_{m}^{n}} \mathcal{P}(K)=\sup \left\{\mathcal{P}(K): K \in \mathcal{P}_{m}^{n}, B_{2}^{n} \subset K \subset n B_{2}^{n}\right\}
$$

- This set is compact in the Hausdorff metric.
- The volume product is a continuous function on \mathcal{K}^{n}.
- So the supremum is attained.

Theorem

Let $n \geq 1$ and $m \geq n+1$. Then the supremum M_{m}^{n} is achieved at some polytope with exactly m vertices and the sequence M_{m}^{n} is strictly increasing in m.

$$
M_{m}^{n}:=\sup _{K \in \mathcal{P}_{m}^{n}} \mathcal{P}(K)=\sup \left\{\mathcal{P}(K): K \in \mathcal{P}_{m}^{n}, B_{2}^{n} \subset K \subset n B_{2}^{n}\right\}
$$

- This set is compact in the Hausdorff metric.
- The volume product is a continuous function on \mathcal{K}^{n}.
- So the supremum is attained.
- We induct using the previous theorem.

Characterization of maximum

Theorem

Let $n \geq 1$ and $m \geq n+1$. Let K be of maximal volume product among polytopes with at most m vertices. Then K is a simplicial polytope.

Characterization of maximum

Theorem

Let $n \geq 1$ and $m \geq n+1$. Let K be of maximal volume product among polytopes with at most m vertices. Then K is a simplicial polytope.

- We move an arbitrary vertex slightly, similar to a method of Meyer and Reisner.

Theorem

Let $n \geq 1$ and $m \geq n+1$. Let K be of maximal volume product among polytopes with at most m vertices. Then K is a simplicial polytope.

- We move an arbitrary vertex slightly, similar to a method of Meyer and Reisner.
- For a vertex x denote by $\mathcal{F}(x)$ the set of facets of K containing x and denote by F_{X} the facet of K° corresponding to x.

Theorem

Let $n \geq 1$ and $m \geq n+1$. Let K be of maximal volume product among polytopes with at most m vertices. Then K is a simplicial polytope.

- We move an arbitrary vertex slightly, similar to a method of Meyer and Reisner.
- For a vertex x denote by $\mathcal{F}(x)$ the set of facets of K containing x and denote by F_{X} the facet of K° corresponding to x.
- Then using the assumption that K is maximal, we get the following characteristic equation.

$$
\left|K^{\circ}\right| \sum_{F \in \mathcal{F}(x)}|\operatorname{conv}(F, 0)|=n|K|\left|\operatorname{conv}\left(F_{X}, 0\right)\right|
$$

Theorem

Let $n \geq 1$ and $m \geq n+1$. Let K be of maximal volume product among polytopes with at most m vertices. Then K is a simplicial polytope.

- We move an arbitrary vertex slightly, similar to a method of Meyer and Reisner.
- For a vertex x denote by $\mathcal{F}(x)$ the set of facets of K containing x and denote by F_{X} the facet of K° corresponding to x.
- Then using the assumption that K is maximal, we get the following characteristic equation.

$$
\left|K^{\circ}\right| \sum_{F \in \mathcal{F}(x)}|\operatorname{conv}(F, 0)|=n|K|\left|\operatorname{conv}\left(F_{X}, 0\right)\right|
$$

- Using the fact that this holds for all vertices and some combinatorics we find that K must be simplicial.

Lemma

Let $K \in \mathbb{R}^{n}$ be a convex body, and F a concave continuous function
$F: K \rightarrow \mathbb{R}$. Assume that K and F are invariant under linear isometries
T_{1}, \ldots, T_{m}. Then there is $x_{0} \in K$ such that $T_{i}\left(x_{0}\right)=x_{0}$, for all $i=1, \ldots, m$ and $F\left(x_{0}\right) \geq F(x)$ for all $x \in K$.

Lemma

Let $K \in \mathbb{R}^{n}$ be a convex body, and F a concave continuous function
$F: K \rightarrow \mathbb{R}$. Assume that K and F are invariant under linear isometries
T_{1}, \ldots, T_{m}. Then there is $x_{0} \in K$ such that $T_{i}\left(x_{0}\right)=x_{0}$, for all $i=1, \ldots, m$ and $F\left(x_{0}\right) \geq F(x)$ for all $x \in K$.

Theorem (Radon's Theorem)

A set of points with cardinality greater than $n+2$ in \mathbb{R}^{n} can be separated into two disjoint sets whose convex hulls intersect.

Theorem

Let K be the convex hull of $n+2$ points. Let $m=\left\lfloor\frac{n}{2}\right\rfloor$ and $p=\left\lceil\frac{n}{2}\right\rceil=n-m$. Then

$$
\mathcal{P}(K) \leq \frac{(p+1)^{p+1}(m+1)^{m+1}}{n!p!m!}
$$

with equality if and only if K is the convex hull of two simplices Δ_{m} and Δ_{p} living in supplementary affine subspaces of dimensions m and p respectively.

Theorem

Let K be the convex hull of $n+2$ points. Let $m=\left\lfloor\frac{n}{2}\right\rfloor$ and $p=\left\lceil\frac{n}{2}\right\rceil=n-m$. Then

$$
\mathcal{P}(K) \leq \frac{(p+1)^{p+1}(m+1)^{m+1}}{n!p!m!}
$$

with equality if and only if K is the convex hull of two simplices Δ_{m} and Δ_{p} living in supplementary affine subspaces of dimensions m and p respectively.

- Use Radon's to separate the set of vertices into two supplementary subspaces.

Theorem

Let K be the convex hull of $n+2$ points. Let $m=\left\lfloor\frac{n}{2}\right\rfloor$ and $p=\left\lceil\frac{n}{2}\right\rceil=n-m$. Then

$$
\mathcal{P}(K) \leq \frac{(p+1)^{p+1}(m+1)^{m+1}}{n!p!m!}
$$

with equality if and only if K is the convex hull of two simplices Δ_{m} and Δ_{p} living in supplementary affine subspaces of dimensions m and p respectively.

- Use Radon's to separate the set of vertices into two supplementary subspaces.
- Notice that the number of vertices do not allow for the intersection of the subspaces to be larger.

Theorem

Let K be the convex hull of $n+2$ points. Let $m=\left\lfloor\frac{n}{2}\right\rfloor$ and $p=\left\lceil\frac{n}{2}\right\rceil=n-m$. Then

$$
\mathcal{P}(K) \leq \frac{(p+1)^{p+1}(m+1)^{m+1}}{n!p!m!}
$$

with equality if and only if K is the convex hull of two simplices Δ_{m} and Δ_{p} living in supplementary affine subspaces of dimensions m and p respectively.

Theorem

Let $1 \leq k \leq n-1$ be integers and let E and F be two supplementary subspaces of \mathbb{R}^{n} of dimensions k and $n-k$ respectively. Let $L \subset E$ and $M \subset F$ be convex bodies of the appropriate dimensions such that $\operatorname{Fix}(L)=\operatorname{Fix}(M)=\{0\}$. Then for every $x \in L$ and $y \in M$

$$
\mathcal{P}(\operatorname{conv}(L-x, M-y)) \leq \mathcal{P}(\operatorname{conv}(L, M))=\frac{\mathcal{P}(L) \mathcal{P}(M)}{\binom{n}{k}}
$$

with equality if and only if $x=y=0$.

Corollary

Let $L \subset \mathbb{R}^{n-1}$ be a convex body such that Fix (L) is one point. Then among all double pyramids $K=\operatorname{conv}(L, x, y)$ in \mathbb{R}^{n} with base L separating apexes x and y, the volume product $\mathcal{P}(K)$ is maximal when x and y are symmetric with respect to the Santaló point of L.

Theorem

Let K be an origin symmetric body in \mathcal{P}_{8}^{3}. Then the maximal volume product of such bodies is the double cone on a regular hexagonal base.

Theorem

Let K be an origin symmetric body in \mathcal{P}_{8}^{3}. Then the maximal volume product of such bodies is the double cone on a regular hexagonal base.

We consider several cases

- Suppose x_{1} and x_{2} are perpendicular.

Theorem

Let K be an origin symmetric body in \mathcal{P}_{8}^{3}. Then the maximal volume product of such bodies is the double cone on a regular hexagonal base.

We consider several cases

- Suppose x_{1} and x_{2} are perpendicular.
- Using symmetry we have either a double cone or parallel lines.

Theorem

Let K be an origin symmetric body in \mathcal{P}_{8}^{3}. Then the maximal volume product of such bodies is the double cone on a regular hexagonal base.

We consider several cases

- Suppose x_{1} and x_{2} are perpendicular.
- Using symmetry we have either a double cone or parallel lines.
- Using the same symmetry we have either a double cone again, or a line in the direction of the edges.

Theorem

Let K be an origin symmetric body in \mathcal{P}_{8}^{3}. Then the maximal volume product of such bodies is the double cone on a regular hexagonal base.

We consider several cases

- Suppose x_{1} and x_{2} are perpendicular.
- Using symmetry we have either a double cone or parallel lines.
- Using the same symmetry we have either a double cone again, or a line in the direction of the edges.
- Compare these two cases directly:

$$
\mathcal{P}(C P)=\frac{4}{3} \mathcal{P}(H)=\frac{4}{3} \times 9=12>\frac{100}{9}
$$

Theorem

Let K be an origin symmetric body in \mathcal{P}_{8}^{3}. Then the maximal volume product of such bodies is the double cone on a regular hexagonal base.

$$
\mathcal{P}(C P)=\frac{4}{3} \mathcal{P}(H)=\frac{4}{3} \times 9=12>\frac{100}{9}
$$

Reminder: Soccer is mandatory

Thank You!

