Representing graphs by sphere packings

Oleg R. Musin

University of Texas Rio Grande Valley

BIRS, May 23, 2017

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Contents

Euclidean and spherical graph representations as two-distance sets

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- Euclidean and spherical graph representations as contact graphs of congruent sphere packings
- 3 Generalizations of Steiner's porism and Soddy's hexlet

Review

K. Bezdek and S. Reid. Contact graphs of unit sphere packings revisited. *J. Geom.*, 104(1): 57–83, 2013.

K. Bezdek and M. A. Khan. Contact numbers for sphere packings, arXiv:1601.00145.

P. Hlinený and J. Kratochvíl. Representing graphs by disks and balls (a survey of recognition-complexity results). *Discrete Math.*, 229 (2001), 101–124

O. R. Musin. Graphs and spherical two-distance sets. arXiv:1608.03392.

O. R. Musin. Representing graphs by congruent sphere packings, in preparation

O. R. Musin. Analogs of Steiner's porism and Soddy's hexlet in higher dimensions via spherical codes, in preparation

Two-distance sets

A set S in Euclidean space \mathbb{R}^n is called a *two-distance set*, if there are two distances a and b, and the distances between pairs of points of S are either a or b.

If a two-distance set S lies in the unit sphere \mathbb{S}^{n-1} , then S is called *spherical two-distance set.*

ション ふゆ く 山 マ チャット しょうくしゃ

Euclidean representation of graphs

Let *G* be a graph on *n* vertices. Consider a *Euclidean* representation of *G* in \mathbb{R}^d as a two distance set. In other words, there are two positive real numbers *a* and *b* with $b \ge a > 0$ and an embedding *f* of the vertex set of *G* into \mathbb{R}^d such that

$$dist(f(u), f(v)) := \begin{cases} a & \text{if } uv \text{ is an edge of } G \\ b & \text{otherwise} \end{cases}$$

We will call the smallest *d* such that *G* is representable in \mathbb{R}^d the *Euclidean representation number* of *G* and denote it Erep(G).

Euclidean representation number of graphs

A complete graph K_n represents the edges of a regular (n-1)-simplex. So we have $\text{Erep}(K_n) = n - 1$. That implies

$$\operatorname{Erep}(G) \leq n-1$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

for any graph G on n vertices.

Since for a two-distance set of cardinality n in \mathbb{R}^d

$$n\leq \frac{(d+1)(d+2)}{2}.$$

we have

$$\operatorname{Erep}(G) \geq \frac{\sqrt{8n+1}-3}{2}.$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Einhorn and Schoenberg work

Einhorn and Schoenberg (ES66) proved that

Theorem

Let G be a simple graph on n vertices. Then Erep(G) = n - 1 if and only if G is a disjoint union of cliques.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Einhorn and Schoenberg work on two-distance sets (1966)

Denote by Σ_n the number of all two-distance sets with *n* vertices in \mathbb{R}^{n-2} . Then

$$\Sigma_n=\Gamma_n-p(n),$$

where Γ_n is the number of all simple undirected graphs and p(n) is the number of unrestricted partitions of n.

$ \Gamma_4 =11,$	$ \Gamma_5 =34,$	$ \Gamma_6 =156,$	$ \Gamma_7 =1044,$
p(4) = 5,	p(5) = 7,	p(6)=11,	$p(7) = 15, \dots$
$ \Sigma_4 =6,$	$ \Sigma_5 =27,$	$\left \Sigma_{6} \right = 145,$	$ \Sigma_7 =1029,$

Let $S = \{p_1, \ldots, p_n\}$ in \mathbb{R}^{n-1} . Denote $d_{ij} := \operatorname{dist}(p_i, p_j)$. Consider the Cayley–Menger determinant

$$C_{S} := \begin{vmatrix} 0 & 1 & 1 & \dots & 1 \\ 1 & 0 & d_{12}^{2} & \dots & d_{1n}^{2} \\ 1 & d_{21}^{2} & 0 & \dots & d_{2n}^{2} \\ \dots & \dots & \dots & \dots \\ 1 & d_{n1}^{2} & d_{n2}^{2} & \dots & 0 \end{vmatrix}$$

Let *S* be a two-distance set with a = 1 and b > 1. Then for $i \neq j$,

$$d_{ij}^2=1$$
 or $d_{ij}^2=b^2$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

 C_S is a polynomial in $t = b^2$.

Denote this polynomial by C(t).

$$V_{n-1}^2(S) = \frac{(-1)^n C_s}{2^{n-1} \left((n-1)! \right)^2}$$

Actually, Einhorn and Schoenberg considered the discriminating polynomial D(t) that can be defined through the Gram determinant. It is known that

$$C(t) = (-1)^n D(t)$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Let G be a simple graph. Then

$$C_G(t) := C(t)$$

is uniquely defined by G.

Suppose there is a solution t > 1 of $C_G(t) = 0$.

Definition

Denote by τ_1 the smallest root t of C_G such that t > 1.

 $\mu(G)$ denote the multiplicity of the root τ_1 .

If for all roots t of C_G we have $t \leq 1$, then we assume that $\mu(G) := 0$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

The graph complement of G

If
$$\mu(G) > 0$$
, then $\tau_0(G) := 1/\tau_1(G)$ is a root of $C_{\bar{G}}(t)$ and $\tau_1(\bar{G}) = 1/\tau_0(G)$. Note that there are no more roots of $C_G(t)$ on the interval $[\tau_0(G), \tau_1(G)]$.

 $C_{\bar{G}}(t)$ is the reciprocal polynomial of $C_{G}(t)$, i.e.

$$C_{\overline{G}}(t) = t^k C_G(1/t), \quad k = \deg C_G(t).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Einhorn–Schoenberg theorem

Theorem

Let G be a simple graph on n vertices. Then

$$\mathrm{Erep}(G) = n - \mu(G) - 1$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

If $\mu(G) > 0$, then a minimal Euclidean representation of G is uniquely define up to isometry.

$$C_1(t) = t^2(2-t), \quad C_2(t) = t(3-t), \quad C_3(t) = -t^2 + 4t - 1$$

$$C_4(t) = t^2(3-t), \quad C_5(t) = (t+1)(3t-t^2-1), \quad C_6(t) = -t^2+4t-1$$

◆□> <圖> < E> < E> E のQ@

$$G=K_{2,\ldots,2}$$

Theorem

Let G be a complete m-partite graph $K_{2,...,2}$. Then Erep(G) = m and a minimal Euclidean representation of G is a regular cross-polytope.

Proof.

We have n = 2m and

$$C_G(t) = 2m t^m (2-t)^{m-1}.$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Then $\tau_1 = 2$ and $\mu(G) = m - 1$. Thus, $\text{Erep}(K_{2,...,2}) = m$.

V. Alexandrov (2016)

$G = K_{2,...,2}$: geometric proof

Lemma

Let for sets X_1 and X_2 in \mathbb{R}^d there is a > 0 such that $\operatorname{dist}(p_1, p_2) = a$ for all $p_1 \in X_1$, $p_2 \in X_2$. Then both X_i are spherical sets and the affine spans $\operatorname{aff}(X_i)$ in \mathbb{R}^d are orthogonal each other.

Let S := f(V(G)) in \mathbb{R}^d . Then \mathbb{R}^d can be split into the orthogonal product $\prod_{i=1}^m L_i$ of lines such that for $S_i := S \cap L_i$ we have $|S_i| = 2$. Thus, d = m and S is a regular cross-polytope.

Spherical representations of graphs

Let f be a Euclidean representation of a graph G on n vertices in \mathbb{R}^d as a two distance set. We say that f is a *spherical* representation of G if the image f(G) lies on a (d-1)-sphere in \mathbb{R}^d . We will call the smallest d such that G is spherically representable in \mathbb{R}^d the *spherical representation number* of G and denote it $\operatorname{Srep}(G)$.

Nozaki and Shinohara (2012) using Roy's results (2010) give a necessary and sufficient condition of a Euclidean representation of a graph G to be spherical.

We define a polynomial $M_G(t)$ and show that a Euclidean representation is spherical if and only if the multiplicity of $\tau_1(G)$ is the same for $C_G(t)$ and $M_G(t)$

Spherical representations of graphs

Let
$$S = \{p_1, \dots, p_n\}$$
 be a set in \mathbb{R}^{n-1} . As above $d_{ij} := \operatorname{dist}(p_i, p_j)$. Let

$$M_{\mathcal{S}} := \begin{vmatrix} 0 & d_{12}^2 & \dots & d_{1n}^2 \\ d_{21}^2 & 0 & \dots & d_{2n}^2 \\ \dots & \dots & \dots & \dots \\ d_{n1}^2 & d_{n2}^2 & \dots & 0 \end{vmatrix}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

The circumradius of a simplex

It is well known, that if the points in S form a simplex of dimension (n-1), the radius R of the sphere circumscribed around this simplex is given by

$$R^2 = -\frac{1}{2}\frac{M_S}{C_S}.$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Spherical representations of graphs

For a given graph G we denote by $M_G(t)$ the polynomial in $t = b^2$ that defined by M_S . Let

$$F_G(t):=-\frac{1}{2}\frac{M_G(t)}{C_G(t)}.$$

うして ふゆう ふほう ふほう うらう

If G is a graph with $\mu(G) > 0$ and $F_G(\tau_1) < \infty$, then denote $\mathcal{R}(G) := \sqrt{F_G(\tau_1)}$. Otherwise, put $\mathcal{R}(G) := \infty$. We will call $\mathcal{R}(G)$ the circumradius of G.

Spherical representations of graphs

Theorem

Let G be a graph on n vertices with $\mathcal{R}(G) < \infty$. Then Srep $(G) = n - \mu(G) - 1$, otherwise Srep(G) = n - 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The circumradius of a graph

Theorem

 $\mathcal{R}(G) \geq 1/\sqrt{2}.$

It is not clear what is the range of $\mathcal{R}(G)$? If $\mathcal{R}(G) < \infty$, then for a fixed *n* there are only finitely many cases. Thus the range is a countable set.

Open question. Suppose $\mathcal{R}(G) < \infty$. What is the upper bound of $\mathcal{R}(G)$? Can $\mathcal{R}(G)$ be greater than 1?

ション ふゆ く 山 マ チャット しょうくしゃ

J-spherical representation of graphs

We have $\mathcal{R}(G) \ge 1/\sqrt{2}$. Now consider the boundary case $\mathcal{R}(G) = 1/\sqrt{2}$.

Definition

Let f be a spherical representation of a graph G in \mathbb{R}^d as a two distance set. We say that f is a J-spherical representation of G if the image f(G) lies in the unit sphere \mathbb{S}^{d-1} and the first (minimum) distance $a = \sqrt{2}$.

Theorem

For any graph $G \neq K_n$ there is a unique (up to isometry) J-spherical representation.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ⊙

J-spherical representation of graphs

The uniqueness of a J-spherical representation of $G \neq K_n$ shows that the following definition is correct.

Definition

Jrep(G) = J-spherical representation dimension $b_*(G) =$ the second distance of this representation.

If G is the pentagon, then Srep(G) = 2 < Jrep(G) = 4.

Theorem

Let $G \neq K_n$ be a graph on n vertices. If $\mathcal{R}(G) = 1/\sqrt{2}$, then

 $\operatorname{Jrep}(G) = n - \mu(G) - 1$, otherwise $\operatorname{Jrep}(G) = n - 1$.

Representation numbers of the join of graphs

Recall that the *join* $G = G_1 + G_2$ of graphs G_1 and G_2 with disjoint point sets V_1 and V_2 and edge sets E_1 and E_2 is the graph union $G_1 \cup G_2$ together with all the edges joining V_1 and V_2 .

ション ふゆ く 山 マ チャット しょうくしゃ

Representation numbers of the join of graphs

Definition

We say that G on n vertices is J-simple if Jrep(G) = n - 1.

Theorem

Let $G := G_1 + \ldots + G_m$. Suppose all G_i are J-simple and

$$b_*(G_1) = \ldots = b_*(G_k) < b_*(G_{k+1}) \le \ldots \le b_*(G_m).$$

Then

$$\operatorname{Jrep}(G) = \operatorname{Srep}(G) = n - k$$
, $\operatorname{Erep}(G) = n - \max(k, 2)$,

where n denote the number of vertices of G.

Representation numbers of complete multipartite graphs

Corollary

Let G be a complete multipartite graph $K_{n_1...n_m}$. Suppose

$$n_1=\ldots=n_k>n_{k+1}\geq\ldots\geq n_m.$$

Note that Statement 1 in the Corollary first proved by Roy (2010).

Contact graph

Let X be a finite subset of a metric space M. Denote

$$\psi(X) := \min_{x,y \in X} \{ \operatorname{dist}(x,y) \}, \text{ where } x \neq y.$$

The contact graph CG(X) is a graph with vertices in X and edges $(x, y), x, y \in X$, such that $dist(x, y) = \psi(X)$. In other words, CG(X) is the contact graph of a packing of spheres of diameter $\psi(X)$ with centers in X.

Euclidean representations

 $M = \mathbb{R}^d$ and $M = \mathbb{S}^{d-1}$. Let G = (V, E) be a simple graph with at least one edge. Let $f : V \to \mathbb{R}^d$ be a minimal Euclidean contact graph representation. Then denote the dimension d by dim_E(G).

Theorem

Let G be a graph on n vertices. Let $G \neq K_n$. Then

 $\dim_{\mathrm{E}}(G) \leq n-2.$

ション ふゆ く 山 マ チャット しょうくしゃ

Spherical representations

Let X be a spherical representation of G in \mathbb{S}^{d-1} , i.e. $\operatorname{CG}(X) = G$. Denote by $\dim_{\mathrm{S}}(G, \theta)$ the smallest dimension d such that $\psi(X) = \theta$. The dimension of a minimal spherical contact graph representation of G we denote $\dim_{\mathrm{S}}(G)$,

$$\dim_{\mathrm{S}}(\mathcal{G}) := \min_{0 < \theta < \theta_0} \dim_{\mathrm{S}}(\mathcal{G}, \theta), \ \theta_0 := \arccos(-1/(n-1)).$$

Theorem

Let G = (V, E) be a graph on n vertices. Let $0 < \theta < \theta_0$. Then

$$\dim_{\mathrm{S}}(G,\theta) \leq n-1.$$

Join of graphs

The orthogonality lemma implies explicit formulas for the graph join and multipartite graphs $K_{n_1...n_m}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

If a Steiner chain is formed from one starting circle, then a Steiner chain is formed from any other starting circle. G6bor Dam6sdi

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Steiner's chain

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Steiner's chain

Soddy's hexlet

Soddy's hexlet is a chain of six spheres each of which is tangent to both of its neighbors and also to three mutually tangent given spheres.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

◆□ > < 個 > < E > < E > E 9 < 0</p>

Soddy's hexlet

Inversion T

Let S_1 and S_2 be spheres in \mathbb{R}^n . Consider two cases:

(i) S_1 and S_2 are tangent;

(ii) S_1 and S_2 do not touch each other.

In case (i) let O be the contact point of these spheres and if we apply the sphere inversion T with center O and an arbitrary radius ρ , then S_1 and S_2 become two parallel hyperplanes S'_1 and S'_2 . In case (ii) we can use the famous theorem: There is T that invert S_1 and S_2 into a pair of concentric spheres S'_1 and S'_2 .

Lemma

The radius r_T of S' = T(S) is the same for all spheres S that are tangent to S_1 and S_2 .

\mathcal{F} -kissing arrangements and spherical codes

Let $\mathcal{F} = \{S_1, \ldots, S_m\}$, $2 \leq m < n+2$, be a family of *m* spheres in \mathbb{R}^n such that S_1 and S_2 are non-intersecting or tangent spheres. We say that a set \mathcal{C} of spheres in \mathbb{R}^n is an \mathcal{F} -kissing arrangement if (1) each sphere from \mathcal{C} is tangent all spheres from \mathcal{F} , (2) any two distinct spheres from \mathcal{C} are non-intersecting.

Theorem

For a given \mathcal{F} the inversion T defines a one-to-one correspondence between \mathcal{F} -kissing arrangements and spherical $\psi_{\mathcal{F}}$ -codes in \mathbb{S}^{d-1} , where $\psi_{\mathcal{F}} \in [0, \infty]$ is uniquely defined by \mathcal{F} .

うして ふゆう ふほう ふほう うらつ

Analogs of Steiner's porism

Theorem

Let $\mathcal{F} = \{S_1, \ldots, S_m\}$, $2 \leq m < n + 2$, be a family of m spheres in \mathbb{R}^n such that S_1 and S_2 are non-intersecting spheres. If a Steiner packing is formed from one starting sphere, then a Steiner packing is formed from any other starting packing.

うして ふゆう ふほう ふほう うらう

Steiner's packings

Proposition

If for a family \mathcal{F} there exist a simplicial \mathcal{F} -kissing arrangement then we have one of the following cases

- **1** d = 2, $\psi_{\mathcal{F}} = 2\pi/k$, $k \ge 3$, and $P_{\mathcal{F}}$ is a regular polygon with k vertices.
- 2 ψ_F = arccos(−1/d) and P_F is a regular d-simplex with any d ≥ 2.
- 3 ψ_F = π/2 and P_F is a regular d−crosspolytope with any d ≥ 2.
- 4 d = 3, $\psi_F = \arccos(1/\sqrt{5})$ and P_F is a regular icosahedron.
- 5 d = 4, $\psi_F = \pi/5$ and P_F is a regular 600–cell.

Analogs of Soddy's hexlet

Theorem

Let $3 \le m < n + 2$. Let X be a spherical ψ_m -codes in \mathbb{S}^{d-1} , where d := n + 2 - m. Then for any family \mathcal{F} of m mutually tangent spheres in \mathbb{R}^n there is an \mathcal{F} -kissing arrangement that is correspondent to X.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

THANK YOU

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○