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Prescribed Jacobian Equations

A function of the form

T : Ω× Rd × R 7→ Rd, Ω ⊂ Rd

determines an operator that assigns to any scalar function
u : Ω 7→ R a map Tu : Ω 7→ Rd via

Tu(x) := T (x,∇u(x), u(x))

In this context, given ψ : Ω× Rd × R 7→ R, the equation

det(DTu(x)) = ψ(x,∇u(x), u(x))

is called a Prescribed Jacobian equation.
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Prescribed Jacobian Equations

Differentiating Tu(x) = T (x,∇u(x), u(x)) yields

DTu(x)) = DxT +Dp̄TD
2u+ Tu ⊗∇u

and the Prescribed Jacobian Equation can be written as

det(D2u+ (Dp̄T )−1(DxT + Tu ⊗∇u))

= det(Dp̄T )−1ψ(x,∇u(x), u(x))



Prescribed Jacobian Equations

The most basic example of such an equation is given by

T (x, p̄, u) = p̄

and the resulting equation is the real Monge-Ampère equation

det(D2u) = ψ(x,∇u(x), u(x)) (MA)

In the theory for (MA) linear functions and their envelopes (i.e.
convex functions) play a central role. Is there a similar class of
functions for Prescribed Jacobian equations in general?

Yes, as long as we have a little more structure than this!.
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Prescribed Jacobian Equations

A generating function is a real valued function

G : Ω× Ω̄× R 7→ R,
G(x, x̄, z) is monotone decreasing in z

Provided certain assumptions on G hold, one can associate to G
a map T : Ω× Rd × R 7→ Rd . . . (the “G-exponential map”)

Essentially, one defines functions T (x, p̄, u) and Z(x, p̄, u) by

p̄ = (DxG)(x, T, Z))

u = G(x, T, Z)



Prescribed Jacobian Equations

Implicit differentiation of both equations yields

det(D2u+ (D2
xG)(x, Tu(x), Zu(x))) = ψG(x,∇u, u)

where

ψG(x, p̄, u) = det(E(x, T, Z))ψ(x, p̄, u)

E(x, x̄, z) = D2
xx̄G(x, x̄, z)− DxGz

Gz
⊗Dx̄G(x, x̄, z)



Generated Jacobian Equations

Motivated in part by problems in geometric optics, Trudinger
(2014) made the considerations above, setting up a framework
to study a large class of scalar PDE we call Generated
Jacobian Equations, which are given by

det(D2u+AG(x,∇u, u)) = ψG(x,∇u, u) (GJE)

with AG and ψG given by a generating function G.



Generated Jacobian Equations
Degenerate ellipticity?

The linearization of this equation at a given function u is
degenerate elliptic as soon as

D2u+AG(x,∇u, u) ≥ 0, ∀ x,

which, as in optimal transport, leads to a notion of “convex
function” that is natural for the PDE.



Generated Jacobian Equations

We are not limited to working in Rd, in fact, we may consider

• Domains in Riemannian manifolds Ω ⊂Mn, Ω̄ ⊂Mn

–or even compact metric spaces X and X.

• Generating function defined for some set of (x, x̄, z):
G : (x, x̄, z) ∈ dom(G) ⊂ Ω× Ω̄× R→ R

• (If we are in a manifold) G is C2 in (x, x̄).

• Last but not least, Gz < 0 everywhere (or Gz > 0).



Generated Jacobian Equations
The Dual Generating Function

Since Gz < 0, for (x, x̄, u) ∈ R there is a unique real number
H = H(x, x̄, u) solving

G(x, x̄,H) = u

this defines a function H : (x, x̄, u) ∈ dom(H) ⊂ Ω× Ω̄×R 7→ R.
Plus: H(x, x̄, G(x, x̄, z)) = z, H is C2 in (x, x̄), and Hu < 0.

This is called the Dual Generating Function (sometimes the
Inverse Generating Function).



Generated Jacobian Equations
G-convex functions

Following Trudinger, u : Ω→ R is said to be G-convex if

u(x) = sup
(x̄,z)∈A

G(x, x̄, z) ∀ x,

for some set A ⊂ Ω̄× R.



Generated Jacobian Equations
G-transform

Given u : Ω→ R and v : Ω̄ 7→ R, we define, respectively

uG(x̄) = sup
x
H(x, x̄, u(x)), for x̄ ∈ Ω̄,

vH(x) = sup
x̄
G(x, x̄, v(x)), for x ∈ Ω,

known as the G- and H-transform of the function, respectively.



Generated Jacobian Equations
G-transform

For u, being G-convex amounts to u = vH for some v(x̄), and
for v, being H-convex amounts to v = uG for some v.

In analogy with the Legendre transform, if (u, v) are functions
such that u = vH and v = uG then we say they are conjugate.

In particular, if u is G-convex, it is not hard to see* that

u = (uG)H

and analogously if v is H-convex.

*Under some natural some assumptions on G –see “Twist”
condition in OT.



Generated Jacobian Equations
G-gradient map

If u is G convex, we set

∂Gu(x) = {x̄ | u(·) ≥ G(·, x̄, H(x, x̄, u(x))}

Note that, by the definition of H, we have

u(x) = G(x, x̄,H(x, x̄, u(x)))

so u is being touched from below at x by G(·, x̄, H(x, x̄, u(x))).

This is called the G-subdifferential of u at x.



Generated Jacobian Equations
G-gradient map

If further, u differentiable at x, then ∂Gu(x) is a singleton

∂Gu(x) = {TG(x,∇u(x), u(x))}

where TG = TG(x, p̄, u) is determined by solving

p̄ = (DxG)(x, TG, Z)

u = G(x, TG, Z)

Accordingly, TG(x,∇u(x), u(x)) is called the G-gradient map.



Generated Jacobian Equations
Ellipticity and weak solutions of (GJE)

In general with G-convex functions

• Can define weak solutions for the GJE (“A-type” or
“B-type”), allows for discontinuous RHS.

• Makes (GJE) degenerate elliptic.

• Strong / uniform G-convexity ↔ strong / uniform
ellipticity
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Examples
The “Trivial” Ones

• Certainly the simplest interesting example is given by

G(x, x̄, z) = −x · x̄− z,

which corresponds to (MA) and convex functions.

• Given a cost function c(x, x̄), we have the generating
function

G(x, x̄, z) = −c(x, x̄)− z,

which corresponds to Optimal Transport and c-convex
functions.



Examples
The “Trivial” Ones

The fundamentally new phenomenon for GJE:

There is a possibly nonlinear dependence in z!

Thus, näıvely, one may say GJE is what you get when you look
at c-affine functions

−c(x, x̄)− z

and their associated Monge-Ampère equation, and stop
assuming that they depend linearly on the height parameter z.
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Examples
The “Trivial” Ones

The fundamentally new phenomenon for GJE:

There is a possibly nonlinear dependence in z!
(what’s next? nonlocal dependence?!)

Thus, näıvely, one may say GJE is what you get when you look
at c-affine functions

−c(x, x̄)− z

and their associated Monge-Ampère equation, and stop
assuming that they depend linearly on the height parameter z.



Examples
Beyond the “Trivial” Ones?

Affine functions (i.e. hyperplanes!)

`(x) = −x · x̄− z

c-Affine functions (e.g. dg(x, x̄)2 !)

f(x) = −c(x, x̄)− z

G-Affine functions (e.g. ???)

f(x) = G(x, x̄, z)



Examples
Beyond the “Trivial” Ones?

Affine functions (i.e. hyperplanes!)

`(x) = −x · x̄− z

c-Affine functions (e.g. dg(x, x̄)2 !)

f(x) = −c(x, x̄)− z

G-Affine functions (e.g. ellipsoids!)

f(x) = G(x, x̄, z)



Examples:
Near-field reflectors

and ellipsoids of revolution



Examples
Near-field reflecting surfaces

The design/reconstruction of reflective surfaces leads naturally
to a GJE (V. Oliker, late 1980’s-today).

(Physics/engineering literature: Norris-Westcott 1970’s, Brickell-
Marder-Westcott 1970’s , J.B. Keller 1950’s).



Examples
Near-field reflecting surfaces

Already for the far field regime, geometric optics provided
examples crucial to development of Optimal Transport (OT).

Works by
Gutierrez, Huang, Karakhanyan, Kochengin, Liu, Oliker,

Tournier, X-J. Wang. . .



Examples
Near-field reflecting surfaces

Domains:
• Ω ⊂ S2

• Ω̄ ⊂ Σ, a surface in R3



Examples
Near-field reflecting surfaces

Light source:
• point source at origin

• emits energy fdVolΩ



Examples
Near-field reflecting surfaces

Reflector:
• radial graph of ρ over Ω

• perfectly reflective surface



Examples
Near-field reflecting surfaces

Goal:
• reflected pattern gdVolΩ̄
•
∫

Ω fdVolΩ =
∫

Ω̄ gdVolΩ̄



Examples
Near-field reflecting surfaces

Ray tracing map:

Tρ : Ω→ Ω̄ (Snell’s law: ∠ incidence = ∠ reflection)



Examples
Near-field reflecting surfaces

Prescribed Jacobian equation:

g(Tρ(x)) detDTρ(x) = f(x)



Examples
Near-field reflecting surfaces

Prescribed Jacobian equation:

det(D2ρ+AΣ(x, ρ,Dρ)) = ψρ(x, ρ,Dρ)
f(x)

g(Tρ(x))



Near-field reflecting surfaces

Now, what is the generating function for this example?



Near-field reflecting surfaces

Consider what happens if gdVolΩ̄ becomes a single point mass.



Near-field reflecting surfaces

ρ(·) = e(·, y1, a1), an ellipsoid



Near-field reflecting surfaces

ρ(·) = e(·, y1, a
′
1)



Near-field reflecting surfaces

ρ(·) = e(·, y1, a
′′
1)



Near-field reflecting surfaces

ρ(·) = min{e(·, y1, a1), e(·, y2, a2)}



Near-field reflecting surfaces

General: reflector = boundary (intersection of ellipsoids)



Near-field reflecting surfaces

The ellipsoids then give us the generating function.

We define, for (x, x̄, z) ∈ S2 × Σ× R such that 1
2z|x̄| < 1,

G(x, x̄, z) =
1

e(x, x̄, z−1)
,

(
e(x, x̄, a) =

a2 − 1
4 |x̄|

2

a− 1
2(x, x̄)

)

ψG(x, x̄, z) = |det(D2
xx̄G− DxGz⊗Dx̄G

Gz
)| f(x)

g(Tu(x))
.

Then, for a G-convex function u

• The reflector ρ = 1/u is an envelope of ellipsoids.

• The ray tracing map for ρ plays the role of Tu.
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A priori estimates for the near field reflector

Theorem (Karakhanyan and Wang, JDG 2010)

1. Ω, V ⊂ Sn−1, Ω ∩ V = ∅, Ω has Lipschitz boundary.

2. Σ is given by a radial graph of some smooth (C1,1 function
over V .

3. f, g are C2,α.

4. ∂Ω̄ is “convex.”

Then, there is a U ⊂ Rn such that

1. If O ∈ U , then any reflector going through U has a priori
C2 estimates in a neighborhood of U .

2. If O 6∈ U , there are examples of smooth f, g and a weak
reflector going through O which is not C1.
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Examples:
Optimal matchings (& more. . .)

with non-quasilinear utility functions



Optimal matchings & more
Non quasilinear utility functions

An important context for generating functions is economics.

Consider, first, the following interpretation

X = a set of buyers

Y = a set of sellers

A utility function G(x, y, v) is given, representing the following

The maximal utility buyer x may obtain when matched with
seller y after paying a utility v to the seller.



Optimal matchings & more
Non quasilinear utility functions

In the economic literature, when

G(x, y, z) = −c(x, y) + z

it is said that the utility function is quasilinear.



Optimal matchings & more
Principal-agent problems

We consider a situation where a principal is dealing with a set
of agents, and set

X = a set of agents

Y = a set of decisions taken by agents

A utility function for agents G(x, y, v) is given, representing the
following

The utility of the agent x upon taking decision y wihile
providing a transfer of v to the principal



Optimal matchings & more
Principal-agent problems

The Principal has a utility function,

π : X × Y × R 7→ R

and she wishes to maximize∫
x∈X

π(x, y(x), v(y(x)) dµ(x)

Here: µ represents the distribution of agents, and. . .



Optimal matchings & more
Principal-agent problems

. . . following Nöldeke-Samuelson (2015), the supremum is taken
over certain admissible pairs (v(x), y(x)) where

y : X 7→ Y represents an assignment to the agents

v : X 7→ R represents a tariff

and, y is implemented by the tariff v.

In our notation, this means that y is given the G-gradient map
associated to the dual of v(y).



Regularity Theory For Weak Solutions



Regularity
Optimal Transport

(Only a very few highlights)

Let us recall

• G(x, y, z) = −c(x, y)− z, (dom(G) = Ω× Ω̄× R)

• det(D2u(x) +D2
xc(x, Tu(x))) = |detD2

x,yc(x, Tu(x))| f(x)
g(Tu(x))

(c-MA)

• u is c-convex

• Mapping T = Tu solves the above.

Existence of weak solutions, smooth solutions, c-convexity:

. . . Brenier (1991), Gangbo-McCann (1996), McCann (2001),
Ma-Trudinger-Wang (2005)
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Regularity
Optimal Transport

(Only a very few highlights)

• Cheng-Yau (1970’s) and Urbas (1990’s) existence of
smooth solutions for real Monge-Ampère.

• Caffarelli (early 1990’s) regularity for weak solutions of real
Monge-Ampère.

• Ma, Trudinger, and Wang (2005): condition (MTW)+ on c
for smoothness of solutions (f , g smooth, need c ∈ C4)

• Loeper (2009): equivalent geometric formulation of
(MTW)0, necessary for regularity when c ∈ C4

• Figalli, Kim, and McCann (2013): local C1,α regularity of
weak solutions under the minimal sharp assumptions: i.e.
(MTW)0 (“A3-weak”) and densities bounded and bounded
away from zero.



Regularity for GJE

Theorem (Trudinger 2014)

Let u be a weak solution of (GJE) with ∂Gu(Ω) = Ω̄ and where
the right hand side is given by

f

g ◦ Tu

where f, g are C1,1, bounded, and bounded away from zero.
If the generating function G satisfies natural structural
conditions, and Ω̄ is G-convex with respect to Ω, then the
solution u is of class C3(Ω).



Regularity of weak solutions of (GJE)

Theorem (with J. Kitagawa, 2016)

If G, Ω, and Ω∗ satisfy natural structural conditions and
FG, F

−1
G are bounded, then any “nice” weak solution u of

(GJE) is C1 in Ω.

If G is also locally C1,α0 in the x variable for some α0 ∈ (0, 1),
then any “nice” weak solution u is locally C1,α in Ω for some
α > 0.

Note: By “nice”, we mean the following: there is a region
U ⊂ Ω× R determined by G, u is nice means graph(u) ⊂ U .



Aims of this workshop

• Disseminate GJE as a new framework tha encompases
many fields.

• Bring together experts in different fields that touch on
aspects of GJE.

• Identify new lines of investigation –GJE is a fertile ground
for research: many open questions, many basic important
examples not fully understood.



Thank You!



(BONUS SLIDES)



Regularity
The Real Monge-Ampère equation

• Ω ⊂ Rn bounded

The Monge-Ampère equation

detD2u(x) = ψ(x, u(x),∇u(x)), x ∈ Ω. (1)

• G(x, y, z) = −〈x, y〉 − z, (dom(G) = Rn × Rn × R)

• G-convex functions → convex functions
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Regularity
The Real Monge-Ampère equation

Theorem (Caffarelli (1990’s))

If u is a weak solution of (MA), ψ, 1
ψ are bounded, and Ω̄ is

convex, then it is strictly convex and loc. C1,α for some α > 0.

The key to this result: using barrier arguments, one proves
opposing pointwise inequalities for a solution u in any
“normal”’ convex domain. Using affine invariance one obtains
proper pointwise bounds for general domains.

The two estimates, applied to proper rescalings of u, rule out
“corners” and “flat” pieces in the graph of u.
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Regularity
Key ingredients for regularity

Aleksandrov estimate

There exists Cn > 0 s.t. if u is convex and x0 ∈ S := {u ≤ 0}
with B1(0) ⊂ S ⊂ Bn(0), then

|u(x0)|n ≤ Cnd(x0, ∂S)Vol (∇u(S))



Regularity
Key ingredients for regularity

Aleksandrov estimate

There exists Cn > 0 s.t. if u is convex and x0 ∈ S := {u ≤ 0}
with B1(0) ⊂ S ⊂ Bn(0), then

|u(x0)|n ≤ Cnd(x0, ∂S)Vol (∇u(S))



Regularity
Key ingredients for regularity

Sharp growth estimate

There exists Cn > 0 s.t. if u is convex and x0 ∈ S := {u ≤ 0}
with B1(0) ⊂ S ⊂ Bn(0), then

sup
S
|u|n ≥ CnVol

(
∇u(

1

2
S)

)



Regularity
Key ingredients for regularity

These two inequalities allows us to prove that u is strictly
convex and C1,α.

To illustrate the method used in the theory for GJE, let us
review it in the special case of the MA, where we have the
following important result.

Lemma

Let u : Ω→ R be a convex function such that

Λ−1 ≤ det(D2u) ≤ Λ in Ω,

the above understood in the sense of Aleksandrov, then, if `
is supporting to u at some point in Ω, then

{u = `} is either a single point or it intersects ∂Ω.



Unnormalized estimates:

By affine invariance, a scale-invariant or unnormalized version
of the Aleksandrov estimate can be written (this is one way of
seeing Caffarelli’s result)

New proofs of these estimates -covering c-convex functions in
optimal transport- have been obtained by Figalli, Kim, and
McCann (2013), and Guillen and Kitagawa (2014). They
don’t rely on affine invariance.

In the latter work, it is shown that these estimates follow from
a quantitative quasiconvexity property of cost functions,
which itself is equivalent to the (MTW)0 condition introduced
by Ma, Trudinger, and Wang when the cost is C4.



Quantitative Quasiconvexity: motivation

Dilemma:

• Need c ∈ C4 for (MTW)0

• Only need c ∈ C2 for Loeper’s maximum principle.

Related Question: If ck is a sequence of costs all satisfying
(MTW)0, and ck → c in C2 norm, can we prove regularity for
OT problem associated to c?



Quantitative Quasiconvexity: motivation

Loeper’s maximum principle refers to an important property of
costs satisfying the (MTW)0:

if ct is a tilting family of c-functions, that is

ct(x) = −c(x, y(t)) + c(x0, y0) + α

Then, for every t ∈ [0, 1] we have

ct(x) ≤ max{c0(x), c1(x)}



Quantitative Quasiconvexity: motivation

Loeper’s maximum principle refers to an important property of
costs satisfying the (MTW)0:

if ft is a “tilting family” of c-functions, then, for every t ∈ [0, 1]
we have

ft(x) ≤ max{f0(x), f1(x)}

Tilting family refers to the fact that

ft(x) = −c(x, y(t)) + c(x0, y0) + α

where y(t) is what is known as a “c-segment with respect to x0”



Quantitative Quasiconvexity: motivation

When c(x, y) = x · y, this corresponds to “tilting hyperplanes”

ft(x) ≤ max{c0(x), c1(x)}
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Quantitative Quasiconvexity: motivation

The cost c is said to satisfy (QQConv), if ∃M ≥ 1 such that

ft(x)− f0(x) ≤M(f1(x)− f0(x))+ ∀ t ∈ [0, 1].

This notion also extends to G-functions, however, the exact
definition in this general setting would take us too far adrift.

• (QQConv) implies quasiconvexity.
• For M = 1, it implies to convexity.



Quantitative Quasiconvexity and optimal transport

Theorem (with J. Kitagawa, 2014)

• If c ∈ C4 satisfies (MTW)0 (and conditions on domains),
then c satisfies (QQConv).

• If c ∈ C3 and satisfies (QQConv), (+ conditions on
domains), then c-convex functions have Aleksandrov /
sharp growth estimates.

• These estimates lead to strict c-convexity and C1,α

regularity of weak solutions.



Quantitative Quasiconvexity and GJE

Theorem (with J. Kitagawa, 2016)

• If G ∈ C4 satisfies analogue of (MTW)0 (and conditions on
domains), then G satisfies (QQConv).

• If G ∈ C2 and satisfies (QQConv), (+ conditions on
domains), then G-convex functions have Aleksandrov /
sharp growth estimates.

• These estimates lead to strict G-convexity and C1,α

regularity of weak solutions.

In particular: the previous question has a positive answer, the
class of cost functions for which the OT problem enjoys C1,α

regularity is closed under C2 limits.



Quantitative Quasiconvexity and GJE

Theorem (with J. Kitagawa, 2016)

• If G ∈ C4 satisfies analogue of (MTW)0 (and conditions on
domains), then G satisfies (QQConv).

• If G ∈ C2 and satisfies (QQConv), (+ conditions on
domains), then G-convex functions have Aleksandrov /
sharp growth estimates.

• These estimates lead to strict G-convexity and C1,α

regularity of weak solutions.

In particular: the previous question has a positive answer, the
class of cost functions for which the OT problem enjoys C1,α

regularity is closed under C2 limits.
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