
The even dual Minkowski problem

Martin Henk

based on a joint works with

Károly Böröczky and Hannes Pollehn

May, 2017

1 / 23



The classical Minkowski problem

• Let K ⊂ Rn be a convex body, and let Bn be the n-dimensional
unit ball. The set

K + λBn = {v + λw : v ∈ K, w ∈ Bn}

= {x ∈ Rn : ‖x – rK(x)‖ ≤ λ} ,

is the outer parallel body of K at distance λ.

K

+ λ =

λ

λ

K + λB2

- it consists of all points x whose closest point rK(x) in K is at
distance at most λ.
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• Steiner’s formula, 1840.

vol (K + λBn) =
n∑

i=0

λi
(
n

i

)
Wi(K).

Wi(K) is the ith quermassintegral.

I W0(K) = vol (K), Wn(B
n) = vol (Bn),

I nW1(K) = F(K) (surface area of K.)

• Kubota’s formula, 1925.

Wn–i(K) =
vol (Bn)

vol i(B
i)

∫
G(n,i)

vol i(K|L) dL, i = 1, . . . , n,

I G(n, i) is the set of all i-dimensional linear subspaces,
K|L denotes the orthogonal projection onto L,
vol i(·) denotes the i-dimensional volume.
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• Let ω ⊆ Sn–1.

BK(λ,ω) =
{
x ∈ Rn : 0 < ‖x – rK(x)‖ ≤ λ ∧

x – rK(x)

‖x – rK(x)‖
∈ ω

}
is the local outer parallel body.

ω

S1 K

BK(λ, ω)
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• Local Steiner formula, Fenchel&Jessen, Aleksandrov, 1938.

vol (BK(λ,ω)) =
1
n

n∑
i=1

λi
(
n

i

)
Sn–i(K,ω),

Si(K,ω) is the ith area measure.

I Sn–1(K,ω) =
∫
ν–1

K (ω)
dHn–1(v) (surface area measure),

where ν–1K (ω) = {x ∈ ∂K : ∃u ∈ ω with hK(u) = 〈u, x〉},
i.e., the set of boundary points of K having an outer unit
normal in ω (“inverse” of the Gauß map νK).

I Si(K,Sn–1) = nWn–i(K), i = 0, . . . , n – 1.
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• Minkowski-Christoffel Problem: Characterize the area measure
Si(K, ·) of a convex body K among all finite Borel measures µ
on Sn–1.

I i = n – 1, Minkowski problem; solved independently by
Fenchel&Jessen, 1938 and Aleksandrov, 1938: if and onyl if µ
is not concentrated on a great subsphere and∫

Sn–1
u dµ(u) = 0.

I Discrete (=polytopal) case: if and only if

Pu1

u2

u3

u4
u5

• F1

F2

F3

F4

F5

∑
ui normal of facet Fi

vol n–1(Fi)ui = 0.

I i = 1, Christoffel problem; solved independently by Firey, 1967
and Berg, 1969.

I 1 < i < n – 1, open.
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A note on the logarithmic Minkowski problem

Lp-Brunn-Minkowski theory, Firey, 1962; Lutwak, 1993,...

• p = 0:

VK(ω) =
1
n

∫
ω

hK(u) dSn–1(K,u)

is the cone-volume measure of K.

• Logarithmic Minkowski problem: Characterize the cone volume
measure VK(ω) of a convex body K among all finite Borel
measures µ on Sn–1.
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• p = 0:

VK(ω) =
1
n

∫
ω

hK(u) dSn–1(K,u)

is the cone-volume measure of K.
I Let P = {x ∈ Rn : 〈ui, x〉 ≤ bi, 1 ≤ i ≤ m} be a polytope with

outer unit normals ui and facets Fi, 1 ≤ i ≤ m, and let
Ci = conv (Fi ∪ 0) be the cone with facet Fi and apex 0.

•F1

F2

F3

F4

F5

u1

u2

u3

u4

u5

C1

C2 C3

C4

C5

I

VP(ω) =
∑
ui∈ω

vol (Ci) =
m∑
i=1

VP({ui}) δui(ω).

• Logarithmic Minkowski problem: Characterize the cone volume
measure VK(ω) of a convex body K among all finite Borel
measures µ on Sn–1.
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• Böröczky, Lutwak, Yang, Zhang, 2013. 1 A finite even Borel
measure µ on Sn–1 is the cone-volume measure of a
o-symmetric convex body if and only if it satisfies the subspace
concentration condition,

• i.e., for every linear subspace L holds

µ(L ∩ Sn–1) ≤ dim L

n
µ(Sn–1),

and equality holds for a subspace L if and only if there exists a
subspace L, complementary to L, such that

µ(L ∩ Sn–1) + µ(L ∩ Sn–1) = µ(Sn–1).

1The logarithmic Minkowski problem, JAMS, 26(3), 2013.
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• The general (non-even) logarithmic Minkowski problem is
open:

- discrete planar case Stancu, 2002/03.
- solved for discrete measures in general position G. Zhu, 2014.
- sufficient conditions (discrete case) Böröczky, Hegedűs,
G. Zhu, 2016.

- necessary conditions for centered bodies Böröczky, H.
- sufficient conditions Chen, Li, G. Zhu, 2017+.
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The dual Minkowski problem

Dual Brunn-Minkowski theory Lutwak, 1975,...

• For a convex body K with 0 ∈ int (K) let

ρK : Rn \ {0} 7→ R≥0 with ρK(x) = sup{ρ ≥ 0 : ρ x ∈ K}

be its radial function.

• For two vectors x, y ∈ Rn its radial addition +̃ is defined as

x +̃ y =

{
x+ y, x, y linearly dependent,
0, otherwise.
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• Dual outer parallel body

K +̃ λBn =
{
v +̃ λw : v ∈ K, w ∈ Bn

}
= {y ∈ Rn : (1 – ρK(y)) ‖y‖ ≤ λ}
= K ∪ {y ∈ Rn \ K : ‖y – ρK(y)y‖ ≤ λ} ,

i.e.,
it consists of all points whose “radial distance” to K is at most λ.

K+̃λB2

• Dual Steiner formula; Lutwak, 1975.

vol (K +̃ λBn) =
n∑

i=0

λi
(
n

i

)
W̃i(K),

W̃i(K) is the ith dual quermassintegral.

I W̃0(K) = vol (K), W̃n(K) = vol (Bn).

• Dual Kubota formula; Lutwak, 1979.

W̃n–i(K) =
vol (Bn)

vol i(B
i)

∫
G(n,i)

vol i(K ∩ L) dL, i = 1, . . . , n.
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Huang, Lutwak, Yang, Zhang, [HLYZ], 2016.6

• Let ω ⊆ Sn–1.

ÃK(λ,ω) =
{
x ∈ Rn : (1 – ρK(x)) ‖x‖ ≤ λ, ρK(x)x ∈ ν–1K (ω)

}
.

is the local dual outer parallel body.
•

vol (ÃK(λ,ω)) =
n∑

i=0

(
n

i

)
λi C̃n–i(K,ω).

C̃i(K,ω) is the ith dual curvature measure.

I C̃i(K,Sn–1) = W̃n–i(K).

6Geometric measures in the dual Brunn-Minkowski theory and their
associated Minkowski problems, Acta Mathematica, 216(2016)(2):325–388.

12 / 23



Huang, Lutwak, Yang, Zhang, [HLYZ], 2016.6

• Let ω ⊆ Sn–1.
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C̃i(K,ω) is the ith dual curvature measure.

I C̃i(K,Sn–1) = W̃n–i(K).

6Geometric measures in the dual Brunn-Minkowski theory and their
associated Minkowski problems, Acta Mathematica, 216(2016)(2):325–388.
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• For ω ⊆ Sn–1 let

α∗K(ω) = {u ∈ Sn–1 : ρK(u)u ∈ ν–1K (ω)}
= R≥0 ν

–1
K (ω) ∩ Sn–1.

• HLYZ, 2016. Let q ∈ R.

C̃q(K,ω) =
1
n

∫
α∗K(ω)

ρK(u)
qdHn–1(u)

is the qth dual curvature measure.

I

C̃n(K,ω) = VK(ω) (cone volume measure)
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I

•F1

F2

F3

F4

F5

u1

u2

u3

u4

u5

C1

C2 C3

C4

C5

VP(ω) =
m∑
i=1

δui(ω)

(
1
n

∫
R≥0Fi∩Sn–1

ρK(u)
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)
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I

C̃n(K,ω) = VK(ω) (cone volume measure)

C̃0(K,ω) =
1
n
Hn–1(α∗K(ω))

(Aleksandrov’s integral curvature of K?)
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• HLYZ, 2016. Dual Minkowski problem. Given a finite Borel
measure µ on Sn–1 and q ∈ R. Find necessary and sufficient
conditions for the existence of a convex body K (with
0 ∈ int K) such that C̃q(K, ·) = µ.

14 / 23



• HLYZ, 2016. Let q ∈ (0, n] A non-zero, even, finite Borel
measure µ on Sn–1 is the qth dual curvature measure of a
o-symmetric convex body if for every proper subspace L ⊂ Rn

µ(Sn–1 ∩ L) < min
{
1,
(
1 –

q – 1
q

n – dim L

n – 1

)}
µ(Sn–1).

• For q ∈ (0, 1] also necessary.
• For q = n they coincide (up to the equality case) with the

necessary and sufficient subspace concentration condition for
the even logarithmic Minkowski problem.
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• Böröczky, H., Pollehn, 2016 7. Let K be an o-symmetric
convex body, q ∈ (1, n) and let L be a proper subspace. Then

C̃q(K, Sn–1 ∩ L) < min
{
1,

dim L

q

}
C̃q(K, Sn–1).

• Zhao, 2016 8; Böröczky, LYZ, Zhao, 2017+. Let q ∈ (1, n). A
non-zero, even, finite Borel measure µ on Sn–1 is the qth dual
curvature measure of a symmetric convex body if for every
proper subspace L ⊂ Rn

µ(Sn–1 ∩ L) < min
{
1,

dim L

q

}
µ(Sn–1).

7Subspace concentration of dual curvature measures of symmetric convex
bodies, J. Differential Geometry, accepted for publication.

8

Existence of solution to the even dual Minkowski problem, J. Differential
Geometry, accepted for publication.
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• Zhao, 2016.9 Let q < 0. A non-zero, even, finite Borel measure
µ on Sn–1 is the qth dual curvature measure of a convex body
if and only if µ is not concentrated on any closed hemisphere.
The convex body is uniquely determined by the measure.

• H., Pollehn, 2017+. Let q ≥ n+ 1, and let K be a o-symmetric
convex body. Then for every proper subspace L ⊂ Rn

C̃q(K, Sn–1 ∩ L) <
q – n + dim L

q
C̃q(K, Sn–1)

and the bound is best possible.
- For n = 2 the bound is valid for all q > 2.

9The dual Minkowski problem for negative indices , CVPDEs, 56(2):56:18,
2017.
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Some details...

• For q > 0 one may write the dual curvature measure as

C̃q(K ,ω) =
q

n

∫
K∩R≥0α

∗
K (ω)

‖x‖q–n dHn(x),

i.e., for a polytope P = {x : 〈x,ui〉 ≤ bi} it is the integral of
the moments ‖·‖q–n over the cones Ci with ui ∈ ω.

C̃q(P,ω) =
q

n

∑
ui∈ω

∫
Ci

‖x‖q–n dHn(x).

•F1

F2

F3

F4

F5

u1

u2

u3

u4

u5

C1

C2 C3

C4

C5
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• Each integral
∫
Ci
‖x‖q–n dHn(x) over a cone Ci depends only

on the facet Fi.

Fi

Ci

L⊥

L

• On the other hand

C̃q(P,Sn–1) =
q

n

∫
P|L

∫
P∩(y+L⊥)

|(y, z)|q–n dHn(y, z)

and the slices P ∩ (y + L⊥) contain convex combinations of
the form (1 – λ)Fi + λ(–Fi).
• Requires estimates of Brunn-Minkowski type.
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• For q ≤ n the function ‖·‖q–n : Rn → R≥0 ∪ {∞} is an even
quasiconcave function, i.e., the superlevel sets are o-symmetric
convex sets.

• Börözcky, H., Pollehn, 2016. Let M ⊂ Rn be a compact,
convex set, k = dimM and f : Rn → R≥0 an Hk-measurable,
even and quasiconcave function.Then for λ ∈ [0, 1]∫

(1–λ)M+λ(–M)
f(x) dHk(x) ≥

∫
M
f(x) dHk(x).
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• H., Pollehn, 2017. Let K0, K1 ⊂ Rn be compact, convex sets,
dimK0 = dimK1 = k ≥ 1, vol k(K0) = vol k(K1) and their
affine hulls are parallel. For λ ∈ [0, 1] let
Kλ = (1 – λ)K0 + λK1. Then for p ≥ 1∫

Kλ

‖x‖p dHk(x) +

∫
K1–λ

‖x‖p dHk(x)

≥ |2λ – 1|p
(∫

K0

‖x‖p dHk(x) +

∫
K1

‖x‖p dHk(x)

)
with equality if and only if λ ∈ {0, 1} or p = 1 and...

• Corollary. Let q ≥ n+ 1 and let M ⊂ Rn be a compact, convex
set, k = dimM. Then for λ ∈ [0, 1]∫
(1–λ)M+λ(–M)

‖x‖q–n dHk(x) ≥ |2λ – 1|q–n
∫
M
‖x‖q–n dHk(x).
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• Proof is based on

I

‖x‖p = c(p, n) ·
∫
Sn–1
|〈x,u〉|p dHn–1(u),

I H. Kneser, Süss 1929. Inductive proof of Brunn-Minkowski
inequality.

I Karamata 1932; Hardy, Littlewood, Pólya, 1929.. Let
x, y ∈ Rk, x ≥majorizing y, and let f : R→ R be a
non-decreasing, convex function. Then

f(x1) + · · ·+ f(xk) ≥ f(y1) + · · ·+ f(yk).
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Thank you for your attention!
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