
Polytopes of maximal volume product

Matt Alexander
Kent State University

(based on a joint work with Matthieu Fradelizi and Artem Zvavitch)

May 25, 2017
BIRS, Banff, Canada



Volume Product

Definition (Origin Symmetric)
A convex body is origin symmetric if K =−K

Definition (Polar Body)

The polar body of an origin symmetric convex body K in Rn is

Ko = {x ∈ Rn | 〈x ,y〉 ≤ 1 ∀y ∈ K}

Definition (Volume Product)
The Volume Product of an origin symmetric convex body K is

P(K) = |K ||Ko |

Notice that for a non-degenerate linear transform T , P(TK) = P(K).
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Volume Product

Definition (Polar Body)

The polar body of a convex body K in Rn with respect to a point z is

K z = {x ∈ Rn | 〈x − z,y − z〉 ≤ 1 ∀y ∈ K}

Definition (Santaló Point)
For a convex body K the Santaló point is the unique point s(K) ∈ int(K)
such that

|K s(K)|= min
z∈int (K)

|K z |

Definition (Volume Product)
The Volume Product of a convex body K is

P(K) = inf
{
|K ||K z | : z ∈ int(K)

}
= |K ||K s(K)|
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Mahler’s conjecture for P(K ) = |K ||K ◦|:

For any convex symmetric body K ⊂ Rn: P(K)≥ P(Bn
∞) = 4n

n! , where Bn
∞-cube.

True if n = 2 (Mahler,1939); Open if n ≥ 3.
True for

Zonoids (Reisner, 1986), (Gordon, Meyer, Reisner,1988).
Unconditional convex bodies (Saint-Raymond,1981),
Equality case (Meyer, 1986), (Reisner, 1987).
Convex bodies with ‘many’ symmetries (Barthe, Fradelizi, 2010).
Polytopes with at most a few vertices (Lopez, Reisner 1998), (Meyer, Reisner,
2006).
K ⊂ R3 which is the convex hull of two 2-dimensional convex bodies (Meyer,
Fradelizi, Zvavitch, 2011).

Other results

Curvature Conditions: If a body has a point of positive curvature then it is not a
minimizer. (Stancu, 2009), (Reisner, Schütt, Werner, 2010), (Gordon, Meyer,
2011).
Bourgain-Milman Inequality: P(K)≥ cnP(Bn

∞) for all convex K ⊂ Rn

(Bourgain, Milman,1987), (Kuperberg, 2008), (Nazarov, 2009), (Giannopoulos,
Paouris, Vritsiou, 2012).
Functional forms (for log-concave functions): (Klartag, Milman, 2005),
(Fradelizi, Meyer, 2008, 2010), (Gordon, Fradelizi, Meyer, Reisner, 2010).
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Upper bound for volume product P(K ) = |K ||K s(K)|:

Blaschke - Santaló Inequality: Let Bn
2 = {x ∈ Rn : |x | ≤ 1}.

Then for any convex (symmetric) body K ⊂ Rn,

P(K)≤ P(Bn
2 ) = |Bn

2 |
2.

Moreover, equality holds iff K is an ellipsoid.

(Blaschke, 1923) for n ≤ 3, (Santaló,1948) for n > 3.
(Saint-Raymond, 1981), (Petty, 1985) for the equality case.
Other proofs (using Steiner symmetrization): (Ball, 1986), (Meyer, Pajor,
1990).

Stability Results: (Böröczky 2010), (Barthe, Böröczky, Fradelizi, 2012).
Functional forms (for log-concave functions): (Ball,1986), (Artstein,
Klartag, Milman,2004), (Fradelizi, Meyer, 2007).
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Our Direction

Some notation:
For n ≥ 1 denote by Kn the set of all convex bodies in Rn endowed with
the Hausdorff distance.

For m ≥ n+1, denote by Pn
m the subset of Kn consisting of the polytopes

in Rn with non-empty interior having at most m vertices.
Pn = ∪m∈NPn

m, the dense subset of Kn consisting of all polytopes with
non empty interior.
We denote by Mn

m the supremum of the volume product of polytopes with
at most m vertices and non-empty interior in Rn

Mn
m := sup

K∈Pn
m

P(K).
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Exact solution in R2

Theorem (Meyer, Reisner ’11 / A., Fradelizi, Zvavitch ’16+)

Let N ≥ 3. The regular N-gon has maximal volume product among all polygons
with at most N vertices, that is, polygons in P2

N . More precisely, for every
polygon K with at most N vertices, one has

P(K)≤ P(PN),

with equality if and only if K is an affine image of PN .

Note, P(RN) = N2 sin2 ( π
N
)
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Behavior of Mn
m

We denote by Mn
m the supremum of the volume product of polytopes with

at most m vertices and non-empty interior in Rn

Mn
m := sup

K∈Pn
m

P(K).

Theorem (A., Fradelizi, Zvavitch)

Let n≥ 1 and m≥ n+1. Then the supremum Mn
m is achieved at some polytope

with exactly m vertices and the sequence Mn
m is strictly increasing in m.

Notice that simply adding a vertex will not necessarily increase the volume
product. Consider K = B2

∞ and xε = (10,1− ε). Then

lim
ε→0
P(conv{B2

∞,xε}) = P(conv{(1,−1); (−1,−1); (−1,1); (10,1)})< P(B2
∞).

The final inequality follows from the previous slide.
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General Characterization of a Maximum

Definition (Simplicial)

A polytope P in Rn is simplicial if every facet is a simplex.

Theorem (A., Fradelizi, Zvavitch)

Let n ≥ 1 and m ≥ n+1. Let K be of maximal volume product among
polytopes with at most m vertices. Then K is a simplicial polytope.
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Exact Solution for m = n +2

Theorem (A., Fradelizi, Zvavitch)

Let K be the convex hull of n+2 points. Let m = b n
2 c and p = d n

2 e= n−m.
Then K is the convex hull of two simplices ∆m and ∆p living in supplementary
affine subspaces of dimensions m and p respectively.

Open for m > n+2
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Exact Solution for symmetric case in R3 with 8 points

Theorem (A., Fradelizi, Zvavitch)

Let K be an origin symmetric body in P3
8 . Then the maximal volume product

of such bodies is the double cone on a regular hexagonal base.

Open for symmetric bodies with m = 2n+2 in Rn with n > 3
Open for symmetric bodies with m > 2n+2 in Rn with n ≥ 3
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Main tools

Definition (Shadow System)

A shadow system in direction ~θ ∈ Sn−1 is given by

Kt = conv{x +α(x)t~θ|x ∈M}

where M ⊂ Rn is bounded, α : M→ R is bounded, and t ∈ [a,b]⊂ R.
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Theorem (Rogers & Shephard ’58)

Let Kt , t ∈ [0,1] be a shadow system of origin symmetric convex bodies in Rn

then |Kt | is a convex function of t.

Theorem (Campi & Gronchi ’06)

Let Kt , t ∈ [0,1] be a shadow system of origin symmetric convex bodies in Rn

then |Ko
t |−1 is convex in t.

Matt Alexander Polytopes of maximal volume product



Main tools

Definition (Shadow System)

A shadow system in direction ~θ ∈ Sn−1 is given by

Kt = conv{x +α(x)t~θ|x ∈M}

where M ⊂ Rn is bounded, α : M→ R is bounded, and t ∈ [a,b]⊂ R.

Theorem (Rogers & Shephard ’58)

Let Kt , t ∈ [0,1] be a shadow system of origin symmetric convex bodies in Rn

then |Kt | is a convex function of t.

Theorem (Campi & Gronchi ’06)

Let Kt , t ∈ [0,1] be a shadow system of origin symmetric convex bodies in Rn

then |Ko
t |−1 is convex in t.

Matt Alexander Polytopes of maximal volume product



Main tools

Definition (Shadow System)

A shadow system in direction ~θ ∈ Sn−1 is given by

Kt = conv{x +α(x)t~θ|x ∈M}

where M ⊂ Rn is bounded, α : M→ R is bounded, and t ∈ [a,b]⊂ R.

Theorem (Rogers & Shephard ’58)

Let Kt , t ∈ [0,1] be a shadow system of origin symmetric convex bodies in Rn

then |Kt | is a convex function of t.

Theorem (Campi & Gronchi ’06)

Let Kt , t ∈ [0,1] be a shadow system of origin symmetric convex bodies in Rn

then |Ko
t |−1 is convex in t.
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Shadow Systems

Theorem (Campi & Gronchi ’06)

Let Kt , t ∈ [0,1] be a shadow system of origin symmetric convex bodies in Rn

with |Kt | constant, then (|K ||Ko
t |)−1 is convex in t.

Theorem (Meyer & Reisner ’07)

Let Kt , t ∈ [0,1] be a shadow system of convex bodies in Rn with |Kt |

constant, then
(
|K ||K s(Kt )

t |
)−1

is convex in t.

Theorem (Fradelizi, Meyer, & Zvavitch)

Let Kt , t ∈ [0,1] be a shadow system of convex bodies in Rn with |Kt | an

affine function on [−a,a] , then
(
|Kt ||K s(Kt )

t |
)−1

is quasi-convex in t. That is,
for any [c,d ]⊂ [−a,a], min[c,d]P(Kt) = min{P(Kc ),P(Kd )}
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Adding one point

Lemma

Let n,m ∈ N with m ≥ n+1 and K ∈ Pn
m. Let F be a facet of K with exterior

normal u ∈ Sn−1, let xF be in the relative interior of F and let
Kt = conv(K ,xF + tu), for t > 0. Then for t small enough the volume product
of Kt is strictly larger than the volume product of K:

P(Kt)> P(K).

Take the point xF and move it slightly adding volume to K .
This move cuts some volume from K s(K)

For t small enough we get

P(Kt)≥ P(K) + t|K s(K)||F |/n+o(t)> P(K).

Essential to use result of Kim and Reisner on stability of the volume
product with respect to small changes to the center of duality
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Behavior of Mn
m

Theorem

Let n≥ 1 and m≥ n+1. Then the supremum Mn
m is achieved at some polytope

with exactly m vertices and the sequence Mn
m is strictly increasing in m.

Mn
m := sup

K∈Pn
m

P(K) = sup{P(K) : K ∈ Pn
m,Bn

2 ⊂ K ⊂ nBn
2}.

This set is compact in the Hausdorff metric.
The volume product is a continuous function on Kn.
So the supremum is attained.
We induct using the previous theorem.
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Characterization of maximum

Theorem

Let n ≥ 1 and m ≥ n+1. Let K be of maximal volume product among
polytopes with at most m vertices. Then K is a simplicial polytope.

We move an arbitrary vertex slightly, similar to a method of Meyer and
Reisner.
For a vertex x denote by F(x) the set of facets of K containing x and
denote by Fx the facet of K◦ corresponding to x .
Then using the assumption that K is maximal, we get the following
characteristic equation.

|K◦|
∑

F∈F(x)

|conv(F ,0)|= n|K ||conv(Fx ,0)|.

Using the fact that this holds for all vertices and some combinatorics we
find that K must be simplicial.
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Simple reminder

Lemma

Let K ∈ Rn be a convex body, and F a concave continuous function
F : K → R. Assume that K and F are invariant under linear isometries
T1, ...,Tm. Then there is x0 ∈ K such that Ti (x0) = x0, for all i = 1, . . . ,m and
F (x0)≥ F (x) for all x ∈ K.

Theorem (Radon’s Theorem)

A set of points with cardinality greater than n+2 in Rn can be separated into
two disjoint sets whose convex hulls intersect.
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Non-symmetric with m = n +2

Theorem

Let K be the convex hull of n+2 points. Let m = b n
2 c and p = d n

2 e= n−m.
Then

P(K)≤ (p+1)p+1(m+1)m+1

n!p!m! ,

with equality if and only if K is the convex hull of two simplices ∆m and ∆p
living in supplementary affine subspaces of dimensions m and p respectively.
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Let K be the convex hull of n+2 points. Let m = b n
2 c and p = d n
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P(K)≤ (p+1)p+1(m+1)m+1

n!p!m! ,

with equality if and only if K is the convex hull of two simplices ∆m and ∆p
living in supplementary affine subspaces of dimensions m and p respectively.

Use Radon’s to separate the set of vertices into two supplementary
subspaces.

Notice that the number of vertices do not allow for the intersection of the
subspaces to be larger.
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Non-symmetric with m = n +2

Theorem

Let K be the convex hull of n+2 points. Let m = b n
2 c and p = d n

2 e= n−m.
Then

P(K)≤ (p+1)p+1(m+1)m+1

n!p!m! ,

with equality if and only if K is the convex hull of two simplices ∆m and ∆p
living in supplementary affine subspaces of dimensions m and p respectively.

Theorem

Let 1≤ k ≤ n−1 be integers and let E and F be two supplementary subspaces
of Rn of dimensions k and n−k respectively. Let L⊂ E and M ⊂ F be convex
bodies of the appropriate dimensions such that Fix(L) = Fix(M) = {0}. Then
for every x ∈ L and y ∈M

P(conv(L− x ,M− y))≤ P(conv(L,M)) = P(L)P(M)(n
k
) ,

with equality if and only if x = y = 0.
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Symmetric

Corollary

Let L⊂ Rn−1 be a convex body such that Fix(L) is one point. Then among all
double pyramids K = conv(L,x ,y) in Rn with base L separating apexes x and
y, the volume product P(K) is maximal when x and y are symmetric with
respect to the Santaló point of L.
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Symmetric with n = 3 and m = 8

Theorem

Let K be an origin symmetric body in P3
8 . Then the maximal volume product

of such bodies is the double cone on a regular hexagonal base.

Matt Alexander Polytopes of maximal volume product



Symmetric with n = 3 and m = 8

Theorem

Let K be an origin symmetric body in P3
8 . Then the maximal volume product

of such bodies is the double cone on a regular hexagonal base.

We consider several cases
Suppose x1 and x2 are perpendicular.

Using symmetry we have either a double cone or parallel lines.
Using the same symmetry we have either a double cone again, or a line in
the direction of the edges.
Compare these two cases directly:

P(CP) = 4
3P(H) = 4

3 ×9 = 12> 100
9
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Reminder: Soccer is mandatory

Thank You!
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