Geometry of triple tensor products

Ohad Giladi, Joscha Prochno, Carsten Schütt, Nicole Tomczak-Jaegermann and Elisabeth Werner
Mathematisches Seminar
CAU Kiel
Department of Mathematics
CWRU Cleveland

May 2017

The Banach-Mazur distance of two Banach spaces X and Y is

$$
d(X, Y)=\inf \left\{\|T\|\left\|T^{-1}\right\| \mid T: X \rightarrow Y \text { is an isomorphism }\right\} .
$$

The Banach-Mazur distance of two Banach spaces X and Y is

$$
d(X, Y)=\inf \left\{\|T\|\left\|T^{-1}\right\| \mid T: X \rightarrow Y \text { is an isomorphism }\right\} .
$$

If there are no isomorphism with finite norm we put

$$
d(X, Y)=\infty .
$$

The Banach-Mazur distance of two Banach spaces X and Y is

$$
d(X, Y)=\inf \left\{\|T\|\left\|T^{-1}\right\| \mid T: X \rightarrow Y \text { is an isomorphism }\right\} .
$$

If there are no isomorphism with finite norm we put

$$
d(X, Y)=\infty
$$

We say that two Banach spaces are isomorphic if their Banach-Mazur distance is finite.

The Banach-Mazur distance of two Banach spaces X and Y is

$$
d(X, Y)=\inf \left\{\|T\|\left\|T^{-1}\right\| \mid T: X \rightarrow Y \text { is an isomorphism }\right\}
$$

If there are no isomorphism with finite norm we put

$$
d(X, Y)=\infty
$$

We say that two Banach spaces are isomorphic if their Banach-Mazur distance is finite.

We want to study the volume ratio and cotype 2 of triple tensor products.

Definition of volume ratio

Let X be a n-dimensional, normed space with unit ball B_{X}. Then

$$
\operatorname{vr}(X)=\inf _{\mathcal{E} \subseteq B_{X}}\left(\frac{\operatorname{vol}_{n}\left(B_{X}\right)}{\operatorname{vol}_{n}(\mathcal{E})}\right)^{\frac{1}{n}}
$$

where \mathcal{E} is an ellipsoid contained in B_{X}.

Definition of volume ratio

Let X be a n-dimensional, normed space with unit ball B_{X}. Then

$$
\operatorname{vr}(X)=\inf _{\mathcal{E} \subseteq B_{X}}\left(\frac{\operatorname{vol}_{n}\left(B_{X}\right)}{\operatorname{vol}_{n}(\mathcal{E})}\right)^{\frac{1}{n}}
$$

where \mathcal{E} is an ellipsoid contained in B_{X}.

For all finite-dimensional normed spaces X and Y

$$
\operatorname{vr}(X) \leq d(X, Y) \operatorname{vr}(Y)
$$

Example

For all $n \in \mathbb{N}$

$$
\operatorname{vr}\left(\ell_{p}^{n}\right) \sim\left\{\begin{array}{cc}
1 & 1 \leq p \leq 2 \\
n^{\frac{1}{2}-\frac{1}{p}} & 2 \leq p \leq \infty
\end{array}\right.
$$

Type and cotype (Hoffmann-Jorgensen, Maurey, Pisier)

Type and cotype (Hoffmann-Jorgensen, Maurey, Pisier) Khintchine inequality

Type and cotype (Hoffmann-Jorgensen, Maurey, Pisier)
Khintchine inequality
There are positive constants c_{1} and c_{2} such that for all $n \in \mathbb{N}$ and all sequences of real numbers a_{1}, \ldots, a_{n}

$$
c_{1}\left(\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right)^{\frac{1}{2}} \leq \frac{1}{2^{n}} \sum_{\epsilon}\left|\sum_{i=1}^{n} \epsilon_{i} a_{i}\right| \leq c_{2}\left(\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right)^{\frac{1}{2}}
$$

where $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$ denote all possible signs ± 1.

This can be reformulated as follows: There are positive constants c_{1} and c_{2} such that for all $n \in \mathbb{N}$ and all sequences of real numbers a_{1}, \ldots, a_{n}

$$
c_{1}\left(\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right)^{\frac{1}{2}} \leq \int_{0}^{1}\left|\sum_{i=1}^{n} r_{i}(t) a_{i}\right| d t \leq c_{2}\left(\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right)^{\frac{1}{2}}
$$

where $r_{i}, i \in \mathbb{N}$, are the Rademacher functions.

This can be reformulated as follows: There are positive constants c_{1} and c_{2} such that for all $n \in \mathbb{N}$ and all sequences of real numbers a_{1}, \ldots, a_{n}

$$
c_{1}\left(\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right)^{\frac{1}{2}} \leq \int_{0}^{1}\left|\sum_{i=1}^{n} r_{i}(t) a_{i}\right| d t \leq c_{2}\left(\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right)^{\frac{1}{2}}
$$

where $r_{i}, i \in \mathbb{N}$, are the Rademacher functions.

Does Khintchine inequality hold in Banach spaces?

Khintchine inequality holds in Hilbert spaces.

Khintchine inequality holds in Hilbert spaces. In the 2-dimensional Euclidean space we have the parallelogram equality:

Khintchine inequality holds in Hilbert spaces.
In the 2-dimensional Euclidean space we have the parallelogram equality:

For all x_{1} and x_{2} in \mathbb{R}^{2} we have

$$
2\left\|x_{1}\right\|_{2}^{2}+2\left\|x_{2}\right\|_{2}^{2}=\left\|x_{1}-x_{2}\right\|_{2}^{2}+\left\|x_{1}+x_{2}\right\|_{2}^{2}
$$

Khintchine inequality holds in Hilbert spaces.
In the 2-dimensional Euclidean space we have the parallelogram equality:
For all x_{1} and x_{2} in \mathbb{R}^{2} we have

$$
2\left\|x_{1}\right\|_{2}^{2}+2\left\|x_{2}\right\|_{2}^{2}=\left\|x_{1}-x_{2}\right\|_{2}^{2}+\left\|x_{1}+x_{2}\right\|_{2}^{2}
$$

The parallelogram equality can be generalized to higher dimensional parallelotopes

$$
\sum_{i=1}^{n}\left\|x_{i}\right\|_{2}^{2}=\frac{1}{2^{n}} \sum_{\epsilon}\left\|\sum_{i=1}^{n} \epsilon_{i} x_{i}\right\|_{2}^{2}
$$

where $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$ denotes all sequences of signs ± 1.

Definition

Let $1 \leq p \leq 2$. A Banach space X is of type p if there is a constant T such that for all $n \in \mathbb{N}$ and all vectors x_{1}, \ldots, x_{n} in X

$$
\begin{equation*}
\int_{0}^{1}\left\|\sum_{i=1}^{n} r_{i}(t) x_{i}\right\| d t \leq T\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right)^{\frac{1}{p}} \tag{1}
\end{equation*}
$$

The type-p-constant $T_{p}(X)$ of a normed space X is the infimum over all constants T that satisfy (1). If the space has no type p then we put $T_{p}(X)=\infty$.

Definition

Let $1 \leq p \leq 2$. A Banach space X is of type p if there is a constant T such that for all $n \in \mathbb{N}$ and all vectors x_{1}, \ldots, x_{n} in X

$$
\begin{equation*}
\int_{0}^{1}\left\|\sum_{i=1}^{n} r_{i}(t) x_{i}\right\| d t \leq T\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right)^{\frac{1}{p}} \tag{1}
\end{equation*}
$$

The type-p-constant $T_{p}(X)$ of a normed space X is the infimum over all constants T that satisfy (1). If the space has no type p then we put $T_{p}(X)=\infty$.

For all Banach spaces X and Y

$$
T_{p}(X) \leq d(X, Y) T_{p}(Y)
$$

Definition

Let $2 \leq q<\infty$. A Banach space X has cotype q if there is a constant C such that for all $n \in \mathbb{N}$ and all vectors x_{1}, \ldots, x_{n} in X

$$
\begin{equation*}
C \int_{0}^{1}\left\|\sum_{i=1}^{n} r_{i}(t) x_{i}\right\| d t \geq\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{q}\right)^{\frac{1}{q}} . \tag{2}
\end{equation*}
$$

The cotype-q-constant $C_{q}(X)$ of a Banach space X is the infimum over all constants C such that (2) holds. If a space has no cotype q we put $C_{q}(X)=\infty$.

Definition

Let $2 \leq q<\infty$. A Banach space X has cotype q if there is a constant C such that for all $n \in \mathbb{N}$ and all vectors x_{1}, \ldots, x_{n} in X

$$
\begin{equation*}
C \int_{0}^{1}\left\|\sum_{i=1}^{n} r_{i}(t) x_{i}\right\| d t \geq\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{q}\right)^{\frac{1}{q}} . \tag{2}
\end{equation*}
$$

The cotype-q-constant $C_{q}(X)$ of a Banach space X is the infimum over all constants C such that (2) holds. If a space has no cotype q we put $C_{q}(X)=\infty$.

For all Banach spaces X and Y

$$
C_{q}(X) \leq d(X, Y) C_{q}(Y)
$$

In a Hilbert space the Khintchine inequality holds.

In a Hilbert space the Khintchine inequality holds.
Kwapien proved that the Khintchine inequality holds in a Banach space if and only if the Banach space is isomorphic to a Hilbert space.

In a Hilbert space the Khintchine inequality holds.
Kwapien proved that the Khintchine inequality holds in a Banach space if and only if the Banach space is isomorphic to a Hilbert space.

His result can also be phrased like this: A Banach space is isomorphic to a Hilbert space if and only if it has type 2 and cotype 2.

Example

(i) Let $1 \leq p \leq 2$. Then the cotype- 2 constant of L_{p} is less than $\sqrt{2}$. (ii) (Tomczak-Jaegermann) The Schatten classes C_{p} have cotype 2 for $1 \leq p \leq 2$.

Example

(i) Let $1 \leq p \leq 2$. Then the cotype- 2 constant of L_{p} is less than $\sqrt{2}$. (ii) (Tomczak-Jaegermann) The Schatten classes C_{p} have cotype 2 for $1 \leq p \leq 2$.

The norm on C_{1} is the same as

$$
\|A\|_{\pi}=\inf \left\{\sum_{i=1}^{k}\left\|x_{i}\right\|\left\|y_{i}\right\| \mid A=\sum_{i=1}^{k} x_{i} \otimes y_{i}\right\}
$$

Example

(i) Let $1 \leq p \leq 2$. Then the cotype- 2 constant of L_{p} is less than $\sqrt{2}$. (ii) (Tomczak-Jaegermann) The Schatten classes C_{p} have cotype 2 for $1 \leq p \leq 2$.

The norm on C_{1} is the same as

$$
\|A\|_{\pi}=\inf \left\{\sum_{i=1}^{k}\left\|x_{i}\right\|\left\|y_{i}\right\| \mid A=\sum_{i=1}^{k} x_{i} \otimes y_{i}\right\}
$$

Problem

Does $\ell_{p} \otimes_{\pi} \ell_{p}$ have cotype 2 for $1<p<2$?

Example

(i) Let $1 \leq p \leq 2$. Then the cotype- 2 constant of L_{p} is less than $\sqrt{2}$.
(ii) (Tomczak-Jaegermann) The Schatten classes C_{p} have cotype 2 for $1 \leq p \leq 2$.

The norm on C_{1} is the same as

$$
\|A\|_{\pi}=\inf \left\{\sum_{i=1}^{k}\left\|x_{i}\right\|\left\|y_{i}\right\| \mid A=\sum_{i=1}^{k} x_{i} \otimes y_{i}\right\}
$$

Problem

Does $\ell_{p} \otimes_{\pi} \ell_{p}$ have cotype 2 for $1<p<2$?
Theorem (Briet+Naor+Regev)
For $\frac{1}{p}+\frac{1}{q}+\frac{1}{r} \leq 1$

$$
\ell_{p} \otimes_{\pi} \ell_{q} \otimes_{\pi} \ell_{r}
$$

does not have non-trivial cotype .

Theorem (Bourgain-Milman)

Let X be a finite dimensional, normed space. Then

$$
\operatorname{vr}(X) \leq C_{2}(X) \ln \left(2 C_{2}(X)\right) .
$$

As an application of the invariant volume ratio: Euclidean decomposition of normed spaces.

As an application of the invariant volume ratio: Euclidean decomposition of normed spaces.

Theorem (Kashin, Szarek)

There is a positive constant c such that for all $n \in \mathbb{N}$ and all $2 n$-dimensional, normed spaces X there are two n-dimensional subspaces E and F with $E \cap F=\{0\}$ and

$$
d\left(E, \ell_{2}^{n}\right) \leq c \operatorname{vr}(X) \quad \text { and } \quad d\left(F, \ell_{2}^{n}\right) \leq c \operatorname{vr}(X)
$$

Theorem (S., Tomczak-Jaegermann)

$1 \leq p \leq q \leq \infty$, then

$$
\operatorname{vr}\left(\ell_{p}^{n} \otimes_{\pi} \ell_{q}^{n}\right) \asymp_{p, q} \begin{cases}1, & q \leq 2 \\ n^{\frac{1}{2}-\frac{1}{q}}, & p \leq 2 \leq q, \frac{1}{p}+\frac{1}{q} \geq 1 \\ n^{\frac{1}{p}-\frac{1}{2}}, & p \leq 2 \leq q, \frac{1}{p}+\frac{1}{q} \leq 1 \\ n^{\max \left(\frac{1}{2}-\frac{1}{p}-\frac{1}{q}, 0\right)}, & p \geq 2\end{cases}
$$

Theorem

Let $n \in \mathbb{N}$ and $1 \leq p \leq q \leq r \leq \infty$. Then

$$
\operatorname{vr}\left(\ell_{p}^{n} \otimes_{\pi} \ell_{q}^{n} \otimes_{\pi} \ell_{r}^{n}\right) \asymp_{p, q, r} \begin{cases}1, & r \leq 2 \\ n^{\max \left(\frac{1}{2}-\frac{1}{q}-\frac{1}{r}, 0\right)} & p \leq 2 \leq q, \frac{1}{p}+\frac{1}{q}+\frac{1}{r} \geq 1 \\ n^{\frac{1}{p}-\frac{1}{2}} & p \leq 2 \leq q, \frac{1}{p}+\frac{1}{q}+\frac{1}{r} \leq 1 \\ n^{\max \left(\frac{1}{2}-\frac{1}{p}-\frac{1}{q}-\frac{1}{r}, 0\right)} & p \geq 2\end{cases}
$$

In order to prove the theorem we have to

In order to prove the theorem we have to

- Estimate the volume of the unit ball

In order to prove the theorem we have to

- Estimate the volume of the unit ball
(in our case the unit ball of $\ell_{p}^{n} \otimes_{\pi} \ell_{q}^{n} \otimes_{\pi} \ell_{r}^{n}$).

In order to prove the theorem we have to

- Estimate the volume of the unit ball
(in our case the unit ball of $\ell_{p}^{n} \otimes_{\pi} \ell_{q}^{n} \otimes_{\pi} \ell_{r}^{n}$).
- Identify the ellipsoid of maximal volume contained in the unit ball.

Estimating the volume of the unit ball is done by a generalization of a theorem of Chevet.

Theorem (Chevet)

Let (Ω, \mathbb{P}) be a probability space and let X and Y Banach spaces. Then for all $n, m \in \mathbb{N}$, all $x_{1}, \ldots, x_{n} \in X$ and $y_{1}, \ldots, y_{m} \in Y$, and all independent $N(0,1)$-random variables $\alpha_{i}, \beta_{j}, g_{i, j}$,
$i=1, \ldots, n, j=1, \ldots, m$,

$$
\frac{\Lambda}{2} \leq \int_{\Omega}\left\|\sum_{i, j=1}^{n, m} g_{i, j}(\omega) x_{i} \otimes y_{j}\right\|_{\varepsilon} d \mathbb{P}(\omega) \leq 2 \sqrt{2} \Lambda
$$

where

$$
\begin{aligned}
& \Lambda=\sup _{\left\|x^{*}\right\|=1}\left(\sum_{i=1}^{n}\left|x^{*}\left(x_{i}\right)\right|^{2}\right)^{1 / 2} \int_{\Omega}\left\|\sum_{j=1}^{m} \beta_{j} y_{j}\right\|_{Y} d \mathbb{P} \\
& \quad+\sup _{\left\|y^{*}\right\|=1}\left(\sum_{i=1}^{m}\left|y^{*}\left(y_{j}\right)\right|^{2}\right)_{\text {Geometry of tensor products }}^{1 / 2} \int_{\Omega}\left\|\sum_{i=1}^{n} \alpha_{i} x_{i}\right\|_{x} d \mathbb{P} . \\
& \\
& \\
& \\
& \\
& \text { Prochno, Carsten Schütt } 2017 \\
& 17 / 23
\end{aligned}
$$

Lemma (3-fold Chevet inequality)

Let $\left(X,\|\cdot\|_{X}\right),\left(Y,\|\cdot\|_{Y}\right),\left(Z,\|\cdot\|_{z}\right)$ be Banach spaces. Assume that $x_{1}, \ldots, x_{m} \in X, y_{1}, \ldots, y_{n} \in Y$ and $z_{1}, \ldots, z_{\ell} \in Z$ and $g_{i, j, k}, \xi_{i}, \eta_{j}, \rho_{k}$ $i=1, \ldots, m, j=1, \ldots, n, k=1, \ldots, \ell$, be independent standard Gaussians random variables. Then

$$
\mathbb{E}\left\|\sum_{i, j, k=1}^{m, n, \ell} g_{i, j, k} x_{i} \otimes y_{j} \otimes z_{k}\right\|_{X \otimes_{\epsilon} Y \otimes_{\epsilon} z} \leq \Lambda,
$$

Lemma (3-fold Chevet inequality)

where

$$
\begin{aligned}
\Lambda:= & \left\|\left(x_{i}\right)_{i=1}^{m}\right\|_{w, 2}\left\|\left(y_{j}\right)_{j=1}^{n}\right\|_{w, 2} \mathbb{E}\left\|\sum_{k=1}^{\ell} \rho_{k} z_{k}\right\|_{Z} \\
& +\left\|\left(x_{i}\right)_{i=1}^{m}\right\|_{w, 2}\left\|\left(z_{k}\right)_{k=1}^{\ell}\right\|_{w, 2} \mathbb{E}\left\|\sum_{j=1}^{n} \eta_{j} y_{j}\right\|_{Y} \\
& +\left\|\left(y_{j}\right)_{j=1}^{n}\right\|_{w, 2}\left\|\left(z_{k}\right)_{k=1}^{\ell}\right\|_{w, 2} \mathbb{E}\left\|\sum_{i=1}^{m} \xi_{i} x_{i}\right\|_{X}
\end{aligned}
$$

Proposition (S.)

Let B be the unit ball of the normed space E with normalized basis e_{1}, \ldots, e_{n}. Suppose s_{1}, \ldots, s_{n} are positive real numbers such that for all sequences of signs $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$

$$
\frac{1}{2^{n}} \sum_{\epsilon}\left\|\sum_{i=1}^{n} \epsilon_{i} s_{i} e_{i}\right\| \leq 1
$$

Then

$$
2^{n} \prod_{i=1}^{n} s_{i} \leq \operatorname{vol}_{n}(B)
$$

In the case of the triple tensor product we choose as our basis

$$
e_{i} \otimes e_{j} \otimes e_{k} \quad i, j, k=1, \ldots, n
$$

and we have to estimate

$$
\frac{1}{2^{n^{3}}} \sum_{\epsilon}\left\|\sum_{i, j, k=1}^{n} \epsilon_{i, j, k} e_{i} \otimes e_{j} \otimes e_{k}\right\|
$$

where $\epsilon_{i, j, k}= \pm 1$.

Identifying the ellipsoid of maximal volume

Identifying the ellipsoid of maximal volume
Since the ellipsoid of maximal volume is unique it is invariant under all symmetries of the unit ball.

Identifying the ellipsoid of maximal volume
Since the ellipsoid of maximal volume is unique it is invariant under all symmetries of the unit ball.

In spaces with a symmetric basis the ellipsoid of maximal volume of the unit ball has the basis vectors of the symmetric basis as principal axes of inertia.

Identifying the ellipsoid of maximal volume
Since the ellipsoid of maximal volume is unique it is invariant under all symmetries of the unit ball.

In spaces with a symmetric basis the ellipsoid of maximal volume of the unit ball has the basis vectors of the symmetric basis as principal axes of inertia.

This extends to tensor products of spaces with symmetric bases. under all symmetries of the unit ball.

Identifying the ellipsoid of maximal volume
Since the ellipsoid of maximal volume is unique it is invariant under all symmetries of the unit ball.

In spaces with a symmetric basis the ellipsoid of maximal volume of the unit ball has the basis vectors of the symmetric basis as principal axes of inertia.

This extends to tensor products of spaces with symmetric bases. under all symmetries of the unit ball.

Thus we have identified the ellipsoid up to a multiple factor.

The multiple factor equals the norm of the natural identity

$$
\text { id }: \ell_{2}^{n^{3}} \rightarrow \ell_{p}^{n} \otimes_{\pi} \ell_{q}^{n} \otimes_{\pi} \ell_{r}^{n} .
$$

The multiple factor equals the norm of the natural identity

$$
\text { id }: \ell_{2}^{n^{3}} \rightarrow \ell_{p}^{n} \otimes_{\pi} \ell_{q}^{n} \otimes_{\pi} \ell_{r}^{n} .
$$

Lemma

(Hardy-Littlewood) Let $1 \leq p, q \leq \infty$ with $\frac{3}{2} \leq \frac{1}{p}+\frac{1}{q}$ and let μ be given by

$$
\frac{1}{\mu}=\frac{1}{2 p}+\frac{1}{2 q}-\frac{1}{4}
$$

Then we have for all $A \in \ell_{p}^{n} \otimes_{\epsilon} \ell_{q}^{n}$

$$
\left(\sum_{i, j=1}^{n}\left|a_{i, j}\right|^{\mu}\right)^{\frac{1}{\mu}} \leq\|A\|_{\ell_{p}^{n} \otimes_{\epsilon} \ell_{q}^{n}}
$$

