The even dual Minkowski problem

Martin Henk

based on a joint works with Károly Böröczky and Hannes Pollehn

May, 2017

The classical Minkowski problem

- Let $\mathrm{K} \subset \mathbb{R}^{\mathrm{n}}$ be a convex body, and let B^{n} be the n -dimensional unit ball. The set

$$
K+\lambda B^{n}=\left\{\mathbf{v}+\lambda \mathbf{w}: \mathbf{v} \in K, \mathbf{w} \in B^{n}\right\}
$$

is the outer parallel body of K at distance λ.

The classical Minkowski problem

- Let $\mathrm{K} \subset \mathbb{R}^{\mathrm{n}}$ be a convex body, and let B^{n} be the n -dimensional unit ball. The set

$$
\begin{aligned}
\mathrm{K}+\lambda \mathrm{B}^{\mathrm{n}} & =\left\{\mathbf{v}+\lambda \mathbf{w}: \mathbf{v} \in \mathrm{K}, \mathbf{w} \in \mathrm{~B}^{\mathrm{n}}\right\} \\
& =\left\{\mathbf{x} \in \mathbb{R}^{\mathrm{n}}:\left\|\mathbf{x}-\mathrm{r}_{\mathrm{K}}(\mathbf{x})\right\| \leq \lambda\right\},
\end{aligned}
$$

is the outer parallel body of K at distance λ.

- it consists of all points \mathbf{x} whose closest point $r_{K}(\mathbf{x})$ in K is at distance at most λ.
- Steiner's formula, 1840.

$$
\operatorname{vol}\left(K+\lambda B^{n}\right)=\sum_{i=0}^{n} \lambda^{i}\binom{n}{i} W_{i}(K) .
$$

$W_{i}(K)$ is the ith quermassintegral.

- Steiner's formula, 1840.

$$
\operatorname{vol}\left(K+\lambda B^{n}\right)=\sum_{i=0}^{n} \lambda^{i}\binom{n}{i} W_{i}(K)
$$

$W_{i}(K)$ is the ith quermassintegral.

- $\mathrm{W}_{0}(\mathrm{~K})=\operatorname{vol}(K), W_{\mathrm{n}}\left(\mathrm{B}^{\mathrm{n}}\right)=\operatorname{vol}\left(\mathrm{B}^{\mathrm{n}}\right)$,
- Steiner's formula, 1840.

$$
\operatorname{vol}\left(K+\lambda B^{n}\right)=\sum_{i=0}^{n} \lambda^{i}\binom{n}{i} W_{i}(K)
$$

$W_{i}(K)$ is the ith quermassintegral.

- $\mathrm{W}_{0}(\mathrm{~K})=\operatorname{vol}(\mathrm{K}), \mathrm{W}_{\mathrm{n}}\left(\mathrm{B}^{\mathrm{n}}\right)=\operatorname{vol}\left(\mathrm{B}^{\mathrm{n}}\right)$,
- $n W_{1}(K)=F(K)$ (surface area of K.)
- Steiner's formula, 1840.

$$
\operatorname{vol}\left(K+\lambda B^{n}\right)=\sum_{i=0}^{n} \lambda^{i}\binom{n}{i} W_{i}(K) .
$$

$W_{i}(K)$ is the ith quermassintegral.

- $\mathrm{W}_{0}(\mathrm{~K})=\operatorname{vol}(K), W_{\mathrm{n}}\left(\mathrm{B}^{\mathrm{n}}\right)=\operatorname{vol}\left(\mathrm{B}^{\mathrm{n}}\right)$,
- $n W_{1}(K)=F(K)$ (surface area of K.)
- Kubota's formula, 1925.

$$
W_{n-i}(K)=\frac{\operatorname{vol}\left(B^{n}\right)}{\operatorname{vol}_{i}\left(B^{i}\right)} \int_{G(n, i)} \operatorname{vol}_{i}(K \mid L) d L, \quad i=1, \ldots, n,
$$

- Steiner's formula, 1840.

$$
\operatorname{vol}\left(K+\lambda B^{n}\right)=\sum_{i=0}^{n} \lambda^{i}\binom{n}{i} W_{i}(K)
$$

$W_{i}(K)$ is the ith quermassintegral.

- $\mathrm{W}_{0}(\mathrm{~K})=\operatorname{vol}(\mathrm{K}), \mathrm{W}_{\mathrm{n}}\left(\mathrm{B}^{\mathrm{n}}\right)=\operatorname{vol}\left(\mathrm{B}^{\mathrm{n}}\right)$,
- $n W_{1}(K)=F(K)$ (surface area of K.)
- Kubota's formula, 1925.

$$
W_{n-i}(K)=\frac{\left.\operatorname{vol}^{\left(B^{n}\right.}\right)}{\operatorname{vol}_{i}\left(B^{i}\right)} \int_{G(n, i)} \operatorname{vol}_{i}(K \mid L) d L, \quad i=1, \ldots, n
$$

- $G(n, i)$ is the set of all i-dimensional linear subspaces, $\mathrm{K} \mid \mathrm{L}$ denotes the orthogonal projection onto L , vol $_{i}(\cdot)$ denotes the i-dimensional volume.
- Let $\omega \subseteq \mathbb{S}^{n-1}$.

$$
\begin{aligned}
& B_{K}(\lambda, \omega)=\left\{x \in \mathbb{R}^{n}: 0<\left\|\mathbf{x}-r_{K}(\mathbf{x})\right\| \leq \lambda\right. \wedge \\
&\left.\frac{\mathbf{x}-r_{K}(\mathbf{x})}{\left\|\mathbf{x}-r_{K}(\mathbf{x})\right\|} \in \omega\right\}
\end{aligned}
$$

is the local outer parallel body.

- Let $\omega \subseteq \mathbb{S}^{n-1}$.

$$
\begin{aligned}
B_{K}(\lambda, \omega)=\left\{x \in \mathbb{R}^{n}:\right. & 0<\left\|x-r_{K}(x)\right\| \leq \lambda \\
\wedge & \left.\frac{x-r_{K}(\mathbf{x})}{\left\|x-r_{K}(x)\right\|} \in \omega\right\}
\end{aligned}
$$

is the local outer parallel body.

- Let $\omega \subseteq \mathbb{S}^{n-1}$.

$$
\begin{aligned}
& B_{K}(\lambda, \omega)=\left\{x \in \mathbb{R}^{n}: 0<\left\|\mathbf{x}-r_{K}(\mathbf{x})\right\| \leq \lambda\right. \wedge \\
&\left.\frac{\mathbf{x}-r_{K}(\mathbf{x})}{\left\|\mathbf{x}-r_{K}(\mathbf{x})\right\|} \in \omega\right\}
\end{aligned}
$$

is the local outer parallel body.

- Local Steiner formula, Fenchel\&Jessen, Aleksandrov, 1938.

$$
\operatorname{vol}\left(B_{K}(\lambda, \omega)\right)=\frac{1}{n} \sum_{i=1}^{n} \lambda^{i}\binom{n}{i} S_{n-i}(K, \omega),
$$

$\mathrm{S}_{\mathrm{i}}(\mathrm{K}, \omega)$ is the ith area measure.

- Local Steiner formula, Fenchel\&Jessen, Aleksandrov, 1938.

$$
\operatorname{vol}\left(B_{K}(\lambda, \omega)\right)=\frac{1}{n} \sum_{i=1}^{n} \lambda^{i}\binom{n}{i} S_{n-i}(K, \omega),
$$

$\mathrm{S}_{\mathrm{i}}(\mathrm{K}, \omega)$ is the ith area measure.

- $S_{n-1}(K, \omega)=\int_{v_{\mathrm{k}}^{-1}(\omega)} \mathrm{d} \mathcal{H}^{\mathrm{n}-1}(\mathbf{v})$ (surface area measure), where $v_{\mathrm{K}}^{-1}(\omega)=\left\{\mathbf{x} \in \partial \mathrm{K}: \exists \mathbf{u} \in \omega\right.$ with $\left.h_{\mathrm{K}}(\mathbf{u})=\langle\mathbf{u}, \mathbf{x}\rangle\right\}$, i.e., the set of boundary points of K having an outer unit normal in ω ("inverse" of the Gauß map v_{K}).
- Local Steiner formula, Fenchel\&Jessen, Aleksandrov, 1938.

$$
\operatorname{vol}\left(B_{K}(\lambda, \omega)\right)=\frac{1}{n} \sum_{i=1}^{n} \lambda^{i}\binom{n}{i} S_{n-i}(K, \omega),
$$

$\mathrm{S}_{\mathrm{i}}(\mathrm{K}, \omega)$ is the ith area measure.

- $\mathrm{S}_{\mathrm{n}-1}(\mathrm{~K}, \omega)=\int_{v_{\mathrm{k}}^{-1}(\omega)} \mathrm{d} \mathcal{H}^{\mathrm{n}-1}(\mathbf{v})$ (surface area measure), where $v_{\mathrm{K}}^{-1}(\omega)=\left\{\mathbf{x} \in \partial \mathrm{K}: \exists \mathbf{u} \in \omega\right.$ with $\left.h_{\mathrm{K}}(\mathbf{u})=\langle\mathbf{u}, \mathbf{x}\rangle\right\}$, i.e., the set of boundary points of K having an outer unit normal in ω ("inverse" of the Gauß map v_{K}).
- $\mathrm{S}_{\mathrm{i}}\left(\mathrm{K}, \mathbb{S}^{\mathrm{n}-1}\right)=\mathrm{nW}_{\mathrm{n}-\mathrm{i}}(\mathrm{K}), \mathrm{i}=0, \ldots, \mathrm{n}-1$.
- Minkowski-Christoffel Problem: Characterize the area measure $S_{i}(\mathrm{~K}, \cdot)$ of a convex body K among all finite Borel measures μ on \mathbb{S}^{n-1}.
- Minkowski-Christoffel Problem: Characterize the area measure $S_{i}(\mathrm{~K}, \cdot)$ of a convex body K among all finite Borel measures μ on \mathbb{S}^{n-1}.
- $\mathrm{i}=\mathrm{n}-1$, Minkowski problem; solved independently by Fenchel\&Jessen, 1938 and Aleksandrov, 1938: if and onyl if μ is not concentrated on a great subsphere and

$$
\int_{\mathbb{S}^{n}-1} \mathbf{u} \mathrm{~d} \mu(\mathbf{u})=\mathbf{0}
$$

- Minkowski-Christoffel Problem: Characterize the area measure $S_{i}(\mathrm{~K}, \cdot)$ of a convex body K among all finite Borel measures μ on \mathbb{S}^{n-1}.
- $\mathrm{i}=\mathrm{n}-1$, Minkowski problem; solved independently by Fenchel\&Jessen, 1938 and Aleksandrov, 1938: if and onyl if μ is not concentrated on a great subsphere and

$$
\int_{\mathbb{S}^{n}-1} \mathbf{u} \mathrm{~d} \mu(\mathbf{u})=\mathbf{0} .
$$

- Discrete (=polytopal) case: if and only if

 $\operatorname{vol}_{\mathrm{n}-1}\left(\mathrm{~F}_{\mathrm{i}}\right) \mathbf{u}_{\mathrm{i}}=\mathbf{0}$.
\mathbf{u}_{i} normal of facet F_{i}
- Minkowski-Christoffel Problem: Characterize the area measure $S_{i}(\mathrm{~K}, \cdot)$ of a convex body K among all finite Borel measures μ on \mathbb{S}^{n-1}.
- $\mathrm{i}=\mathrm{n}-1$, Minkowski problem; solved independently by Fenchel\&Jessen, 1938 and Aleksandrov, 1938: if and onyl if μ is not concentrated on a great subsphere and

$$
\int_{\mathbb{S}^{n}-1} \mathbf{u} d \mu(\mathbf{u})=\mathbf{0} .
$$

- Discrete (=polytopal) case: if and only if

$$
\sum_{\mathbf{u}_{i} \text { normal of facet } F_{i}} \operatorname{vol}_{n-1}\left(F_{i}\right) \mathbf{u}_{i}=\mathbf{0} .
$$

- $\mathrm{i}=1$, Christoffel problem; solved independently by Firey, 1967 and Berg, 1969.
- Minkowski-Christoffel Problem: Characterize the area measure $S_{i}(\mathrm{~K}, \cdot)$ of a convex body K among all finite Borel measures μ on \mathbb{S}^{n-1}.
- $\mathrm{i}=\mathrm{n}-1$, Minkowski problem; solved independently by Fenchel\&Jessen, 1938 and Aleksandrov, 1938: if and onyl if μ is not concentrated on a great subsphere and

$$
\int_{\mathbb{S}^{n}-1} \mathbf{u} d \mu(\mathbf{u})=\mathbf{0} .
$$

- Discrete (=polytopal) case: if and only if

$$
\sum_{\mathbf{u}_{i} \text { normal of facet } F_{i}} \operatorname{vol}_{n-1}\left(F_{i}\right) \mathbf{u}_{i}=\mathbf{0} .
$$

- $\mathrm{i}=1$, Christoffel problem; solved independently by Firey, 1967 and Berg, 1969.
- $1<\mathrm{i}<\mathrm{n}-1$, open.

A note on the logarithmic Minkowski problem
L_{p}-Brunn-Minkowski theory, Firey, 1962; Lutwak, 1993,...

- $\mathrm{p}=0$:

$$
V_{K}(\omega)=\frac{1}{n} \int_{\omega} h_{K}(\mathbf{u}) d S_{n-1}(K, \mathbf{u})
$$

is the cone-volume measure of K .

A note on the logarithmic Minkowski problem
L_{p}-Brunn-Minkowski theory, Firey, 1962; Lutwak, 1993,...

- $\mathrm{p}=0$:

$$
V_{K}(\omega)=\frac{1}{n} \int_{\omega} h_{K}(\mathbf{u}) d S_{n-1}(K, \mathbf{u})
$$

is the cone-volume measure of K .

- Let $\mathrm{P}=\left\{\mathbf{x} \in \mathbb{R}^{\mathrm{n}}:\left\langle\mathbf{u}_{\mathrm{i}}, \mathbf{x}\right\rangle \leq \mathrm{b}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{m}\right\}$ be a polytope with outer unit normals \mathbf{u}_{i} and facets $\mathrm{F}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{m}$, and let $C_{i}=\operatorname{conv}\left(F_{i} \cup \mathbf{0}\right)$ be the cone with facet F_{i} and apex $\mathbf{0}$.

A note on the logarithmic Minkowski problem L_{p}-Brunn-Minkowski theory, Firey, 1962; Lutwak, 1993,...

- $\mathrm{p}=0$:

$$
V_{K}(\omega)=\frac{1}{n} \int_{\omega} h_{K}(\mathbf{u}) d S_{n-1}(K, \mathbf{u})
$$

is the cone-volume measure of K .

- Let $\mathrm{P}=\left\{\mathbf{x} \in \mathbb{R}^{\mathrm{n}}:\left\langle\mathbf{u}_{\mathrm{i}}, \mathbf{x}\right\rangle \leq \mathrm{b}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{m}\right\}$ be a polytope with outer unit normals \mathbf{u}_{i} and facets $\mathrm{F}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{m}$, and let $C_{i}=\operatorname{conv}\left(F_{i} \cup \mathbf{0}\right)$ be the cone with facet F_{i} and apex $\mathbf{0}$.

A note on the logarithmic Minkowski problem L_{p}-Brunn-Minkowski theory, Firey, 1962; Lutwak, 1993,...

- $\mathrm{p}=0$:

$$
V_{K}(\omega)=\frac{1}{n} \int_{\omega} h_{K}(\mathbf{u}) d S_{n-1}(K, \mathbf{u})
$$

is the cone-volume measure of K .

- Logarithmic Minkowski problem: Characterize the cone volume measure $\mathrm{V}_{\mathrm{K}}(\omega)$ of a convex body K among all finite Borel measures μ on \mathbb{S}^{n-1}.
- Böröczky, Lutwak, Yang, Zhang, 2013. ${ }^{1}$ A finite even Borel measure μ on \mathbb{S}^{n-1} is the cone-volume measure of a o-symmetric convex body if and only if it satisfies the subspace concentration condition,
${ }^{1}$ The logarithmic Minkowski problem, JAMS, 26(3), 2013.
- Böröczky, Lutwak, Yang, Zhang, 2013. ${ }^{1}$ A finite even Borel measure μ on $\mathbb{S}^{\text {n-1 }}$ is the cone-volume measure of a o-symmetric convex body if and only if it satisfies the subspace concentration condition,
- i.e., for every linear subspace L holds

$$
\mu\left(\mathrm{L} \cap \mathbb{S}^{\mathrm{n}-1}\right) \leq \frac{\operatorname{dim} \mathrm{L}}{\mathrm{n}} \mu\left(\mathbb{S}^{\mathrm{n}-1}\right)
$$

and equality holds for a subspace L if and only if there exists a subspace \bar{L}, complementary to L, such that

$$
\mu\left(\mathrm{L} \cap \mathbb{S}^{n-1}\right)+\mu\left(\overline{\mathrm{L}} \cap \mathbb{S}^{n-1}\right)=\mu\left(\mathbb{S}^{n-1}\right)
$$

${ }^{1}$ The logarithmic Minkowski problem, JAMS, 26(3), 2013.

- The general (non-even) logarithmic Minkowski problem is open:
- The general (non-even) logarithmic Minkowski problem is open:
- discrete planar case Stancu, 2002/03.2

[^0]- The general (non-even) logarithmic Minkowski problem is open:
- discrete planar case Stancu, 2002/03. ${ }^{2}$
- solved for discrete measures in general position G. Zhu, 2014.3

[^1]- The general (non-even) logarithmic Minkowski problem is open:
- discrete planar case Stancu, 2002/03. ${ }^{2}$
- solved for discrete measures in general position G. Zhu, 2014.3
- sufficient conditions (discrete case) Böröczky, Hegedús, G. Zhu, 2016. ${ }^{4}$
${ }^{2}$ On the number of solutions to the discrete two-dimensional L_{0}-Minkowski problem, Adv. Math. 180(1), 2003.
${ }^{3}$ The logarithmic Minkowski problem for polytpopes, Adv. Math. 262, 2014.
${ }^{4}$ On the discrete logarithmic Minkowski problem, Int. Math. Res. Not. 6, 2016.
- The general (non-even) logarithmic Minkowski problem is open:
- discrete planar case Stancu, 2002/03.2
- solved for discrete measures in general position G. Zhu, 2014. ${ }^{3}$
- sufficient conditions (discrete case) Böröczky, Hegedús, G. Zhu, 2016. ${ }^{4}$
- necessary conditions for centered bodies Böröczky, H. ${ }^{5}$

[^2]- The general (non-even) logarithmic Minkowski problem is open:
- discrete planar case Stancu, 2002/03.2
- solved for discrete measures in general position G. Zhu, 2014. ${ }^{3}$
- sufficient conditions (discrete case) Böröczky, Hegedús, G. Zhu, 2016. ${ }^{4}$
- necessary conditions for centered bodies Böröczky, H. ${ }^{5}$
- sufficient conditions Chen, Li, G. Zhu, 2017+.

[^3]
The dual Minkowski problem

Dual Brunn-Minkowski theory Lutwak, 1975,...

- For a convex body K with $\mathbf{0} \in \operatorname{int}(K)$ let

$$
\rho_{K}: \mathbb{R}^{\mathrm{n}} \backslash\{\mathbf{0}\} \mapsto \mathbb{R}_{\geq 0} \quad \text { with } \quad \rho_{K}(\mathbf{x})=\sup \{\rho \geq 0: \rho \mathbf{x} \in \mathrm{K}\}
$$ be its radial function.

The dual Minkowski problem

Dual Brunn-Minkowski theory Lutwak, 1975,...

- For a convex body K with $\mathbf{0} \in \operatorname{int}(K)$ let

$$
\rho_{K}: \mathbb{R}^{\mathrm{n}} \backslash\{\mathbf{0}\} \mapsto \mathbb{R}_{\geq 0} \quad \text { with } \quad \rho_{\mathrm{K}}(\mathbf{x})=\sup \{\rho \geq 0: \rho \mathbf{x} \in \mathrm{K}\}
$$ be its radial function.

- For two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{\mathrm{n}}$ its radial addition $\widetilde{+}$ is defined as

$$
\mathbf{x} \tilde{+} \mathbf{y}= \begin{cases}\mathbf{x}+\mathbf{y}, & \mathbf{x}, \mathbf{y} \text { linearly dependent } \\ 0, & \text { otherwise }\end{cases}
$$

- Dual outer parallel body

$$
\begin{aligned}
\mathrm{K} \widetilde{+} \lambda \mathrm{B}^{\mathrm{n}} & =\left\{\mathbf{v} \widetilde{+} \lambda \mathbf{w}: \mathbf{v} \in \mathrm{K}, \mathbf{w} \in \mathrm{~B}^{\mathrm{n}}\right\} \\
& =\left\{\mathbf{y} \in \mathbb{R}^{\mathrm{n}}:\left(1-\rho_{\mathrm{K}}(\mathbf{y})\right)\|\mathbf{y}\| \leq \lambda\right\} \\
& =\mathrm{K} \cup\left\{\mathbf{y} \in \mathbb{R}^{\mathrm{n}} \backslash \mathrm{~K}:\left\|\mathbf{y}-\rho_{\mathrm{K}}(\mathbf{y}) \mathbf{y}\right\| \leq \lambda\right\},
\end{aligned}
$$

i.e.,
it consists of all points whose "radial distance" to K is at most λ.

- Dual outer parallel body

$$
\begin{aligned}
\mathrm{K} \widetilde{+} \lambda \mathrm{B}^{\mathrm{n}} & =\left\{\mathbf{v} \widetilde{+} \lambda \mathbf{w}: \mathbf{v} \in \mathrm{K}, \mathbf{w} \in \mathrm{~B}^{\mathrm{n}}\right\} \\
& =\left\{\mathbf{y} \in \mathbb{R}^{\mathrm{n}}:\left(1-\rho_{\mathrm{K}}(\mathbf{y})\right)\|\mathbf{y}\| \leq \lambda\right\} \\
& =\mathrm{K} \cup\left\{\mathbf{y} \in \mathbb{R}^{\mathrm{n}} \backslash \mathrm{~K}:\left\|\mathbf{y}-\rho_{\mathrm{K}}(\mathbf{y}) \mathbf{y}\right\| \leq \lambda\right\},
\end{aligned}
$$

i.e., it consists of all points whose "radial distance" to K is at most λ.

- Dual Steiner formula; Lutwak, 1975.

$$
\operatorname{vol}\left(K \tilde{+} \lambda B^{n}\right)=\sum_{i=0}^{n} \lambda^{i}\binom{n}{i} \widetilde{W}_{i}(K)
$$

$\widetilde{W}_{i}(\mathrm{~K})$ is the ith dual quermassintegral.

- Dual outer parallel body

$$
\begin{aligned}
K \widetilde{+} \lambda B^{n} & =\left\{\mathbf{v} \widetilde{+} \lambda \mathbf{w}: \mathbf{v} \in K, \mathbf{w} \in B^{n}\right\} \\
& =\left\{\mathbf{y} \in \mathbb{R}^{n}:\left(1-\rho_{K}(\mathbf{y})\right)\|\mathbf{y}\| \leq \lambda\right\} \\
& =K \cup\left\{\mathbf{y} \in \mathbb{R}^{n} \backslash K:\left\|\mathbf{y}-\rho_{K}(\mathbf{y}) \mathbf{y}\right\| \leq \lambda\right\},
\end{aligned}
$$

i.e., it consists of all points whose "radial distance" to K is at most λ.

- Dual Steiner formula; Lutwak, 1975.

$$
\operatorname{vol}\left(K \tilde{+} \lambda B^{n}\right)=\sum_{i=0}^{n} \lambda^{i}\binom{n}{i} \widetilde{W}_{i}(K)
$$

$\widetilde{W}_{i}(K)$ is the ith dual quermassintegral.

- $\widetilde{W}_{0}(K)=\operatorname{vol}(K), \widetilde{W}_{n}(K)=\operatorname{vol}\left(B^{n}\right)$.
- Dual outer parallel body

$$
\begin{aligned}
\mathrm{K} \widetilde{+} \lambda \mathrm{B}^{\mathrm{n}} & =\left\{\mathbf{v} \widetilde{+} \lambda \mathbf{w}: \mathbf{v} \in \mathrm{K}, \mathbf{w} \in \mathrm{~B}^{\mathrm{n}}\right\} \\
& =\left\{\mathbf{y} \in \mathbb{R}^{\mathrm{n}}:\left(1-\rho_{\mathrm{K}}(\mathbf{y})\right)\|\mathbf{y}\| \leq \lambda\right\} \\
& =\mathrm{K} \cup\left\{\mathbf{y} \in \mathbb{R}^{\mathrm{n}} \backslash \mathrm{~K}:\left\|\mathbf{y}-\rho_{\mathrm{K}}(\mathbf{y}) \mathbf{y}\right\| \leq \lambda\right\},
\end{aligned}
$$

i.e., it consists of all points whose "radial distance" to K is at most λ.

- Dual Steiner formula; Lutwak, 1975.

$$
\operatorname{vol}\left(K \tilde{+} \lambda B^{n}\right)=\sum_{i=0}^{n} \lambda^{i}\binom{n}{i} \widetilde{W}_{i}(K)
$$

$\widetilde{W}_{i}(K)$ is the ith dual quermassintegral.

- $\widetilde{W}_{0}(K)=\operatorname{vol}(K), \widetilde{W}_{n}(K)=\operatorname{vol}\left(B^{n}\right)$.
- Dual Kubota formula; Lutwak, 1979.

$$
\widetilde{W}_{n-i}(K)=\frac{\operatorname{vol}_{\left(B^{n}\right)}^{\operatorname{vol}_{i}\left(B^{i}\right)}}{\int_{G(n, i)}} \operatorname{vol}_{i}(K \cap L) d L, \quad i=1, \ldots, n .
$$

Huang, Lutwak, Yang, Zhang, [HLYZ], 2016. ${ }^{6}$

[^4]- Let $\omega \subseteq \mathbb{S}^{n-1}$.

$$
\widetilde{A}_{K}(\lambda, \omega)=\left\{\mathbf{x} \in \mathbb{R}^{\mathrm{n}}:\left(1-\rho_{\mathrm{K}}(\mathbf{x})\right)\|\mathbf{x}\| \leq \lambda, \rho_{\mathrm{K}}(\mathbf{x}) \mathbf{x} \in v_{\mathrm{K}}^{-1}(\omega)\right\} .
$$

is the local dual outer parallel body.

[^5]
Huang, Lutwak, Yang, Zhang, [HLYZ], 2016. ${ }^{6}$

- Let $\omega \subseteq \mathbb{S}^{\mathrm{n}-1}$.

$$
\widetilde{A}_{K}(\lambda, \omega)=\left\{\mathbf{x} \in \mathbb{R}^{\mathrm{n}}:\left(1-\rho_{K}(\mathbf{x})\right)\|\mathbf{x}\| \leq \lambda, \rho_{K}(\mathbf{x}) \mathbf{x} \in v_{\mathrm{K}}^{-1}(\omega)\right\} .
$$ is the local dual outer parallel body.

$$
\operatorname{vol}\left(\widetilde{A}_{K}(\lambda, \omega)\right)=\sum_{i=0}^{n}\binom{n}{i} \lambda^{i} \widetilde{C}_{n-i}(K, \omega) .
$$

$\widetilde{\mathrm{C}}_{i}(\mathrm{~K}, \omega)$ is the ith dual curvature measure.

[^6]
Huang, Lutwak, Yang, Zhang, [HLYZ], 2016. ${ }^{6}$

- Let $\omega \subseteq \mathbb{S}^{\mathrm{n}-1}$.

$$
\widetilde{A}_{K}(\lambda, \omega)=\left\{\mathbf{x} \in \mathbb{R}^{\mathrm{n}}:\left(1-\rho_{K}(\mathbf{x})\right)\|\mathbf{x}\| \leq \lambda, \rho_{K}(\mathbf{x}) \mathbf{x} \in v_{\mathrm{K}}^{-1}(\omega)\right\} .
$$ is the local dual outer parallel body.

$$
\operatorname{vol}\left(\widetilde{A}_{K}(\lambda, \omega)\right)=\sum_{i=0}^{n}\binom{n}{i} \lambda^{i} \widetilde{C}_{n-i}(K, \omega) .
$$

$\widetilde{\mathrm{C}}_{i}(\mathrm{~K}, \omega)$ is the ith dual curvature measure.

- $\widetilde{\mathrm{C}}_{\mathrm{i}}\left(\mathrm{K}, \mathbb{S}^{\mathrm{n}-1}\right)=\widetilde{W}_{\mathrm{n}-\mathrm{i}}(\mathrm{K})$.

[^7]- For $\omega \subseteq \mathbb{S}^{n-1}$ let

$$
\begin{aligned}
\alpha_{K}^{*}(\omega) & =\left\{\mathbf{u} \in \mathbb{S}^{n-1}: \rho_{K}(\mathbf{u}) \mathbf{u} \in v_{K}^{-1}(\omega)\right\} \\
& =\mathbb{R}_{\geq 0} \gamma_{K}^{-1}(\omega) \cap \mathbb{S}^{n-1}
\end{aligned}
$$

- For $\omega \subseteq \mathbb{S}^{n-1}$ let

$$
\begin{aligned}
\alpha_{K}^{*}(\omega) & =\left\{\mathbf{u} \in \mathbb{S}^{n-1}: \rho_{K}(\mathbf{u}) \mathbf{u} \in v_{K}^{-1}(\omega)\right\} \\
& =\mathbb{R}_{\geq 0} v_{K}^{-1}(\omega) \cap \mathbb{S}^{n-1}
\end{aligned}
$$

- HLYZ, 2016. Let $q \in \mathbb{R}$.

$$
\widetilde{\mathrm{C}}_{\mathrm{q}}(\mathrm{~K}, \omega)=\frac{1}{\mathrm{n}} \int_{\alpha_{\mathrm{K}}^{*}(\omega)} \rho_{\mathrm{K}}(\mathbf{u})^{\mathrm{q}} \mathrm{~d} \mathcal{H}^{\mathrm{n}-1}(\mathbf{u})
$$

is the qth dual curvature measure.

- For $\omega \subseteq \mathbb{S}^{n-1}$ let

$$
\begin{aligned}
\alpha_{K}^{*}(\omega) & =\left\{\mathbf{u} \in \mathbb{S}^{n-1}: \rho_{\mathrm{K}}(\mathbf{u}) \mathbf{u} \in{v_{K}^{-1}}^{-1}(\omega)\right\} \\
& =\mathbb{R}_{\geq 0}{v_{K}^{-1}(\omega) \cap \mathbb{S}^{n-1}}
\end{aligned}
$$

- HLYZ, 2016. Let $q \in \mathbb{R}$.

$$
\widetilde{\mathrm{C}}_{\mathrm{q}}(\mathrm{~K}, \omega)=\frac{1}{\mathrm{n}} \int_{\alpha_{\mathrm{K}}^{*}(\omega)} \rho_{\mathrm{K}}(\mathbf{u})^{\mathrm{q}} \mathrm{~d} \mathcal{H}^{\mathrm{n}-1}(\mathbf{u})
$$

is the qth dual curvature measure.

$$
\operatorname{VP}(\omega)=\sum_{i=1}^{m} \delta_{\mathbf{u}_{i}}(\omega)\left(\frac{1}{n} \int_{\mathbb{R}_{\geq 0} F_{i} \cap \mathbb{S n}^{n-1}} \rho_{K}(\mathbf{u})^{q} d \mathcal{H}^{n-1}(\mathbf{u})\right)
$$

- For $\omega \subseteq \mathbb{S}^{n-1}$ let

$$
\begin{aligned}
\alpha_{K}^{*}(\omega) & =\left\{\mathbf{u} \in \mathbb{S}^{n-1}: \rho_{K}(\mathbf{u}) \mathbf{u} \in \nu_{K}^{-1}(\omega)\right\} \\
& =\mathbb{R}_{\geq 0} v_{K}^{-1}(\omega) \cap \mathbb{S}^{n-1}
\end{aligned}
$$

- HLYZ, 2016. Let $q \in \mathbb{R}$.

$$
\widetilde{\mathrm{C}}_{\mathrm{q}}(\mathrm{~K}, \omega)=\frac{1}{\mathrm{n}} \int_{\alpha_{\mathrm{K}}^{*}(\omega)} \rho_{\mathrm{K}}(\mathbf{u})^{\mathrm{q}} \mathrm{~d} \mathcal{H}^{\mathrm{n}-1}(\mathbf{u})
$$

is the qth dual curvature measure.

$$
\begin{aligned}
& \widetilde{\mathrm{C}}_{\mathrm{n}}(\mathrm{~K}, \omega)=\mathrm{V}_{\mathrm{K}}(\omega) \text { (cone volume measure) } \\
& \widetilde{\mathrm{C}}_{0}(\mathrm{~K}, \omega)=\frac{1}{\mathrm{n}} \mathcal{H}^{\mathrm{n}-1}\left(\alpha_{K}^{*}(\omega)\right)
\end{aligned}
$$

(Aleksandrov's integral curvature of K^{\star})

- HLYZ, 2016. Dual Minkowski problem. Given a finite Borel measure μ on \mathbb{S}^{n-1} and $\mathrm{q} \in \mathbb{R}$. Find necessary and sufficient conditions for the existence of a convex body K (with $0 \in \operatorname{int} K)$ such that $\widetilde{\mathrm{C}}_{\mathrm{q}}(\mathrm{K}, \cdot)=\mu$.
- HLYZ, 2016. Let $q \in(0, n] A$ non-zero, even, finite Borel measure μ on \mathbb{S}^{n-1} is the qth dual curvature measure of a o-symmetric convex body if for every proper subspace $L \subset \mathbb{R}^{n}$

$$
\mu\left(\mathbb{S}^{n-1} \cap \mathrm{~L}\right)<\min \left\{1,\left(1-\frac{q-1}{q} \frac{\mathrm{n}-\operatorname{dim} \mathrm{L}}{\mathrm{n}-1}\right)\right\} \mu\left(\mathbb{S}^{n-1}\right)
$$

- HLYZ, 2016. Let $q \in(0, n] A$ non-zero, even, finite Borel measure μ on \mathbb{S}^{n-1} is the qth dual curvature measure of a o-symmetric convex body if for every proper subspace $L \subset \mathbb{R}^{n}$

$$
\mu\left(\mathbb{S}^{n-1} \cap L\right)<\min \left\{1,\left(1-\frac{q-1}{q} \frac{n-\operatorname{dim} L}{n-1}\right)\right\} \mu\left(\mathbb{S}^{n-1}\right)
$$

- For $\mathrm{q} \in(0,1]$ also necessary.
- HLYZ, 2016. Let $q \in(0, n] A$ non-zero, even, finite Borel measure μ on \mathbb{S}^{n-1} is the qth dual curvature measure of a o-symmetric convex body if for every proper subspace $L \subset \mathbb{R}^{n}$

$$
\mu\left(\mathbb{S}^{n-1} \cap L\right)<\min \left\{1,\left(1-\frac{q-1}{q} \frac{n-\operatorname{dim} L}{n-1}\right)\right\} \mu\left(\mathbb{S}^{n-1}\right)
$$

- For $q \in(0,1]$ also necessary.
- For $\mathrm{q}=\mathrm{n}$ they coincide (up to the equality case) with the necessary and sufficient subspace concentration condition for the even logarithmic Minkowski problem.
- Böröczky, H., Pollehn, $2016{ }^{7}$. Let K be an o-symmetric convex body, $\mathrm{q} \in(1, \mathrm{n})$ and let L be a proper subspace. Then

$$
\widetilde{C}_{q}\left(\mathrm{~K}, \mathbb{S}^{\mathrm{n}-1} \cap \mathrm{~L}\right)<\min \left\{1, \frac{\operatorname{dim} \mathrm{~L}}{\mathrm{q}}\right\} \widetilde{\mathrm{C}}_{\mathrm{q}}\left(\mathrm{~K}, \mathbb{S}^{\mathrm{n}-1}\right)
$$

[^8]- Böröczky, H., Pollehn, $2016{ }^{7}$. Let K be an o-symmetric convex body, $\mathrm{q} \in(1, \mathrm{n})$ and let L be a proper subspace. Then

$$
\widetilde{\mathrm{C}}_{\mathrm{q}}\left(\mathrm{~K}, \mathbb{S}^{\mathrm{n}-1} \cap \mathrm{~L}\right)<\min \left\{1, \frac{\operatorname{dim} \mathrm{~L}}{\mathrm{q}}\right\} \widetilde{\mathrm{C}}_{\mathrm{q}}\left(\mathrm{~K}, \mathbb{S}^{\mathrm{n}-1}\right)
$$

- Zhao, $2016^{\text {8 }}$; Böröczky, LYZ, Zhao, 2017+. Let $\mathrm{q} \in(1, \mathrm{n})$. A non-zero, even, finite Borel measure μ on \mathbb{S}^{n-1} is the qth dual curvature measure of a symmetric convex body if for every proper subspace $L \subset \mathbb{R}^{n}$

$$
\mu\left(\mathbb{S}^{n-1} \cap L\right)<\min \left\{1, \frac{\operatorname{dim} L}{q}\right\} \mu\left(\mathbb{S}^{n-1}\right)
$$

[^9]- Zhao, 2016. ${ }^{9}$ Let $\mathrm{q}<0$. A non-zero, even, finite Borel measure μ on \mathbb{S}^{n-1} is the qth dual curvature measure of a convex body if and only if μ is not concentrated on any closed hemisphere. The convex body is uniquely determined by the measure.
${ }^{9}$ The dual Minkowski problem for negative indices, CVPDEs, 56(2):56:18, 2017.
- Zhao, 2016. ${ }^{9}$ Let $q<0$. A non-zero, even, finite Borel measure μ on \mathbb{S}^{n-1} is the qth dual curvature measure of a convex body if and only if μ is not concentrated on any closed hemisphere. The convex body is uniquely determined by the measure.
- H., Pollehn, 2017+. Let $\mathrm{q} \geq \mathrm{n}+1$, and let K be a o-symmetric convex body. Then for every proper subspace $L \subset \mathbb{R}^{n}$

$$
\widetilde{C}_{q}\left(K, \mathbb{S}^{n-1} \cap L\right)<\frac{q-n+\operatorname{dim} L}{q} \widetilde{C}_{q}\left(K, \mathbb{S}^{n-1}\right)
$$

and the bound is best possible.
${ }^{9}$ The dual Minkowski problem for negative indices, CVPDEs, 56(2):56:18, 2017.

- Zhao, 2016. ${ }^{9}$ Let $q<0$. A non-zero, even, finite Borel measure μ on \mathbb{S}^{n-1} is the qth dual curvature measure of a convex body if and only if μ is not concentrated on any closed hemisphere. The convex body is uniquely determined by the measure.
- H., Pollehn, 2017+. Let $\mathrm{q} \geq \mathrm{n}+1$, and let K be a o-symmetric convex body. Then for every proper subspace $L \subset \mathbb{R}^{n}$

$$
\widetilde{C}_{q}\left(K, \mathbb{S}^{n-1} \cap L\right)<\frac{q-n+\operatorname{dim} L}{q} \widetilde{C}_{q}\left(K, \mathbb{S}^{n-1}\right)
$$

and the bound is best possible.

- For $\mathrm{n}=2$ the bound is valid for all $\mathrm{q}>2$.

[^10]
Some details...

- For $\mathrm{q}>0$ one may write the dual curvature measure as

$$
\widetilde{C}_{q}(K, \omega)=\frac{q}{n} \int_{K \cap \mathbb{R}_{\geq 0} \alpha_{K}^{*}(\omega)}\|\boldsymbol{x}\|^{q-n} \mathrm{~d} \mathcal{H}^{n}(\boldsymbol{x}),
$$

i.e., for a polytope $P=\left\{\mathbf{x}:\left\langle\mathbf{x}, \mathbf{u}_{i}\right\rangle \leq b_{i}\right\}$ it is the integral of the moments $\|\cdot\|^{q-n}$ over the cones C_{i} with $\mathbf{u}_{i} \in \omega$.

$$
\widetilde{C}_{q}(P, \omega)=\frac{q}{n} \sum_{u_{i} \in \omega} \int_{C_{i}}\|\mathbf{x}\|^{q-n} d \mathcal{H}^{n}(\mathbf{x}) .
$$

- Each integral $\int_{C_{i}}\|\mathbf{x}\|^{q-n} d \mathcal{H}^{n}(\mathbf{x})$ over a cone C_{i} depends only on the facet F_{i}.

- Each integral $\int_{C_{i}}\|\mathbf{x}\|^{q-n} d \mathcal{H}^{n}(\mathbf{x})$ over a cone C_{i} depends only on the facet F_{i}.

- On the other hand

$$
\widetilde{\mathrm{C}}_{\mathrm{q}}\left(\mathrm{P}, \mathbb{S}^{\mathrm{n}-1}\right)=\frac{\mathrm{q}}{\mathrm{n}} \int_{\mathrm{P} \mid \mathrm{L}} \int_{\mathrm{P} \cap\left(\mathbf{y}+\mathrm{L}^{\perp}\right)}|(\mathbf{y}, \mathbf{z})|^{\mathrm{q}-\mathrm{n}} \mathrm{~d} \mathcal{H}^{\mathrm{n}}(\mathbf{y}, \mathbf{z})
$$

and the slices $\mathrm{P} \cap\left(y+L^{\perp}\right)$ contain convex combinations of the form $(1-\lambda) F_{i}+\lambda\left(-F_{i}\right)$.

- Each integral $\int_{C_{i}}\|\mathbf{x}\|^{q-n} d \mathcal{H}^{n}(\mathbf{x})$ over a cone C_{i} depends only on the facet F_{i}.

- On the other hand

$$
\widetilde{\mathrm{C}}_{\mathrm{q}}\left(\mathrm{P}, \mathbb{S}^{\mathrm{n}-1}\right)=\frac{\mathrm{q}}{\mathrm{n}} \int_{\mathrm{P} \mid \mathrm{L}} \int_{\mathrm{P} \cap\left(\mathbf{y}+\mathrm{L}^{\perp}\right)}|(\mathbf{y}, \mathbf{z})|^{\mathrm{q}-\mathrm{n}} \mathrm{~d} \mathcal{H}^{\mathrm{n}}(\mathbf{y}, \mathbf{z})
$$

and the slices $P \cap\left(y+L^{\perp}\right)$ contain convex combinations of the form $(1-\lambda) F_{i}+\lambda\left(-F_{i}\right)$.

- Requires estimates of Brunn-Minkowski type.
- For $\mathrm{q} \leq \mathrm{n}$ the function $\|\cdot\|^{\mathrm{q}-\mathrm{n}}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}_{\geq 0} \cup\{\infty\}$ is an even quasiconcave function, i.e., the superlevel sets are o-symmetric convex sets.
- For $\mathrm{q} \leq \mathrm{n}$ the function $\|\cdot\|^{\mathrm{q}-\mathrm{n}}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}_{\geq 0} \cup\{\infty\}$ is an even quasiconcave function, i.e., the superlevel sets are o-symmetric convex sets.
- Börözcky, H., Pollehn, 2016. Let $\mathrm{M} \subset \mathbb{R}^{\mathrm{n}}$ be a compact, convex set, $\mathrm{k}=\operatorname{dim} \mathrm{M}$ and $\mathrm{f}: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}_{\geq 0}$ an \mathcal{H}^{k}-measurable, even and quasiconcave function. Then for $\lambda \in[0,1]$

$$
\int_{(1-\lambda) M+\lambda(-M)} f(\mathbf{x}) d \mathcal{H}^{k}(\mathbf{x}) \geq \int_{M} f(\mathbf{x}) d \mathcal{H}^{k}(\mathbf{x})
$$

- H., Pollehn, 2017. Let $\mathrm{K}_{0}, \mathrm{~K}_{1} \subset \mathbb{R}^{\mathrm{n}}$ be compact, convex sets, $\operatorname{dim} \mathrm{K}_{0}=\operatorname{dim} \mathrm{K}_{1}=\mathrm{k} \geq 1, \operatorname{vol}_{\mathrm{k}}\left(\mathrm{K}_{0}\right)=\operatorname{vol}_{\mathrm{k}}\left(\mathrm{K}_{1}\right)$ and their affine hulls are parallel. For $\lambda \in[0,1]$ let $K_{\lambda}=(1-\lambda) K_{0}+\lambda K_{1}$. Then for $p \geq 1$

$$
\begin{aligned}
\int_{\mathrm{K}_{\lambda}}\|\mathbf{x}\|^{\mathrm{p}} \mathrm{~d} & \mathcal{H}^{\mathrm{k}}(\mathbf{x})+\int_{\mathrm{K}_{1-\lambda}}\|\mathbf{x}\|^{\mathrm{p}} \mathrm{~d} \mathcal{H}^{\mathrm{k}}(\mathbf{x}) \\
& \geq|2 \lambda-1|^{\mathrm{p}}\left(\int_{\mathrm{K}_{0}}\|\mathbf{x}\|^{\mathrm{p}} \mathrm{~d} \mathcal{H}^{\mathrm{k}}(\mathbf{x})+\int_{\mathrm{K}_{1}}\|\mathbf{x}\|^{\mathrm{p}} \mathrm{~d} \mathcal{H}^{\mathrm{k}}(\mathbf{x})\right)
\end{aligned}
$$

with equality if and only if $\lambda \in\{0,1\}$ or $p=1$ and...

- H., Pollehn, 2017. Let $\mathrm{K}_{0}, \mathrm{~K}_{1} \subset \mathbb{R}^{\mathrm{n}}$ be compact, convex sets, $\operatorname{dim} \mathrm{K}_{0}=\operatorname{dim} \mathrm{K}_{1}=\mathrm{k} \geq 1, \operatorname{vol}_{\mathrm{k}}\left(\mathrm{K}_{0}\right)=\operatorname{vol}_{\mathrm{k}}\left(\mathrm{K}_{1}\right)$ and their affine hulls are parallel. For $\lambda \in[0,1]$ let $\mathrm{K}_{\lambda}=(1-\lambda) \mathrm{K}_{0}+\lambda \mathrm{K}_{1}$. Then for $\mathrm{p} \geq 1$

$$
\begin{aligned}
& \int_{\mathrm{K}_{\lambda}}\|\mathbf{x}\|^{\mathrm{p}} \mathrm{~d} \mathcal{H}^{\mathrm{k}}(\mathbf{x})+\int_{\mathrm{K}_{1-\lambda}}\|\mathbf{x}\|^{\mathrm{p}} \mathrm{~d} \mathcal{H}^{\mathrm{k}}(\mathbf{x}) \\
& \quad \geq|2 \lambda-1|^{\mathrm{p}}\left(\int_{\mathrm{K}_{0}}\|\mathbf{x}\|^{\mathrm{p}} \mathrm{~d} \mathcal{H}^{\mathrm{k}}(\mathbf{x})+\int_{\mathrm{K}_{1}}\|\mathbf{x}\|^{\mathrm{p}} \mathrm{~d} \mathcal{H}^{\mathrm{k}}(\mathbf{x})\right)
\end{aligned}
$$

with equality if and only if $\lambda \in\{0,1\}$ or $p=1$ and...

- Corollary. Let $\mathrm{q} \geq \mathrm{n}+1$ and let $\mathrm{M} \subset \mathbb{R}^{\mathrm{n}}$ be a compact, convex set, $k=\operatorname{dim} M$. Then for $\lambda \in[0,1]$

$$
\int_{(1-\lambda) M+\lambda(-M)}\|x\|^{q-n} d \mathcal{H}^{k}(x) \geq|2 \lambda-1|^{q-n} \int_{M}\|x\|^{q-n} d \mathcal{H}^{k}(\mathbf{x})
$$

- Proof is based on
- Proof is based on

$$
\|\mathbf{x}\|^{\mathrm{p}}=\mathrm{c}(\mathrm{p}, \mathrm{n}) \cdot \int_{\mathbb{S}^{n}-1}|\langle\mathbf{x}, \mathbf{u}\rangle|^{\mathrm{p}} \mathrm{~d} \mathcal{H}^{\mathrm{n}-1}(\mathbf{u}),
$$

- Proof is based on

$$
\|\mathbf{x}\|^{\mathbf{p}}=c(\mathbf{p}, \mathrm{n}) \cdot \int_{\mathbb{S}^{n}-1}|\langle\mathbf{x}, \mathbf{u}\rangle|^{\mathrm{p}} \mathrm{~d} \mathcal{H}^{\mathrm{n}-1}(\mathbf{u}),
$$

- H. Kneser, Süss 1929. Inductive proof of Brunn-Minkowski inequality.
- Proof is based on

$$
\|\mathbf{x}\|^{\mathbf{p}}=c(\mathrm{p}, \mathrm{n}) \cdot \int_{\mathbb{S}^{n-1}}|\langle\mathbf{x}, \mathbf{u}\rangle|^{\mathrm{p}} \mathrm{~d} \mathcal{H}^{\mathrm{n}-1}(\mathbf{u}),
$$

- H. Kneser, Süss 1929. Inductive proof of Brunn-Minkowski inequality.
- Karamata 1932; Hardy, Littlewood, Pólya, 1929.. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{\mathrm{k}}, \mathbf{x} \geq$ majorizing \mathbf{y}, and let $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ be a non-decreasing, convex function. Then

$$
f\left(x_{1}\right)+\cdots+f\left(x_{k}\right) \geq f\left(y_{1}\right)+\cdots+f\left(y_{k}\right) .
$$

Thank you for your attention!

[^0]: ${ }^{2}$ On the number of solutions to the discrete two-dimensional L_{0}-Minkowski problem, Adv. Math. 180(1), 2003.

[^1]: ${ }^{2}$ On the number of solutions to the discrete two-dimensional L_{0}-Minkowski problem, Adv. Math. 180(1), 2003.
 ${ }^{3}$ The logarithmic Minkowski problem for polytpopes, Adv. Math. 262, 2014.

[^2]: ${ }^{2}$ On the number of solutions to the discrete two-dimensional L_{0}-Minkowski problem, Adv. Math. 180(1), 2003.
 ${ }^{3}$ The logarithmic Minkowski problem for polytpopes, Adv. Math. 262, 2014.
 ${ }^{4}$ On the discrete logarithmic Minkowski problem, Int. Math. Res. Not. 6, 2016.
 ${ }^{5}$ Cone-volume measure of general centered convex bodies, Adv. Math. 286, 2016.

[^3]: ${ }^{2}$ On the number of solutions to the discrete two-dimensional L_{0}-Minkowski problem, Adv. Math. 180(1), 2003.
 ${ }^{3}$ The logarithmic Minkowski problem for polytpopes, Adv. Math. 262, 2014.
 ${ }^{4}$ On the discrete logarithmic Minkowski problem, Int. Math. Res. Not. 6, 2016.
 ${ }^{5}$ Cone-volume measure of general centered convex bodies, Adv. Math. 286, 2016.

[^4]: ${ }^{6}$ Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems, Acta Mathematica, 216(2016)(2):325-388.

[^5]: ${ }^{6}$ Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems, Acta Mathematica, 216(2016)(2):325-388.

[^6]: ${ }^{6}$ Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems, Acta Mathematica, 216(2016)(2):325-388.

[^7]: ${ }^{6}$ Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems, Acta Mathematica, 216(2016)(2):325-388.

[^8]: ${ }^{7}$ Subspace concentration of dual curvature measures of symmetric convex bodies, J. Differential Geometry, accepted for publication.

[^9]: ${ }^{7}$ Subspace concentration of dual curvature measures of symmetric convex bodies, J. Differential Geometry, accepted for publication.
 ${ }^{8}$ Existence of solution to the even dual Minkowski problem, J. Differential Geometry, accepted for publication.

[^10]: ${ }^{9}$ The dual Minkowski problem for negative indices , CVPDEs, 56(2):56:18, 2017.

