Representing graphs by sphere packings

Oleg R. Musin

University of Texas Rio Grande Valley
BIRS, May 23, 2017

Contents

1 Euclidean and spherical graph representations as two-distance sets
2 Euclidean and spherical graph representations as contact graphs of congruent sphere packings
3 Generalizations of Steiner's porism and Soddy's hexlet

Review

K. Bezdek and S. Reid. Contact graphs of unit sphere packings revisited. J. Geom., 104(1): 57-83, 2013.
K. Bezdek and M. A. Khan. Contact numbers for sphere packings, arXiv:1601.00145.
P. Hlinený and J. Kratochvíl. Representing graphs by disks and balls (a survey of recognition-complexity results). Discrete Math., 229 (2001), 101-124
O. R. Musin. Graphs and spherical two-distance sets. arXiv:1608.03392.
O. R. Musin. Representing graphs by congruent sphere packings, in preparation
O. R. Musin. Analogs of Steiner's porism and Soddy's hexlet in higher dimensions via spherical codes, in preparation

Two-distance sets

A set S in Euclidean space \mathbb{R}^{n} is called a two-distance set, if there are two distances a and b, and the distances between pairs of points of S are either a or b.

If a two-distance set S lies in the unit sphere \mathbb{S}^{n-1}, then S is called spherical two-distance set.

Euclidean representation of graphs

Let G be a graph on n vertices. Consider a Euclidean representation of G in \mathbb{R}^{d} as a two distance set. In other words, there are two positive real numbers a and b with $b \geq a>0$ and an embedding f of the vertex set of G into \mathbb{R}^{d} such that

$$
\operatorname{dist}(f(u), f(v)):=\left\{\begin{array}{l}
a \text { if } u v \text { is an edge of } G \\
b \text { otherwise }
\end{array}\right.
$$

We will call the smallest d such that G is representable in \mathbb{R}^{d} the Euclidean representation number of G and denote it $\operatorname{Erep}(G)$.

Euclidean representation number of graphs

A complete graph K_{n} represents the edges of a regular $(n-1)$-simplex. So we have $\operatorname{Erep}\left(\mathrm{K}_{n}\right)=n-1$. That implies

$$
\operatorname{Erep}(G) \leq n-1
$$

for any graph G on n vertices.

Since for a two-distance set of cardinality n in \mathbb{R}^{d}

$$
n \leq \frac{(d+1)(d+2)}{2}
$$

we have

$$
\operatorname{Erep}(G) \geq \frac{\sqrt{8 n+1}-3}{2}
$$

Einhorn and Schoenberg work

Einhorn and Schoenberg (ES66) proved that

Theorem

Let G be a simple graph on n vertices. Then $\operatorname{Erep}(G)=n-1$ if and only if G is a disjoint union of cliques.

Einhorn and Schoenberg work on two-distance sets (1966)

Denote by Σ_{n} the number of all two-distance sets with n vertices in \mathbb{R}^{n-2}. Then

$$
\Sigma_{n}=\Gamma_{n}-p(n)
$$

where Γ_{n} is the number of all simple undirected graphs and $p(n)$ is the number of unrestricted partitions of n.

$$
\begin{array}{cccc}
\left|\Gamma_{4}\right|=11, & \left|\Gamma_{5}\right|=34, & \left|\Gamma_{6}\right|=156, & \left|\Gamma_{7}\right|=1044, \ldots \\
p(4)=5, & p(5)=7, & p(6)=11, & p(7)=15, \ldots \\
\left|\Sigma_{4}\right|=6, & \left|\Sigma_{5}\right|=27, & \left|\Sigma_{6}\right|=145, & \left|\Sigma_{7}\right|=1029, \ldots
\end{array}
$$

Let $S=\left\{p_{1}, \ldots, p_{n}\right\}$ in \mathbb{R}^{n-1}. Denote $d_{i j}:=\operatorname{dist}\left(p_{i}, p_{j}\right)$.
Consider the Cayley-Menger determinant

$$
C_{S}:=\left|\begin{array}{ccccc}
0 & 1 & 1 & \ldots & 1 \\
1 & 0 & d_{12}^{2} & \ldots & d_{1 n}^{2} \\
1 & d_{21}^{2} & 0 & \ldots & d_{2 n}^{2} \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right| \cdots \cdots .
$$

Let S be a two-distance set with $a=1$ and $b>1$. Then for $i \neq j$,

$$
d_{i j}^{2}=1 \text { or } d_{i j}^{2}=b^{2}
$$

C_{S} is a polynomial in $t=b^{2}$.
Denote this polynomial by $C(t)$.

$$
V_{n-1}^{2}(S)=\frac{(-1)^{n} C_{s}}{2^{n-1}((n-1)!)^{2}}
$$

Actually, Einhorn and Schoenberg considered the discriminating polynomial $D(t)$ that can be defined through the Gram determinant. It is known that

$$
C(t)=(-1)^{n} D(t)
$$

Let G be a simple graph. Then

$$
C_{G}(t):=C(t)
$$

is uniquely defined by G.
Suppose there is a solution $t>1$ of $C_{G}(t)=0$.

Definition

Denote by τ_{1} the smallest root t of C_{G} such that $t>1$. $\mu(G)$ denote the multiplicity of the root τ_{1}.

If for all roots t of C_{G} we have $t \leq 1$, then we assume that $\mu(G):=0$.

The graph complement of G

If $\mu(G)>0$, then $\tau_{0}(G):=1 / \tau_{1}(G)$ is a root of $C_{\bar{G}}(t)$ and $\tau_{1}(\bar{G})=1 / \tau_{0}(G)$. Note that there are no more roots of $C_{G}(t)$ on the interval $\left[\tau_{0}(G), \tau_{1}(G)\right]$.
$C_{\bar{G}}(t)$ is the reciprocal polynomial of $C_{G}(t)$, i.e.

$$
C_{\bar{G}}(t)=t^{k} C_{G}(1 / t), \quad k=\operatorname{deg} C_{G}(t) .
$$

The Einhorn-Schoenberg theorem

Theorem

Let G be a simple graph on n vertices. Then

$$
\operatorname{Erep}(G)=n-\mu(G)-1
$$

If $\mu(G)>0$, then a minimal Euclidean representation of G is uniquely define up to isometry.

$$
C_{1}(t)=t^{2}(2-t), \quad C_{2}(t)=t(3-t), \quad C_{3}(t)=-t^{2}+4 t-1
$$

1

2

3

$$
C_{4}(t)=t^{2}(3-t), \quad C_{5}(t)=(t+1)\left(3 t-t^{2}-1\right), \quad C_{6}(t)=-t^{2}+4 t-1
$$

$$
G=K_{2, \ldots, 2}
$$

Theorem

Let G be a complete m-partite graph $K_{2, \ldots, 2}$. Then $\operatorname{Erep}(G)=m$ and a minimal Euclidean representation of G is a regular cross-polytope.

Proof.

We have $n=2 m$ and

$$
C_{G}(t)=2 m t^{m}(2-t)^{m-1}
$$

Then $\tau_{1}=2$ and $\mu(G)=m-1$. Thus, $\operatorname{Erep}\left(K_{2, \ldots, 2}\right)=m$.

V. Alexandrov (2016)

$G=K_{2, \ldots, 2}$: geometric proof

Lemma

Let for sets X_{1} and X_{2} in \mathbb{R}^{d} there is a >0 such that $\operatorname{dist}\left(p_{1}, p_{2}\right)=$ a for all $p_{1} \in X_{1}, p_{2} \in X_{2}$.
Then both X_{i} are spherical sets and the affine spans aff $\left(X_{i}\right)$ in \mathbb{R}^{d} are orthogonal each other.

Let $S:=f(V(G))$ in \mathbb{R}^{d}. Then \mathbb{R}^{d} can be split into the orthogonal product $\prod_{i=1}^{m} L_{i}$ of lines such that for $S_{i}:=S \cap L_{i}$ we have $\left|S_{i}\right|=2$. Thus, $d=m$ and S is a regular cross-polytope.

Spherical representations of graphs

Let f be a Euclidean representation of a graph G on n vertices in \mathbb{R}^{d} as a two distance set. We say that f is a spherical representation of G if the image $f(G)$ lies on a $(d-1)$-sphere in \mathbb{R}^{d}. We will call the smallest d such that G is spherically representable in \mathbb{R}^{d} the spherical representation number of G and denote it $\operatorname{Srep}(G)$.
Nozaki and Shinohara (2012) using Roy's results (2010) give a necessary and sufficient condition of a Euclidean representation of a graph G to be spherical.

We define a polynomial $M_{G}(t)$ and show that a Euclidean representation is spherical if and only if the multiplicity of $\tau_{1}(G)$ is the same for $C_{G}(t)$ and $M_{G}(t)$

Spherical representations of graphs

Let $S=\left\{p_{1}, \ldots, p_{n}\right\}$ be a set in \mathbb{R}^{n-1}. As above $d_{i j}:=\operatorname{dist}\left(p_{i}, p_{j}\right)$. Let

The circumradius of a simplex

It is well known, that if the points in S form a simplex of dimension ($n-1$), the radius R of the sphere circumscribed around this simplex is given by

$$
R^{2}=-\frac{1}{2} \frac{M_{S}}{C_{S}}
$$

Spherical representations of graphs

For a given graph G we denote by $M_{G}(t)$ the polynomial in $t=b^{2}$ that defined by M_{S}. Let

$$
F_{G}(t):=-\frac{1}{2} \frac{M_{G}(t)}{C_{G}(t)}
$$

If G is a graph with $\mu(G)>0$ and $F_{G}\left(\tau_{1}\right)<\infty$, then denote $\mathcal{R}(G):=\sqrt{F_{G}\left(\tau_{1}\right)}$. Otherwise, put $\mathcal{R}(G):=\infty$.
We will call $\mathcal{R}(G)$ the circumradius of G.

Spherical representations of graphs

Theorem

Let G be a graph on n vertices with $\mathcal{R}(G)<\infty$. Then $\operatorname{Srep}(G)=n-\mu(G)-1$, otherwise $\operatorname{Srep}(G)=n-1$.

The circumradius of a graph

Theorem

$\mathcal{R}(G) \geq 1 / \sqrt{2}$.
It is not clear what is the range of $\mathcal{R}(G)$? If $\mathcal{R}(G)<\infty$, then for a fixed n there are only finitely many cases. Thus the range is a countable set.

Open question. Suppose $\mathcal{R}(G)<\infty$. What is the upper bound of $\mathcal{R}(G)$? Can $\mathcal{R}(G)$ be greater than 1?

J-spherical representation of graphs

We have $\mathcal{R}(G) \geq 1 / \sqrt{2}$. Now consider the boundary case $\mathcal{R}(G)=1 / \sqrt{2}$.

Definition

Let f be a spherical representation of a graph G in \mathbb{R}^{d} as a two distance set. We say that f is a J-spherical representation of G if the image $f(G)$ lies in the unit sphere \mathbb{S}^{d-1} and the first (minimum) distance $a=\sqrt{2}$.

Theorem

For any graph $G \neq K_{n}$ there is a unique (up to isometry) J-spherical representation.

J-spherical representation of graphs

The uniqueness of a J-spherical representation of $G \neq K_{n}$ shows that the following definition is correct.

Definition

$\operatorname{Jrep}(G)=J$-spherical representation dimension
$b_{*}(G)=$ the second distance of this representation.
If G is the pentagon, then $\operatorname{Srep}(G)=2<\operatorname{Jrep}(G)=4$.

Theorem

Let $G \neq K_{n}$ be a graph on n vertices. If $\mathcal{R}(G)=1 / \sqrt{2}$, then

$$
\operatorname{Jrep}(G)=n-\mu(G)-1, \text { otherwise } \operatorname{Jrep}(G)=n-1
$$

Representation numbers of the join of graphs

Recall that the join $G=G_{1}+G_{2}$ of graphs G_{1} and G_{2} with disjoint point sets V_{1} and V_{2} and edge sets E_{1} and E_{2} is the graph union $G_{1} \cup G_{2}$ together with all the edges joining V_{1} and V_{2}.

Representation numbers of the join of graphs

Definition

We say that G on n vertices is J-simple if $\operatorname{Jrep}(G)=n-1$.

Theorem

Let $G:=G_{1}+\ldots+G_{m}$. Suppose all G_{i} are J-simple and

$$
b_{*}\left(G_{1}\right)=\ldots=b_{*}\left(G_{k}\right)<b_{*}\left(G_{k+1}\right) \leq \ldots \leq b_{*}\left(G_{m}\right)
$$

Then

$$
\operatorname{Jrep}(G)=\operatorname{Srep}(G)=n-k, \operatorname{Erep}(G)=n-\max (k, 2)
$$

where n denote the number of vertices of G.

Representation numbers of complete multipartite graphs

Corollary

Let G be a complete multipartite graph $K_{n_{1} \ldots n_{m}}$. Suppose

$$
n_{1}=\ldots=n_{k}>n_{k+1} \geq \ldots \geq n_{m}
$$

Let $n:=n_{1}+\ldots+n_{m}$. Then
1 If $k=1$, then $\operatorname{Erep}(G)=n-2$, otherwise $\operatorname{Erep}(G)=n-k$;
$2 \operatorname{Srep}(G)=n-k$;
$3 \operatorname{Jrep}(G)=n-k$.
Note that Statement 1 in the Corollary first proved by Roy (2010).

Contact graph

Let X be a finite subset of a metric space M. Denote

$$
\psi(X):=\min _{x, y \in X}\{\operatorname{dist}(x, y)\}, \text { where } x \neq y
$$

The contact graph $\mathrm{CG}(X)$ is a graph with vertices in X and edges $(x, y), x, y \in X$, such that $\operatorname{dist}(x, y)=\psi(X)$.
In other words, $\mathrm{CG}(X)$ is the contact graph of a packing of spheres of diameter $\psi(X)$ with centers in X.

Euclidean representations

$M=\mathbb{R}^{d}$ and $M=\mathbb{S}^{d-1}$. Let $G=(V, E)$ be a simple graph with at least one edge. Let $f: V \rightarrow \mathbb{R}^{d}$ be a minimal Euclidean contact graph representation. Then denote the dimension d by $\operatorname{dim}_{E}(G)$.

Theorem
Let G be a graph on n vertices. Let $G \neq K_{n}$. Then

$$
\operatorname{dim}_{\mathrm{E}}(G) \leq n-2
$$

Spherical representations

Let X be a spherical representation of G in \mathbb{S}^{d-1}, i.e. $\mathrm{CG}(X)=G$. Denote by $\operatorname{dim}_{S}(G, \theta)$ the smallest dimension d such that $\psi(X)=\theta$. The dimension of a minimal spherical contact graph representation of G we denote $\operatorname{dim}_{S}(G)$,

$$
\operatorname{dim}_{S}(G):=\min _{0<\theta<\theta_{0}} \operatorname{dim}_{S}(G, \theta), \theta_{0}:=\arccos (-1 /(n-1))
$$

Theorem

Let $G=(V, E)$ be a graph on n vertices. Let $0<\theta<\theta_{0}$. Then

$$
\operatorname{dim}_{S}(G, \theta) \leq n-1
$$

Join of graphs

The orthogonality lemma implies explicit formulas for the graph join and multipartite graphs $K_{n_{1} \ldots n_{m}}$.

Steiner's porism

If a Steiner chain is formed from one starting circle, then a Steiner chain is formed from any other starting circle. G6bor Dam6sdi

Steiner's chain

Steiner's chain

Soddy's hexlet

Soddy's hexlet is a chain of six spheres each of which is tangent to both of its neighbors and also to three mutually tangent given spheres.

Soddy's hexlet

Inversion T

Let S_{1} and S_{2} be spheres in \mathbb{R}^{n}. Consider two cases:
(i) S_{1} and S_{2} are tangent;
(ii) S_{1} and S_{2} do not touch each other.

In case (i) let O be the contact point of these spheres and if we apply the sphere inversion T with center O and an arbitrary radius ρ, then S_{1} and S_{2} become two parallel hyperplanes S_{1}^{\prime} and S_{2}^{\prime}.
In case (ii) we can use the famous theorem: There is T that invert
S_{1} and S_{2} into a pair of concentric spheres S_{1}^{\prime} and S_{2}^{\prime}.

Lemma

The radius r_{T} of $S^{\prime}=T(S)$ is the same for all spheres S that are tangent to S_{1} and S_{2}.

\mathcal{F}-kissing arrangements and spherical codes

Let $\mathcal{F}=\left\{S_{1}, \ldots, S_{m}\right\}, 2 \leq m<n+2$, be a family of m spheres in \mathbb{R}^{n} such that S_{1} and S_{2} are non-intersecting or tangent spheres. We say that a set \mathcal{C} of spheres in \mathbb{R}^{n} is an \mathcal{F}-kissing arrangement if (1) each sphere from \mathcal{C} is tangent all spheres from \mathcal{F},
(2) any two distinct spheres from \mathcal{C} are non-intersecting.

Theorem

For a given \mathcal{F} the inversion T defines a one-to-one correspondence between \mathcal{F}-kissing arrangements and spherical $\psi_{\mathcal{F}}$-codes in \mathbb{S}^{d-1}, where $\psi_{\mathcal{F}} \in[0, \infty]$ is uniquely defined by \mathcal{F}.

Analogs of Steiner's porism

> Theorem
> Let $\mathcal{F}=\left\{S_{1}, \ldots, S_{m}\right\}, 2 \leq m<n+2$, be a family of m spheres in \mathbb{R}^{n} such that S_{1} and S_{2} are non-intersecting spheres. If a Steiner packing is formed from one starting sphere, then a Steiner packing is formed from any other starting packing.

Steiner's packings

Proposition

If for a family \mathcal{F} there exist a simplicial \mathcal{F}-kissing arrangement then we have one of the following cases
$1 d=2, \psi_{\mathcal{F}}=2 \pi / k, k \geq 3$, and $P_{\mathcal{F}}$ is a regular polygon with k vertices.
$2 \psi_{\mathcal{F}}=\arccos (-1 / d)$ and $P_{\mathcal{F}}$ is a regular d-simplex with any $d \geq 2$.
3 $\psi_{\mathcal{F}}=\pi / 2$ and $P_{\mathcal{F}}$ is a regular d-crosspolytope with any $d \geq 2$.
$4 d=3, \psi_{\mathcal{F}}=\arccos (1 / \sqrt{5})$ and $P_{\mathcal{F}}$ is a regular icosahedron.
$5 d=4, \psi_{\mathcal{F}}=\pi / 5$ and $P_{\mathcal{F}}$ is a regular 600-cell.

Analogs of Soddy's hexlet

Theorem

Let $3 \leq m<n+2$. Let X be a spherical ψ_{m}-codes in \mathbb{S}^{d-1}, where $d:=n+2-m$. Then for any family \mathcal{F} of m mutually tangent spheres in \mathbb{R}^{n} there is an \mathcal{F}-kissing arrangement that is correspondent to X.

THANK YOU

