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Background

• Snell law: σ a surface separating two materials with refractive
indices n1,n2; κ = n2/n1; x=incident direction at a point P on σ, ν
unit normal at P, m=refracted or transmitted direction, then

x − κm = λν

where λ = Φ(x · ν, κ). If κ < 1 and total reflection occurs; so we
need x · ν ≥

√

1 − κ2.

• a surface is optically inactive if each incident ray is refracted into
the same direction. Examples: sphere around a point source and
plane perpendicular to a collimated beam.

• A lens is an homogeneous material, tipically glass, sandwiched
between two surfaces.
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• We introduced and solved the following far field problem (C.E.G.
and Q. Huang, ARMA 2009): given two domains in the sphere
Ω,Ω∗, an integrable function I(x) ≥ 0 in Ω, a Radon measure η in
Ω∗, with

∫
Ω

I = η(Ω∗), one point source surrounded by medium n1,
then there exists a surface σ separating n1 and n2 refracting all
rays with directions in Ω into Ω∗ preserving energy:∫

Tσ(E)
I(x) dx = η(E) ∀E ⊂ Ω∗

with Tσ(E) =directions in Ω refracted into E.

• Similar results also in the near field (CEG and Q. Huang, Ann.
Inst. P., 2014) and in the collimated case (CEG and F. Tournier, C.
Var. pde, 2015; F. Abedin, CEG and G. Tralli, N.L.A, 2016).

• cutting a spherical region around the source (optically inactive)
we obtain a lens

• No control on the region to cut; disadvantages: may lead to a
bulky lens. Flexibility with the region cut is useful for imaging.
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• QUESTIONS: How to construct lenses with both faces optically
active doing a desired refraction job?

More generally, given a source (point or extended) and given a
surface u above the source, can we design a second surface σ such
that the lens sandwiched between (u, σ) does a refraction job as
before?

• First result in this direction is due to A. Friedman and B. Mc Leod,
ARMA 1989 in 2d with u and σ symmetric. Uses functional
equations and fixed point theorems, produces analytic solutions.

• In 2013, JOSA A, I solved the following problem: given a point
source, a polar surface ρ(x)x around the source, x ∈ Ω ⊂ S2, and a
fixed unit w, there exists a one parameter family of surfaces σ such
that the lens sandwiched between ρ and σ refracts all rays into w.
Also in the near field. Solve systems of 1st order pdes.

• QUESTION: can we do the same for an extended source and
when the rays emanate with an arbitrary pattern of directions?
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Statement of the problem

We are given:
• two domains Ω ⊂ R2 and Ω∗ ⊂ S2

• a C1 vector field e(x) = (e′(x), e3(x)) with |e(x)| = 1,
e′(x) = (e1(x), e2(x)), e3(x) > 0, x ∈ Ω′

• a surface σ1 given by a function u(x) ∈ C2, the lower face of the
lens to be constructed.

• a function I(x) in Ω and a Radon measure η in Ω∗ with
∫
Ω

I = η(Ω∗)
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The problem is
• From each x ∈ Ω, a ray emanates with direction e(x) and strikes σ1

at P(x) = (ϕ(x),u(ϕ(x)))

• to find a surface σ2, the top face of the lens, so that all rays
emanating from Ω are refracted by the lens sandwiched by σ1 and
σ2 into rays with directions in Ω∗, and∫

T (E)
I(x) dx = η(E) ∀E ⊂ Ω∗

where T (E) = {x ∈ Ω : the lens refracts the ray from x into E}.
Material configuration:

below σ1 the material has refractive index n1,
between σ1 and σ2 the material has refractive index n2,

above σ2 the material has refractive index n3.
n2 > n1,n3, let κ1 = n2/n1, κ2 = n3/n2
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x ∈ σ (w)

e(x)
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u (φ (x))

m(x)

w ∈ (Ω* ,η )

σ

(Ω, μσ )

φ(x)

n1

n2

n3

D(x)



Important case: Ω∗ is only one point w
• For each x ∈ Ω, the ray with direction e(x) strikes σ1 at a point

P(x) =
(
ϕ(x),u(ϕ(x))

)

• The unit normal vector at P(x) is ν1 =
(−∇u(ϕ(x)), 1)√
1 + |∇u(ϕ(x))|2

. We

assume ν1 · e(x) ≥ 0
• From the Snell law, the ray is refracted at P(x) into the direction

m1(x) with
e(x) − κ1 m1(x) = λ1 ν1(x);

and since κ1 > 1, λ1 = e(x) · ν1 − κ1

√
1 −

1
κ2

1

(1 − (e(x) · ν1)2) < 0.

• Next the ray strikes σ2 at Q(x) with incident direction m1(x). Since
κ2 < 1, to avoid total reflection at Q(x), we need m1 · w ≥ κ2, then

λ1ν1 · w ≤ e(x) · w − κ1κ2

• For example, if e(x) = w = (0, 0, 1), κ1κ2 ≤ 1, this condition holds.
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Construction of the top face of the lens

• Introduce the distance function d(x) = |P(x) −Q(x)| representing
the distance along the refracted ray inside the lens.

• The point Q(x) is parametrized by the 3-dimensional vector

f (x) = (ϕ(x),u(ϕ(x))) + d(x) m1(x); x = (x1, x2) ∈ Ω

• By Snell’s law at Q(x), m1(x) − (n3/n2)w is colinear with ν2, the
normal at Q(x)

• By Snell’s law at P(x), e(x) − (n2/n1)m1(x) = λ1ν1
• Then solving m1 and substituting yields

e(x) − λ1ν1 − (n2/n1)(n3/n2) w || ν2

• Since the tangent vectors to f are fx1 and fx2 , we get the system

(e(x) − λ1ν1 − (n2/n1)(n3/n2) w) · fx1 = 0
(e(x) − λ1ν1 − (n2/n1)(n3/n2) w) · fx2 = 0

• The only unknown in this system is d(x).
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• The only unknown in this system is d(x).



By calculation it can be shown that d satisfies the system

[(κ1 − κ2 w · (e − λ1 ν1)) d]xi
= −(e − κ1 κ2 w) · (ϕ,u(ϕ))xi , i = 1, 2

The system can be explicitly integrated and an expression for d(x) can
be found.
The integration is possible because:

• the field e(x) = (e′(x), e3(x)) satisfies curl e′ = 0
• this condition is natural because the direction of the incoming

rays have the direction of ∇S (gradient of the wave front) and
curl ∇S = 0

• the vector w is constant
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Lens refracting into a fixed direction w

Theorem
We are given a C2 surface σ1 given by (x,u(x)), a C1 unit field
e(x) = (e′(x), e3(x)), and a unit direction w. Then a lens (σ1, σ2), σ2 ∈ C2,
refracting rays with direction e(x) into w exists if and only if

1 λ1ν1 · w ≤ e(x) · w − κ1κ2 (i.e., m1 · w ≥ κ2) and
2 curl e′(x) = 0.

Moreover, ∇h(x) = e′(x) for some h, and σ2 is parametrized by

f (x,C,w) = (ϕ(x),u(ϕ(x))) + d(x,C,w) m1(x)

where m1(x) =
1
κ1

(e(x) − λ1ν1) and

d(x,C,w) =
C − h(x) + e(x) · (x, 0) − (e(x) − κ1κ2 w) · (ϕ(x),u(ϕ(x)))

κ1 − κ2 w · (e(x) − λ1ν1(x))
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Comments

• we then obtain a one parameter family of surfaces f (x,C,w) as the
top surface of the desired lens

• d(x,C,w) > 0 for C ≥ C∗(κ1, κ2,Ω, h).
• since σ2 is given parametrically it might have singular points and

self intersections. Therefore for some values of C it might not be
physically realizable.
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• if the Lipschitz constants of u,Du, e are appropriately chosen, then
the constant C can be chosen so that the surface f (x,C,w) has no
self intersections.

• the values of D2u influence whether or not the surface f (x,C,w)
has singular points, i.e., has a normal vector.

• For example, if u is concave and e′ = ∇h with h convex, then
f (x,C,w) has no singular points.

• more precisely, assuming for simplicity we are in the collimated
case, i.e., e(x) = (0, 0, 1), we have the following two theorems.
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Theorem
Suppose e(x) = e3 = (0, 0, 1), w = (w′,w3). If the Lipschitz constants of u
and Du, and |w′| are all sufficiently small, then there is an interval [−α, α]
depending only on these values and κ1 and κ2 such that the parametric
surface f (x,C,w) has no self-intersections for all C ∈ [−α, α].

Theorem
Let C > maxΩ{(e3 − κ1κ2 w) · (x,u(x))} and let µ(y) be the maximum
eigenvalue of D2u(y). If µ(y) ≤ 0 or if µ(y) > 0 and

C <
κ2

1(1 − κ2)
√

1 + |Du(y)|2

µ(y)
√
κ2

1 − 1
+ minΩ{(e3 − κ1κ2 w) · (c,u(x))}, then the

point y is a regular point for the surface f (x,C,w).



As a conclusion, when the Lipschitz constants of u,Du and |w′| are all
sufficiently small, there is an interval

J = [τ1, τ2]

such that the surface parametrized by f (x,C,w) with C ∈ J has normal
for each x ∈ Ω and has no self intersections.

This is consequence of the following Lipschitz estimate of the distance
function d(x,C,w):

|d(x,C,w) − d(y,C,w)| ≤ (|C| + M1)
(
Le + LDu Lϕ

)
|x − y|

+ ‖e′‖∞ |x − y|
+ max |e′(x) − κ1κ2 w′|Lϕ |x − y|

+ Lu Lϕ |x − y|

modulo a multiplicative constant C(κ1, κ2) and with M1 depending
only on Ω, κ1, κ2, ‖e‖∞, and ‖u‖∞.
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• We seek a surface solution σ parametrized by

F(x) = (ϕ(x),u(ϕ(x))) + d(x) m(x)

where u is given, m(x) is determined by the normal to u at
(ϕ(x),u(ϕ(x))) and the function d(x) is the unknown.

• We use the surfaces f (x,C,w) depending on the parameters C and
w ∈ Ω∗ as supporting surfaces of our solution, and where C is
chosen in a range so that f (x,C,w) has normal and has no self
intersections.

• For each f (x,C,w) there is d(x,C,w) the corresponding distance
function.

• The function d(x) is so that at each point x0 ∈ Ω there are C ∈ J and
w ∈ Ω∗ such that d(x) ≤ d(x,C,w) for all x ∈ Ω with equality at
x = x0.

• Therefore the normal mapping of σ is given by

Nσ(x0) =
{
w ∈ Ω∗ : ∃ C ∈ J such that d(x,C,w) supports d at x = x0

}
and the tracing mapping

Tσ(w) = {x ∈ Ω : w ∈ Nσ(x)}
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If σ is defined as above, then we say that the lens (u, σ) refracts Ω into
Ω∗. It can be proved that

1 d and F are both uniformly Lipschitz continuous in Ω

2 the surface σ has no self intersections
3 σ has normal at x ∈ Ω \N with |N| = 0
4 Nσ(x) is singled valued for x ∈ Ω \N



If the intensity I(x) ∈ L1(Ω), then

µσ(E) =

∫
Tσ(E)

I(x) dx

is a Borel measure in Ω∗.
Given η Radon measure in Ω∗, the lens problem is to find a surface σ
such that the lens (u, σ) refracts Ω into Ω∗ and µσ = η.



Theorem
If w1, · · · ,wN are distinct points in Ω∗, g1, · · · , gN > 0 and η =

∑
gi δwi with

the conservation of energy
∫
Ω

I(x) dx =
∑

gi, then there are constants
C1, · · · ,CN ∈ J such that the surface σ parametrized by
F(x) = (ϕ(x),u(ϕ(x))) + d(x) m(x) with

d(x) = min
1≤i≤N

d(x,Ci,wi)

is such that the lens (u, σ) refracts Ω into Ω∗ and∫
Tσ(wi)

I(x) dx = gi, 1 ≤ i ≤ N.

Theorem
If η is a Radon measure in Ω∗ with

∫
Ω

I(x) dx = η(Ω∗), then there is a lens
(u, σ) refracting Ω into Ω∗ with µσ = η.



Differential equation

Assume the lower surface (given) is parametrized by

v(x) = (x, 0) + ρ(x) e(x)

and the upper surface by

f (x) = v(x) + d(x) m(x).

The intensities are I(x) and G(x). The equation is

det
(
AD2d +B

)
= F

A depends on ρ, e′ and their der. up to order two, d and ∇d

B depends on ρ, e′ and their der. up to order three, d and ∇d

F depends on ρ, e′ and their der. up to order two, I,G, and d and ∇d

In the collimated case ρ = u,A depends only u and its der. up to order
two and B depends only on der. of u up to order three but not on u.



Differential equation

Assume the lower surface (given) is parametrized by

v(x) = (x, 0) + ρ(x) e(x)

and the upper surface by

f (x) = v(x) + d(x) m(x).

The intensities are I(x) and G(x). The equation is

det
(
AD2d +B

)
= F

A depends on ρ, e′ and their der. up to order two, d and ∇d

B depends on ρ, e′ and their der. up to order three, d and ∇d

F depends on ρ, e′ and their der. up to order two, I,G, and d and ∇d

In the collimated case ρ = u,A depends only u and its der. up to order
two and B depends only on der. of u up to order three but not on u.



Differential equation

Assume the lower surface (given) is parametrized by

v(x) = (x, 0) + ρ(x) e(x)

and the upper surface by

f (x) = v(x) + d(x) m(x).

The intensities are I(x) and G(x). The equation is

det
(
AD2d +B

)
= F

A depends on ρ, e′ and their der. up to order two, d and ∇d

B depends on ρ, e′ and their der. up to order three, d and ∇d

F depends on ρ, e′ and their der. up to order two, I,G, and d and ∇d

In the collimated case ρ = u,A depends only u and its der. up to order
two and B depends only on der. of u up to order three but not on u.



Differential equation

Assume the lower surface (given) is parametrized by

v(x) = (x, 0) + ρ(x) e(x)

and the upper surface by

f (x) = v(x) + d(x) m(x).

The intensities are I(x) and G(x). The equation is

det
(
AD2d +B

)
= F

A depends on ρ, e′ and their der. up to order two, d and ∇d

B depends on ρ, e′ and their der. up to order three, d and ∇d

F depends on ρ, e′ and their der. up to order two, I,G, and d and ∇d

In the collimated case ρ = u,A depends only u and its der. up to order
two and B depends only on der. of u up to order three but not on u.



Differential equation

Assume the lower surface (given) is parametrized by

v(x) = (x, 0) + ρ(x) e(x)

and the upper surface by

f (x) = v(x) + d(x) m(x).

The intensities are I(x) and G(x). The equation is

det
(
AD2d +B

)
= F

A depends on ρ, e′ and their der. up to order two, d and ∇d

B depends on ρ, e′ and their der. up to order three, d and ∇d

F depends on ρ, e′ and their der. up to order two, I,G, and d and ∇d

In the collimated case ρ = u,A depends only u and its der. up to order
two and B depends only on der. of u up to order three but not on u.



Differential equation

Assume the lower surface (given) is parametrized by

v(x) = (x, 0) + ρ(x) e(x)

and the upper surface by

f (x) = v(x) + d(x) m(x).

The intensities are I(x) and G(x). The equation is

det
(
AD2d +B

)
= F

A depends on ρ, e′ and their der. up to order two, d and ∇d

B depends on ρ, e′ and their der. up to order three, d and ∇d

F depends on ρ, e′ and their der. up to order two, I,G, and d and ∇d

In the collimated case ρ = u,A depends only u and its der. up to order
two and B depends only on der. of u up to order three but not on u.



Differential equation

Assume the lower surface (given) is parametrized by

v(x) = (x, 0) + ρ(x) e(x)

and the upper surface by

f (x) = v(x) + d(x) m(x).

The intensities are I(x) and G(x). The equation is

det
(
AD2d +B

)
= F

A depends on ρ, e′ and their der. up to order two, d and ∇d

B depends on ρ, e′ and their der. up to order three, d and ∇d

F depends on ρ, e′ and their der. up to order two, I,G, and d and ∇d

In the collimated case ρ = u,A depends only u and its der. up to order
two and B depends only on der. of u up to order three but not on u.



1 Background

2 Statement of the problem

3 Solution of the problem with energy

4 Application to an imaging problem



Imaging problem

Using the previous construction we solve the following:
• We are given a bijective map T : Ω→ Ω∗.

• Rays emanate from (x, 0), x ∈ Ω, with vertical direction
e3 = (0, 0, 1).

• Find a lens (σ1, σ2) (both surfaces unknown), all rays are refracted
into the point (Tx, a) with a > 0, and such all rays leave σ2 with
direction e3.
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Notice that
• The rays will strike σ1 at the point (x,u(x)), and are then refracted

with direction m1 into the point f (x) = (x,u(x)) + d(x) m1 ∈ σ2.

• Each ray leaves f (x) with direction e3 and strikes into the point
(Tx, a).

• Then Tx = ( f1(x), f2(x)).

-2 -1 1 2

0

1

3

4

5

6

Figure: Tx = 2x, a = 6, n1 = n3 = 1, n2 = 1.52
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PDE satisfied by u(x)

The explicit formula obtained for distance function d(x) allows to write
the surface σ2 in terms of u and its gradient.

After calculation with the formula obtained for f , we get that u
satisfies the following 1st order system:

(1 − κ1κ2)u(x) + C

(κ2
1 − κ1κ2)

√
κ2

1 + (κ2
1 − 1)|∇u(x)|2 + κ2

1(1 − κ1κ2)
∇u(x) =

Tx − x
κ2

1 − 1

recall κ1 =
n2

n1
and κ2 =

n3

n2
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Case n1 = n3

The corresponding PDE is

∇u(x)√
κ2

1 + (κ2
1 − 1)|∇u(x)|2

=
Tx − x

C

• |Tx − x| <
|C|

κ2
1 − 1

.

• Taking absolute values in the pde, squaring both sides, and

solving yields |∇u(x)| =
κ1|Tx − x|√

C2 − (κ2
1 − 1)|Tx − x|2

• We replace |∇u(x)| in the PDE obtaining
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C2 − (κ2
1 − 1)|Tx − x|2

:= F(x) = (F1(x),F2(x)) (1)

If u ∈ C2 solves the PDE then ∂x2F1 = ∂x1F2

and therefore

u(x) = u(x0) +

∫
γ

F(x) · dr γ joins x0 and x

Theorem
Letting Sx = (S1x,S2x) = Tx− x, we have that (1) has a solution if and only if

C2
(
∂S2

∂x1
−
∂S1

∂x2

)
+ (κ2

1 − 1)
(
S1S2

(
∂S1

∂x1
−
∂S2

∂x2

)
+ S2

2
∂S1

∂x2
− S2

1
∂S2

∂x1

)
= 0

Once u is found, we obtain the top face of the lens from the
construction in the first part.
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Example: Tx = (1 + α)x

∇u(x) = −
κ1αx√

C2 − (κ2
1 − 1)α2|x|2

Then
u(x) =

κ1

α(κ2
1 − 1)

√
C2 − (κ2

1 − 1)α2|x|2 + A

Note that the graph of u is then contained in the ellipsoid of equation

(z − A)2 + κ2
1|x|

2 =

 Cκ1

α(κ2
1 − 1)

2

.
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Case n3 < n1

The pde in this case is more complicated because κ1 κ2 , 1

(1 − κ1κ2)u(x) + C

(κ2
1 − κ1κ2)

√
κ2

1 + (κ2
1 − 1)|∇u(x)|2 + κ2

1(1 − κ1κ2)
∇u(x) =

Tx − x
κ2

1 − 1

Set

• v(x) =
(
u(x) +

C
1 − κ1κ2

)
(κ1 − κ2)

√
κ2

1 − 1 < 0

• Sx =
κ1(κ1 − κ2)2(Tx − x)

1 − κ1κ2
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Case n3 < n1 continued

So the equation can be rewritten as

v(x)∇v(x)√
κ2

1(κ1 − κ2)2 + |∇v(x)|2 + κ1(1 − κ1κ2)
= Sx.

(2)

• |Sx| < |v(x)|

• We let t(x) =
√
κ2

1(κ1 − κ2)2 + |∇v(x)|2, |∇v(x)|2 = t2(x)−κ2
1(κ1 −κ2)2.

• Take absolute values in (2), square, solve for t(x) obtaining a
function of v and S, and replace back in (2) to obtain
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∇v(x) = F(x, v(x)) = (F1(x, v(x)),F2(x, v(x))) (3)

where

• F(x, v(x)) = G
(

Sx
v(x)

)
• G(x) =


κ1(1 − κ1κ2)|x|2 + κ1

√
(κ1 − κ2)2 − (1 − κ2

2)(κ2
1 − 1)|x|2

1 − |x|2
+ κ1(1 − κ1κ2)

 x

• if (3) has a C2 solution, then

∂x2 F1(x, v1(x))+∂zF(x, v(x))F2(x, v(x)) = ∂x1 F2(x, v(x))+∂zF2(x, v(x))F1(x, v(x)).

• Conversely, from existence results for solutions of 1st order
systems of pdes: if

∂x2F1(x, z) + ∂zF1(x, z))F2(x, z) = ∂x1F2(x, z) + ∂zF2(x, z)F1(x, z).

on an open set O then for every (x0, z0) ∈ O, there exists a unique
solution v to (3) satisfying v(x0) = z0 defined on a neighborhood of
x0.
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Case n3 < n1 continued

By calculation using the form of F1 and F2, it can be shown:

Theorem
The partial differential equation (3) has a local solution if

curl S = 0

S × ∇|S|2 = 0.

• these conditions mean ∃w such that S = (wx1 ,wx2) and

wx1x2

(
(wx1)2

− (wx2)2
)

+ wx1wx2

(
wx2x2 − wx1x1

)
= 0.

• This equation can be solved for a large class of initial data, for
example, given two plane analytic curves γ(s) and Γ(s), satisfying
a non characteristic condition, and a function z(s) ∃! w solving the
equation with w(γ) = z, and Dw(γ) = Γ. So we can construct, S
satisfying the conditions in the theorem and mapping γ into Γ.
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• This gives local existence of lenses.
• By reversibility of optical paths, if κ1κ2 > 1, then the problem has

a local solution when T−1 verifies the condition in the above
theorem.

• Similar results also hold for systems of two reflectors (simpler).
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