Polytopes of maximal volume product

Matt Alexander Kent State University

(based on a joint work with Matthieu Fradelizi and Artem Zvavitch)

May 25, 2017 BIRS, Banff, Canada

A convex body is origin symmetric if K = -K

A convex body is origin symmetric if K = -K

Definition (Polar Body)

The polar body of an origin symmetric convex body K in \mathbb{R}^n is

$$K^{o} = \{x \in \mathbb{R}^{n} \mid \langle x, y \rangle \leq 1 \quad \forall y \in K\}$$

A convex body is origin symmetric if K = -K

Definition (Polar Body)

The polar body of an origin symmetric convex body K in \mathbb{R}^n is

$$K^{o} = \{x \in \mathbb{R}^{n} \mid \langle x, y \rangle \leq 1 \quad \forall y \in K\}$$

Definition (Volume Product)

The **Volume Product** of an origin symmetric convex body *K* is

 $\mathcal{P}(K) = |K||K^{o}|$

A convex body is origin symmetric if K = -K

Definition (Polar Body)

The polar body of an origin symmetric convex body K in \mathbb{R}^n is

$$K^{o} = \{x \in \mathbb{R}^{n} \mid \langle x, y \rangle \leq 1 \quad \forall y \in K\}$$

Definition (Volume Product)

The **Volume Product** of an origin symmetric convex body *K* is

 $\mathcal{P}(K) = |K||K^{o}|$

Notice that for a non-degenerate linear transform T, $\mathcal{P}(TK) = \mathcal{P}(K)$.

Definition (Polar Body)

The polar body of a convex body K in \mathbb{R}^n with respect to a point z is

$$K^{z} = \{x \in \mathbb{R}^{n} \mid \langle x - z, y - z \rangle \leq 1 \quad \forall y \in K\}$$

Definition (Polar Body)

The polar body of a convex body K in \mathbb{R}^n with respect to a point z is

$$K^{z} = \{x \in \mathbb{R}^{n} \mid \langle x - z, y - z \rangle \leq 1 \quad \forall y \in K\}$$

Definition (Santaló Point)

For a convex body K the **Santaló point** is the unique point $s(K) \in int(K)$ such that

$$|K^{s(K)}| = \min_{z \in \operatorname{int}(K)} |K^{z}|$$

Definition (Polar Body)

The polar body of a convex body K in \mathbb{R}^n with respect to a point z is

$$K^{z} = \{x \in \mathbb{R}^{n} \mid \langle x - z, y - z \rangle \leq 1 \quad \forall y \in K\}$$

Definition (Santaló Point)

For a convex body K the **Santaló point** is the unique point $s(K) \in int(K)$ such that

$$|\mathcal{K}^{s(\mathcal{K})}| = \min_{z \in \operatorname{int}(\mathcal{K})} |\mathcal{K}^{z}|$$

Definition (Volume Product)

The Volume Product of a convex body K is

$$\mathcal{P}(K) = \inf \left\{ |K| | K^{z} | : z \in \operatorname{int}(K) \right\} = |K| | K^{s(K)} |$$

Mahler's conjecture for $\mathcal{P}(K) = |K||K^{\circ}|$:

For any convex symmetric body $K \subset \mathbb{R}^n$: $\mathcal{P}(K) \geq \mathcal{P}(B_{\infty}^n) = \frac{4^n}{n!}$, where B_{∞}^n -cube.

True if n = 2 (Mahler, 1939); Open if $n \ge 3$. True for

True if n = 2 (Mahler, 1939); Open if $n \ge 3$. True for

- Zonoids (Reisner, 1986), (Gordon, Meyer, Reisner, 1988).
- Unconditional convex bodies (Saint-Raymond, 1981),
- Equality case (Meyer, 1986), (Reisner, 1987).

True if n = 2 (Mahler, 1939); Open if $n \ge 3$. True for

- Zonoids (Reisner, 1986), (Gordon, Meyer, Reisner, 1988).
- Unconditional convex bodies (Saint-Raymond, 1981),
- Equality case (Meyer, 1986), (Reisner, 1987).
- Convex bodies with 'many' symmetries (Barthe, Fradelizi, 2010).
- Polytopes with at most a few vertices (Lopez, Reisner 1998), (Meyer, Reisner, 2006).
- $K \subset \mathbb{R}^3$ which is the convex hull of two 2-dimensional convex bodies (Meyer, Fradelizi, Zvavitch, 2011).

True if n = 2 (Mahler, 1939); Open if $n \ge 3$. True for

- Zonoids (Reisner, 1986), (Gordon, Meyer, Reisner, 1988).
- Unconditional convex bodies (Saint-Raymond, 1981),
- Equality case (Meyer, 1986), (Reisner, 1987).
- Convex bodies with 'many' symmetries (Barthe, Fradelizi, 2010).
- Polytopes with at most a few vertices (Lopez, Reisner 1998), (Meyer, Reisner, 2006).
- $K \subset \mathbb{R}^3$ which is the convex hull of two 2-dimensional convex bodies (Meyer, Fradelizi, Zvavitch, 2011).

Other results

• Curvature Conditions: If a body has a point of positive curvature then it is not a minimizer. (Stancu, 2009), (Reisner, Schütt, Werner, 2010), (Gordon, Meyer, 2011).

True if n = 2 (Mahler, 1939); Open if $n \ge 3$. True for

- Zonoids (Reisner, 1986), (Gordon, Meyer, Reisner, 1988).
- Unconditional convex bodies (Saint-Raymond, 1981),
- Equality case (Meyer, 1986), (Reisner, 1987).
- Convex bodies with 'many' symmetries (Barthe, Fradelizi, 2010).
- Polytopes with at most a few vertices (Lopez, Reisner 1998), (Meyer, Reisner, 2006).
- $K \subset \mathbb{R}^3$ which is the convex hull of two 2-dimensional convex bodies (Meyer, Fradelizi, Zvavitch, 2011).

Other results

- Curvature Conditions: If a body has a point of positive curvature then it is not a minimizer. (Stancu, 2009), (Reisner, Schütt, Werner, 2010), (Gordon, Meyer, 2011).
- Bourgain-Milman Inequality: $\mathcal{P}(K) \geq c^n \mathcal{P}(B_{\infty}^n)$ for all convex $K \subset \mathbb{R}^n$ (Bourgain, Milman, 1987), (Kuperberg, 2008), (Nazarov, 2009), (Giannopoulos, Paouris, Vritsiou, 2012).

True if n = 2 (Mahler, 1939); Open if $n \ge 3$. True for

- Zonoids (Reisner, 1986), (Gordon, Meyer, Reisner, 1988).
- Unconditional convex bodies (Saint-Raymond, 1981),
- Equality case (Meyer, 1986), (Reisner, 1987).
- Convex bodies with 'many' symmetries (Barthe, Fradelizi, 2010).
- Polytopes with at most a few vertices (Lopez, Reisner 1998), (Meyer, Reisner, 2006).
- $K \subset \mathbb{R}^3$ which is the convex hull of two 2-dimensional convex bodies (Meyer, Fradelizi, Zvavitch, 2011).

Other results

- Curvature Conditions: If a body has a point of positive curvature then it is not a minimizer. (Stancu, 2009), (Reisner, Schütt, Werner, 2010), (Gordon, Meyer, 2011).
- Bourgain-Milman Inequality: $\mathcal{P}(K) \geq c^n \mathcal{P}(B_{\infty}^n)$ for all convex $K \subset \mathbb{R}^n$ (Bourgain, Milman, 1987), (Kuperberg, 2008), (Nazarov, 2009), (Giannopoulos, Paouris, Vritsiou, 2012).
- Functional forms (for log-concave functions): (Klartag, Milman, 2005), (Fradelizi, Meyer, 2008, 2010), (Gordon, Fradelizi, Meyer, Reisner, 2010).

Blaschke - Santaló Inequality: Let $B_2^n = \{x \in \mathbb{R}^n : |x| \le 1\}$.

Then for any convex (symmetric) body $K \subset \mathbb{R}^n$,

$$\mathcal{P}(K) \leq \mathcal{P}(B_2^n) = |B_2^n|^2.$$

Moreover, equality holds $\underline{iff} K$ is an ellipsoid.

Blaschke - Santaló Inequality: Let $B_2^n = \{x \in \mathbb{R}^n : |x| \le 1\}$.

Then for any convex (symmetric) body $K \subset \mathbb{R}^n$,

 $\mathcal{P}(K) \leq \mathcal{P}(B_2^n) = |B_2^n|^2.$

Moreover, equality holds $\underline{iff} K$ is an ellipsoid.

- (Blaschke, 1923) for $n \leq 3$, (Santaló, 1948) for n > 3.
- (Saint-Raymond, 1981), (Petty, 1985) for the equality case.
- Other proofs (using Steiner symmetrization): (Ball, 1986), (Meyer, Pajor, 1990).

Blaschke - Santaló Inequality: Let $B_2^n = \{x \in \mathbb{R}^n : |x| \le 1\}$.

Then for any convex (symmetric) body $K \subset \mathbb{R}^n$,

 $\mathcal{P}(K) \leq \mathcal{P}(B_2^n) = |B_2^n|^2.$

Moreover, equality holds $\underline{iff} K$ is an ellipsoid.

- (Blaschke, 1923) for $n \leq 3$, (Santaló, 1948) for n > 3.
- (Saint-Raymond, 1981), (Petty, 1985) for the equality case.
- Other proofs (using Steiner symmetrization): (Ball, 1986), (Meyer, Pajor, 1990).
- Stability Results: (Böröczky 2010), (Barthe, Böröczky, Fradelizi, 2012).
- Functional forms (for log-concave functions): (Ball,1986), (Artstein, Klartag, Milman,2004), (Fradelizi, Meyer, 2007).

• For $n \ge 1$ denote by \mathcal{K}^n the set of all convex bodies in \mathbb{R}^n endowed with the Hausdorff distance.

- For $n \ge 1$ denote by \mathcal{K}^n the set of all convex bodies in \mathbb{R}^n endowed with the Hausdorff distance.
- For m≥n+1, denote by Pⁿ_m the subset of Kⁿ consisting of the polytopes in ℝⁿ with non-empty interior having at most m vertices.

- For $n \ge 1$ denote by \mathcal{K}^n the set of all convex bodies in \mathbb{R}^n endowed with the Hausdorff distance.
- For $m \ge n+1$, denote by \mathcal{P}_m^n the subset of \mathcal{K}^n consisting of the polytopes in \mathbb{R}^n with non-empty interior having at most *m* vertices.
- $\mathcal{P}^n = \bigcup_{m \in \mathbb{N}} \mathcal{P}_m^n$, the dense subset of \mathcal{K}^n consisting of all polytopes with non empty interior.

- For $n \ge 1$ denote by \mathcal{K}^n the set of all convex bodies in \mathbb{R}^n endowed with the Hausdorff distance.
- For $m \ge n+1$, denote by \mathcal{P}_m^n the subset of \mathcal{K}^n consisting of the polytopes in \mathbb{R}^n with non-empty interior having at most *m* vertices.
- $\mathcal{P}^n = \bigcup_{m \in \mathbb{N}} \mathcal{P}_m^n$, the dense subset of \mathcal{K}^n consisting of all polytopes with non empty interior.
- We denote by M_m^n the supremum of the volume product of polytopes with at most *m* vertices and non-empty interior in \mathbb{R}^n

$$M_m^n := \sup_{K \in \mathcal{P}_m^n} \mathcal{P}(K).$$

Theorem (Meyer, Reisner '11 / A., Fradelizi, Zvavitch '16+)

Let $N \ge 3$. The regular N-gon has maximal volume product among all polygons with at most N vertices, that is, polygons in \mathcal{P}_N^2 . More precisely, for every polygon K with at most N vertices, one has

 $\mathcal{P}(K) \leq \mathcal{P}(P_N),$

with equality if and only if K is an affine image of P_N .

Theorem (Meyer, Reisner '11 / A., Fradelizi, Zvavitch '16+)

Let $N \ge 3$. The regular N-gon has maximal volume product among all polygons with at most N vertices, that is, polygons in \mathcal{P}_N^2 . More precisely, for every polygon K with at most N vertices, one has

 $\mathcal{P}(K) \leq \mathcal{P}(P_N),$

with equality if and only if K is an affine image of P_N .

Note, $\mathcal{P}(R_N) = N^2 \sin^2\left(\frac{\pi}{N}\right)$

$$M_m^n := \sup_{K \in \mathcal{P}_m^n} \mathcal{P}(K).$$

$$M_m^n := \sup_{K \in \mathcal{P}_m^n} \mathcal{P}(K).$$

Theorem (A., Fradelizi, Zvavitch)

Let $n \ge 1$ and $m \ge n+1$. Then the supremum M_m^n is achieved at some polytope with exactly m vertices and the sequence M_m^n is strictly increasing in m.

$$M_m^n := \sup_{K \in \mathcal{P}_m^n} \mathcal{P}(K).$$

Theorem (A., Fradelizi, Zvavitch)

Let $n \ge 1$ and $m \ge n+1$. Then the supremum M_m^n is achieved at some polytope with exactly m vertices and the sequence M_m^n is strictly increasing in m.

Notice that simply adding a vertex will not necessarily increase the volume product. Consider $K = B_{\infty}^2$ and $x_{\epsilon} = (10, 1 - \epsilon)$. Then

$$M_m^n := \sup_{K \in \mathcal{P}_m^n} \mathcal{P}(K).$$

Theorem (A., Fradelizi, Zvavitch)

Let $n \ge 1$ and $m \ge n+1$. Then the supremum M_m^n is achieved at some polytope with exactly m vertices and the sequence M_m^n is strictly increasing in m.

Notice that simply adding a vertex will not necessarily increase the volume product. Consider $K = B_{\infty}^2$ and $x_{\epsilon} = (10, 1 - \epsilon)$. Then

 $\lim_{\epsilon \to 0} \mathcal{P}(\operatorname{conv}\{B^2_{\infty}, x_{\epsilon}\}) = \mathcal{P}(\operatorname{conv}\{(1, -1); (-1, -1); (-1, 1); (10, 1)\}) < \mathcal{P}(B^2_{\infty}).$

$$M_m^n := \sup_{K \in \mathcal{P}_m^n} \mathcal{P}(K).$$

Theorem (A., Fradelizi, Zvavitch)

Let $n \ge 1$ and $m \ge n+1$. Then the supremum M_m^n is achieved at some polytope with exactly m vertices and the sequence M_m^n is strictly increasing in m.

Notice that simply adding a vertex will not necessarily increase the volume product. Consider $K = B_{\infty}^2$ and $x_{\epsilon} = (10, 1 - \epsilon)$. Then

$$\lim_{\epsilon \to 0} \mathcal{P}(\operatorname{conv}\{B^2_{\infty}, x_{\epsilon}\}) = \mathcal{P}(\operatorname{conv}\{(1, -1); (-1, -1); (-1, 1); (10, 1)\}) < \mathcal{P}(B^2_{\infty}).$$

The final inequality follows from the previous slide.

Definition (Simplicial)

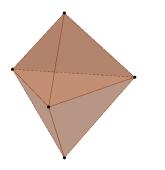
A polytope P in \mathbb{R}^n is simplicial if every facet is a simplex.

Definition (Simplicial)

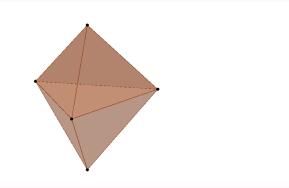
A polytope *P* in \mathbb{R}^n is simplicial if every facet is a simplex.

Theorem (A., Fradelizi, Zvavitch)

Let $n \ge 1$ and $m \ge n+1$. Let K be of maximal volume product among polytopes with at most m vertices. Then K is a simplicial polytope.

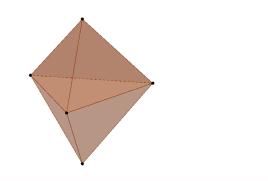


Let K be the convex hull of n+2 points. Let $m = \lfloor \frac{n}{2} \rfloor$ and $p = \lceil \frac{n}{2} \rceil = n-m$. Then K is the convex hull of two simplices Δ_m and Δ_p living in supplementary affine subspaces of dimensions m and p respectively.



Let K be the convex hull of n+2 points. Let $m = \lfloor \frac{n}{2} \rfloor$ and $p = \lceil \frac{n}{2} \rceil = n-m$. Then K is the convex hull of two simplices Δ_m and Δ_p living in supplementary affine subspaces of dimensions m and p respectively.

Open for m > n+2



Let K be an origin symmetric body in \mathcal{P}_8^3 . Then the maximal volume product of such bodies is the double cone on a regular hexagonal base.

Let K be an origin symmetric body in \mathcal{P}_8^3 . Then the maximal volume product of such bodies is the double cone on a regular hexagonal base.

Open for symmetric bodies with m = 2n + 2 in \mathbb{R}^n with n > 3

Let K be an origin symmetric body in \mathcal{P}_8^3 . Then the maximal volume product of such bodies is the double cone on a regular hexagonal base.

Open for symmetric bodies with m = 2n + 2 in \mathbb{R}^n with n > 3Open for symmetric bodies with m > 2n + 2 in \mathbb{R}^n with $n \ge 3$



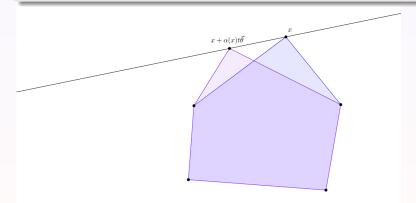
Main tools

Definition (Shadow System)

A shadow system in direction $\vec{\theta} \in S^{n-1}$ is given by

$$K_t = \operatorname{conv}\{x + \alpha(x)t\vec{\theta} | x \in M\}$$

where $M \subset \mathbb{R}^n$ is bounded, $\alpha : M \to \mathbb{R}$ is bounded, and $t \in [a, b] \subset \mathbb{R}$.



Definition (Shadow System)

A shadow system in direction $ec{ heta} \in S^{n-1}$ is given by

$$K_t = \operatorname{conv}\{x + \alpha(x)t\vec{\theta} | x \in M\}$$

where $M \subset \mathbb{R}^n$ is bounded, $\alpha : M \to \mathbb{R}$ is bounded, and $t \in [a, b] \subset \mathbb{R}$.

Definition (Shadow System)

A shadow system in direction $\vec{\theta} \in S^{n-1}$ is given by

$$K_t = \operatorname{conv}\{x + \alpha(x)t\vec{\theta} | x \in M\}$$

where $M \subset \mathbb{R}^n$ is bounded, $\alpha : M \to \mathbb{R}$ is bounded, and $t \in [a, b] \subset \mathbb{R}$.

Theorem (Rogers & Shephard '58)

Let K_t , $t \in [0,1]$ be a shadow system of origin symmetric convex bodies in \mathbb{R}^n then $|K_t|$ is a convex function of t.

Definition (Shadow System)

A shadow system in direction $\vec{\theta} \in S^{n-1}$ is given by

$$K_t = \operatorname{conv}\{x + \alpha(x)t\vec{\theta} | x \in M\}$$

where $M \subset \mathbb{R}^n$ is bounded, $\alpha : M \to \mathbb{R}$ is bounded, and $t \in [a, b] \subset \mathbb{R}$.

Theorem (Rogers & Shephard '58)

Let K_t , $t \in [0,1]$ be a shadow system of origin symmetric convex bodies in \mathbb{R}^n then $|K_t|$ is a convex function of t.

Theorem (Campi & Gronchi '06)

Let K_t , $t \in [0,1]$ be a shadow system of origin symmetric convex bodies in \mathbb{R}^n then $|K_t^o|^{-1}$ is convex in t.

Theorem (Campi & Gronchi '06)

Let K_t , $t \in [0,1]$ be a shadow system of origin symmetric convex bodies in \mathbb{R}^n with $|K_t|$ constant, then $(|K||K_t^o|)^{-1}$ is convex in t.

Theorem (Campi & Gronchi '06)

Let K_t , $t \in [0,1]$ be a shadow system of origin symmetric convex bodies in \mathbb{R}^n with $|K_t|$ constant, then $(|K||K_t^o|)^{-1}$ is convex in t.

Theorem (Meyer & Reisner '07)

Let K_t , $t \in [0,1]$ be a shadow system of convex bodies in \mathbb{R}^n with $|K_t|$ constant, then $(|K||K_t^{s(K_t)}|)^{-1}$ is convex in t.

Theorem (Campi & Gronchi '06)

Let K_t , $t \in [0,1]$ be a shadow system of origin symmetric convex bodies in \mathbb{R}^n with $|K_t|$ constant, then $(|K||K_t^o|)^{-1}$ is convex in t.

Theorem (Meyer & Reisner '07)

Let K_t , $t \in [0,1]$ be a shadow system of convex bodies in \mathbb{R}^n with $|K_t|$ constant, then $(|K||K_t^{s(K_t)}|)^{-1}$ is convex in t.

Theorem (Fradelizi, Meyer, & Zvavitch)

Let K_t , $t \in [0,1]$ be a shadow system of convex bodies in \mathbb{R}^n with $|K_t|$ an affine function on [-a,a], then $(|K_t||K_t^{s(K_t)}|)^{-1}$ is quasi-convex in t. That is, for any $[c,d] \subset [-a,a]$, $\min_{[c,d]} \mathcal{P}(K_t) = \min\{\mathcal{P}(K_c), \mathcal{P}(K_d)\}$

Let $n, m \in \mathbb{N}$ with $m \ge n+1$ and $K \in \mathcal{P}_m^n$. Let F be a facet of K with exterior normal $u \in S^{n-1}$, let x_F be in the relative interior of F and let $K_t = \operatorname{conv}(K, x_F + tu)$, for t > 0. Then for t small enough the volume product of K_t is strictly larger than the volume product of K:

 $\mathcal{P}(K_t) > \mathcal{P}(K).$

Let $n, m \in \mathbb{N}$ with $m \ge n+1$ and $K \in \mathcal{P}_m^n$. Let F be a facet of K with exterior normal $u \in S^{n-1}$, let x_F be in the relative interior of F and let $K_t = \operatorname{conv}(K, x_F + tu)$, for t > 0. Then for t small enough the volume product of K_t is strictly larger than the volume product of K:

 $\mathcal{P}(K_t) > \mathcal{P}(K).$

• Take the point x_F and move it slightly adding volume to K.

Let $n, m \in \mathbb{N}$ with $m \ge n+1$ and $K \in \mathcal{P}_m^n$. Let F be a facet of K with exterior normal $u \in S^{n-1}$, let x_F be in the relative interior of F and let $K_t = \operatorname{conv}(K, x_F + tu)$, for t > 0. Then for t small enough the volume product of K_t is strictly larger than the volume product of K:

 $\mathcal{P}(K_t) > \mathcal{P}(K).$

- Take the point x_F and move it slightly adding volume to K.
- This move cuts some volume from $K^{s(K)}$

Let $n, m \in \mathbb{N}$ with $m \ge n+1$ and $K \in \mathcal{P}_m^n$. Let F be a facet of K with exterior normal $u \in S^{n-1}$, let x_F be in the relative interior of F and let $K_t = \operatorname{conv}(K, x_F + tu)$, for t > 0. Then for t small enough the volume product of K_t is strictly larger than the volume product of K:

 $\mathcal{P}(K_t) > \mathcal{P}(K).$

- Take the point x_F and move it slightly adding volume to K.
- This move cuts some volume from $K^{s(K)}$
- For t small enough we get

$$\mathcal{P}(K_t) \geq \mathcal{P}(K) + t|K^{s(K)}||F|/n + o(t) > \mathcal{P}(K).$$

Let $n, m \in \mathbb{N}$ with $m \ge n+1$ and $K \in \mathcal{P}_m^n$. Let F be a facet of K with exterior normal $u \in S^{n-1}$, let x_F be in the relative interior of F and let $K_t = \operatorname{conv}(K, x_F + tu)$, for t > 0. Then for t small enough the volume product of K_t is strictly larger than the volume product of K:

 $\mathcal{P}(K_t) > \mathcal{P}(K).$

- Take the point x_F and move it slightly adding volume to K.
- This move cuts some volume from $K^{s(K)}$
- For t small enough we get

$$\mathcal{P}(K_t) \geq \mathcal{P}(K) + t|K^{\mathfrak{s}(K)}||F|/n + o(t) > \mathcal{P}(K).$$

• Essential to use result of Kim and Reisner on stability of the volume product with respect to small changes to the center of duality

Let $n \ge 1$ and $m \ge n+1$. Then the supremum M_m^n is achieved at some polytope with exactly m vertices and the sequence M_m^n is strictly increasing in m.

$$M_m^n := \sup_{K \in \mathcal{P}_m^n} \mathcal{P}(K) = \sup \{ \mathcal{P}(K) : K \in \mathcal{P}_m^n, B_2^n \subset K \subset nB_2^n \}.$$

Let $n \ge 1$ and $m \ge n+1$. Then the supremum M_m^n is achieved at some polytope with exactly m vertices and the sequence M_m^n is strictly increasing in m.

۲

$$M_m^n := \sup_{K \in \mathcal{P}_m^n} \mathcal{P}(K) = \sup \{ \mathcal{P}(K) : K \in \mathcal{P}_m^n, B_2^n \subset K \subset nB_2^n \}.$$

• This set is compact in the Hausdorff metric.

Let $n \ge 1$ and $m \ge n+1$. Then the supremum M_m^n is achieved at some polytope with exactly m vertices and the sequence M_m^n is strictly increasing in m.

$$M_m^n := \sup_{K \in \mathcal{P}_m^n} \mathcal{P}(K) = \sup \{ \mathcal{P}(K) : K \in \mathcal{P}_m^n, B_2^n \subset K \subset nB_2^n \}.$$

- This set is compact in the Hausdorff metric.
- The volume product is a continuous function on \mathcal{K}^n .

Let $n \ge 1$ and $m \ge n+1$. Then the supremum M_m^n is achieved at some polytope with exactly m vertices and the sequence M_m^n is strictly increasing in m.

$$M_m^n := \sup_{K \in \mathcal{P}_m^n} \mathcal{P}(K) = \sup \{ \mathcal{P}(K) : K \in \mathcal{P}_m^n, B_2^n \subset K \subset nB_2^n \}.$$

- This set is compact in the Hausdorff metric.
- The volume product is a continuous function on \mathcal{K}^n .
- So the supremum is attained.

Let $n \ge 1$ and $m \ge n+1$. Then the supremum M_m^n is achieved at some polytope with exactly m vertices and the sequence M_m^n is strictly increasing in m.

$$M_m^n := \sup_{K \in \mathcal{P}_m^n} \mathcal{P}(K) = \sup \{ \mathcal{P}(K) : K \in \mathcal{P}_m^n, B_2^n \subset K \subset nB_2^n \}.$$

- This set is compact in the Hausdorff metric.
- The volume product is a continuous function on \mathcal{K}^n .
- So the supremum is attained.
- We induct using the previous theorem.

Let $n \ge 1$ and $m \ge n+1$. Let K be of maximal volume product among polytopes with at most m vertices. Then K is a simplicial polytope.

Let $n \ge 1$ and $m \ge n+1$. Let K be of maximal volume product among polytopes with at most m vertices. Then K is a simplicial polytope.

• We move an arbitrary vertex slightly, similar to a method of Meyer and Reisner.

Let $n \ge 1$ and $m \ge n+1$. Let K be of maximal volume product among polytopes with at most m vertices. Then K is a simplicial polytope.

- We move an arbitrary vertex slightly, similar to a method of Meyer and Reisner.
- For a vertex x denote by F(x) the set of facets of K containing x and denote by F_x the facet of K[°] corresponding to x.

Let $n \ge 1$ and $m \ge n+1$. Let K be of maximal volume product among polytopes with at most m vertices. Then K is a simplicial polytope.

- We move an arbitrary vertex slightly, similar to a method of Meyer and Reisner.
- For a vertex x denote by F(x) the set of facets of K containing x and denote by F_x the facet of K[°] corresponding to x.
- $\bullet\,$ Then using the assumption that ${\cal K}$ is maximal, we get the following characteristic equation.

$$|\mathcal{K}^{\circ}| \sum_{F \in \mathcal{F}(x)} |\operatorname{conv}(F, 0)| = n|\mathcal{K}||\operatorname{conv}(F_x, 0)|.$$

Let $n \ge 1$ and $m \ge n+1$. Let K be of maximal volume product among polytopes with at most m vertices. Then K is a simplicial polytope.

- We move an arbitrary vertex slightly, similar to a method of Meyer and Reisner.
- For a vertex x denote by $\mathcal{F}(x)$ the set of facets of K containing x and denote by F_x the facet of K° corresponding to x.
- Then using the assumption that K is maximal, we get the following characteristic equation.

$$|\mathcal{K}^{\circ}| \sum_{F \in \mathcal{F}(x)} |\operatorname{conv}(F, 0)| = n|\mathcal{K}||\operatorname{conv}(F_x, 0)|.$$

• Using the fact that this holds for all vertices and some combinatorics we find that K must be simplicial.

Let $K \in \mathbb{R}^n$ be a convex body, and F a concave continuous function $F : K \to \mathbb{R}$. Assume that K and F are invariant under linear isometries $T_1, ..., T_m$. Then there is $x_0 \in K$ such that $T_i(x_0) = x_0$, for all i = 1, ..., m and $F(x_0) \ge F(x)$ for all $x \in K$.

Let $K \in \mathbb{R}^n$ be a convex body, and F a concave continuous function $F: K \to \mathbb{R}$. Assume that K and F are invariant under linear isometries $T_1, ..., T_m$. Then there is $x_0 \in K$ such that $T_i(x_0) = x_0$, for all i = 1, ..., m and $F(x_0) \ge F(x)$ for all $x \in K$.

Theorem (Radon's Theorem)

A set of points with cardinality greater than n+2 in \mathbb{R}^n can be separated into two disjoint sets whose convex hulls intersect.

Let K be the convex hull of n+2 points. Let $m = \lfloor \frac{n}{2} \rfloor$ and $p = \lceil \frac{n}{2} \rceil = n - m$. Then

$$\mathcal{P}(K) \leq \frac{(p+1)^{p+1}(m+1)^{m+1}}{n!p!m!},$$

with equality if and only if K is the convex hull of two simplices Δ_m and Δ_p living in supplementary affine subspaces of dimensions m and p respectively.

Let K be the convex hull of n+2 points. Let $m = \lfloor \frac{n}{2} \rfloor$ and $p = \lceil \frac{n}{2} \rceil = n - m$. Then

$$\mathcal{P}(K) \leq \frac{(p+1)^{p+1}(m+1)^{m+1}}{n!p!m!},$$

with equality if and only if K is the convex hull of two simplices Δ_m and Δ_p living in supplementary affine subspaces of dimensions m and p respectively.

• Use Radon's to separate the set of vertices into two supplementary subspaces.

Let *K* be the convex hull of n+2 points. Let $m = \lfloor \frac{n}{2} \rfloor$ and $p = \lceil \frac{n}{2} \rceil = n - m$. Then

$$\mathcal{P}(K) \leq rac{(p+1)^{p+1}(m+1)^{m+1}}{n!p!m!},$$

with equality if and only if K is the convex hull of two simplices Δ_m and Δ_p living in supplementary affine subspaces of dimensions m and p respectively.

- Use Radon's to separate the set of vertices into two supplementary subspaces.
- Notice that the number of vertices do not allow for the intersection of the subspaces to be larger.

Let K be the convex hull of n+2 points. Let $m = \lfloor \frac{n}{2} \rfloor$ and $p = \lceil \frac{n}{2} \rceil = n - m$. Then

$$\mathcal{P}(K) \leq \frac{(p+1)^{p+1}(m+1)^{m+1}}{n!p!m!},$$

with equality if and only if K is the convex hull of two simplices Δ_m and Δ_p living in supplementary affine subspaces of dimensions m and p respectively.

Theorem

Let $1 \le k \le n-1$ be integers and let E and F be two supplementary subspaces of \mathbb{R}^n of dimensions k and n-k respectively. Let $L \subset E$ and $M \subset F$ be convex bodies of the appropriate dimensions such that $Fix(L) = Fix(M) = \{0\}$. Then for every $x \in L$ and $y \in M$

$$\mathcal{P}(\operatorname{conv}(L-x,M-y)) \leq \mathcal{P}(\operatorname{conv}(L,M)) = \frac{\mathcal{P}(L)\mathcal{P}(M)}{\binom{n}{k}},$$

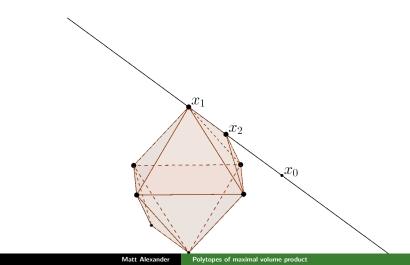
with equality if and only if x = y = 0.

Symmetric

Corollary

Let $L \subset \mathbb{R}^{n-1}$ be a convex body such that Fix(L) is one point. Then among all double pyramids K = conv(L, x, y) in \mathbb{R}^n with base L separating apexes x and y, the volume product $\mathcal{P}(K)$ is maximal when x and y are symmetric with respect to the Santaló point of L.

Let K be an origin symmetric body in \mathcal{P}_8^3 . Then the maximal volume product of such bodies is the double cone on a regular hexagonal base.



Let K be an origin symmetric body in \mathcal{P}_8^3 . Then the maximal volume product of such bodies is the double cone on a regular hexagonal base.

We consider several cases

• Suppose x_1 and x_2 are perpendicular.

Let K be an origin symmetric body in \mathcal{P}_8^3 . Then the maximal volume product of such bodies is the double cone on a regular hexagonal base.

We consider several cases

- Suppose x_1 and x_2 are perpendicular.
- Using symmetry we have either a double cone or parallel lines.

Let K be an origin symmetric body in \mathcal{P}_8^3 . Then the maximal volume product of such bodies is the double cone on a regular hexagonal base.

We consider several cases

- Suppose x_1 and x_2 are perpendicular.
- Using symmetry we have either a double cone or parallel lines.
- Using the same symmetry we have either a double cone again, or a line in the direction of the edges.

Let K be an origin symmetric body in \mathcal{P}_8^3 . Then the maximal volume product of such bodies is the double cone on a regular hexagonal base.

We consider several cases

- Suppose *x*₁ and *x*₂ are perpendicular.
- Using symmetry we have either a double cone or parallel lines.
- Using the same symmetry we have either a double cone again, or a line in the direction of the edges.
- Compare these two cases directly:

$$\mathcal{P}(CP) = \frac{4}{3}\mathcal{P}(H) = \frac{4}{3} \times 9 = 12 > \frac{100}{9}$$

Let K be an origin symmetric body in \mathcal{P}_8^3 . Then the maximal volume product of such bodies is the double cone on a regular hexagonal base.

$$\mathcal{P}(CP) = \frac{4}{3}\mathcal{P}(H) = \frac{4}{3} \times 9 = 12 > \frac{100}{9}$$

Thank You!