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Non–Hermitian: 
PT–symmetry 

nonreciprocity 
anomalous lasing 

Exceptional points 
(chirality, Berry phase) 
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Rudner & Levitov PRL (2009); Esaki et al. PRB (2011); Diehl et al. Nat. Phys. (2011); 
Malzard et al. PRL (2015); Zeuner et al. PRL (2015); Lee PRL (2016) 

Topological: 
quantum Hall effects, 
topological insulators, 

Dirac points 
(topological/Chern/ 
winding numbers, 
Berry curvature) 

 

Motivation 





Generic spectral degeneracies in Hermitian systems are 
conical intersections (Dirac or Weyl points). They have co-
dimension of 3, i.e., generically appear in 3D parameter 
space: 
 
 
 

Hermitian degeneracies 
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Near the degeneracy in 3D momentum space, 
Hamiltonian can be written in a Weyl–like form: 

 
 
where            .  
 
It generates Berry–curvature monopole in the degeneracy: 
 
 
 

where                        .  
 
 

Hermitian degeneracies 

Ĥ = s1 pxσ̂ x + s2 pyσ̂ y + s3 pzσ̂ z ≡ Beff ⋅ σ̂

si = ±1

FB
± = ± s p

p3

s = sgn s1s2s3( )
Berry, Proc. R. Soc. A (1984) 



The Berry curvature produces Berry phase, which is 
geometric (not topological): 

 
 
 
 
 
 
But the Chern number is topological: 
 

Berry phase and Chern numbers 

 
C ± = 1

2π
FB

±!∫∫ d 2p = ±s

ΦB
± = FB

±∫∫ d 2p

px py

pz

FB



Jackiw–Rebbi example of topological edge modes in a 1D 
Dirac–like Hamiltonian: 
 
 
 

This system has a gapped bulk spectrum  
and a zero–energy chiral edge mode at the interface: 

Topological edge modes 

Jackiw & Rebbi PRD (1976); Shen et al. SPIN (2011); Schnyder et al. PRB (2008)  
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Similar edge modes also exist in 2D and 3D versions of 
the Dirac equation, and these are protected by the 
topological winding number: 
 
 
 
 
 

Topological edge modes 
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In general, Hermitian quantum Hamiltonians can be 
divided into 10 classes with various topological edge states 
and topological numbers:  
 
 

QSHE and topological insulators 

der and interactions on the Z2 topological insulator have been
less well studied in the 3D case than in the 2D case, there are
known to exist gapless surface modes in the topologically
nontrivial 3D phase which are robust against arbitrary strong
disorder as long as the latter does not alter the bulk topologi-
cal properties, in analogy to the quantum spin Hall effect
!QSHE" in two dimensions.12,21,24–27 These delocalized sur-
face states, whose Fermi surface encloses an odd number of
Dirac points, form a two-dimensional “Z2 topological
metal.”12,27,28

Recently, a series of experiments have been performed on
certain candidate materials for Z2 topological insulators. For
example, the QSH effect has been observed in HgTe/
!Hg,Cd"Te semiconductor quantum wells.29–33 Moreover, a
3D Z2 topological phase has been predicted for strained
HgTe and for bismuth-antimony alloys.12,33,34 Indeed, photo-
emission experiments on the latter system have revealed an
odd number of Dirac points inside the Fermi surface on the
!111" surface, thereby providing !indirect" evidence for the
existence of a nontrivial topological phase in three spatial
dimensions.12,35

In this paper we provide an exhaustive classification of
topological insulators and superconductors. Our classifica-
tion is for noninteracting systems of fermions. However,
since there is a gap, our results also apply to interacting
systems as long as the strength of the interactions is suffi-
ciently small as compared to the gap. As the majority of
previous works studied two-dimensional topological phases,

we shall be mostly concerned with the classification of 3D
systems, and only briefly comment on one- and two-
dimensional topological insulators in Sec. VIII. In the same
spirit as in the treatments of Z2 topological insulators, we
impose several discrete symmetries on a family of quantum
ground states. We then ask if different quantum states can be
transmuted into each other, without crossing a quantum
phase transition, by a continuous deformation respecting the
discrete symmetries.

If we are to include spatially inhomogeneous deforma-
tions of quantum states, such as those arising, e.g., from the
presence of random impurity potentials, the natural discrete
symmetries we should think of would be those considered in
the context of disordered systems.36 It is at this stage that we
realize that the existence of the classification of random
Hamiltonians, familiar from the theory of random matrices,
will become very useful for this purpose.

Specifically, following Zirnbauer37 and Altland and
Zirnbauer38 !AZ", all possible symmetry classes of random
matrices, which can be interpreted as Hamiltonians of some
noninteracting fermionic system, can be systematically enu-
merated: there are ten symmetry classes in total. !For a sum-
mary, see Table I." The basic idea as to why there are pre-
cisely ten is easy to understand. Roughly, the only generic
symmetries relevant for any system are TRS and charge con-
jugation or particle-hole symmetry !PHS". Both can be rep-
resented by antiunitary operators on the Hilbert space on
which the single-particle Hamiltonian !a matrix" acts, and

TABLE I. Ten symmetry classes of single-particle Hamiltonians classified in terms of the presence or
absence of time-reversal symmetry !TRS" and particle-hole symmetry !PHS", as well as “sublattice” !or
“chiral”" symmetry !SLS" !Refs. 37 and 38". In the table, the absence of symmetries is denoted by “0.” The
presence of these symmetries is denoted by either “+1” or “−1,” depending on whether the !antiunitary"
operator implementing the symmetry at the level of the single-particle Hamiltonian squares to “+1” or “−1”
!see text". #The index !1 equals "c in Eq. !1b"; here #c= +1 and −1 for TRS and PHS, respectively.$ For the
first six entries of the table !which can be realized in nonsuperconducting systems", TRS= +1 when the SU!2"
spin is an integer #called TRS !even" in the text$ and TRS=−1 when it is a half-integer #called TRS !odd" in
the text$. For the last four entries, the superconductor “Bogoliubov–de Gennes” !BdG" symmetry classes D,
C, DIII, and CI, the Hamiltonian preserves SU!2" spin-1/2 rotation symmetry when PHS=−1 #called PHS
!singlet" in the text$, while it does not preserve SU!2" when PHS= +1 #called PHS !triplet" in the text$. The
last three columns list all topologically non-trivial quantum ground states as a function of symmetry class and
spatial dimension. The symbols Z and Z2 indicate whether the space of quantum ground states is partitioned
into topological sectors labeled by an integer or a Z2 quantity, respectively.

TRS PHS SLS d=1 d=2 d=3

Standard A !unitary" 0 0 0 - Z -
!Wigner-Dyson" AI !orthogonal" +1 0 0 - - -

AII !symplectic" −1 0 0 - Z2 Z2

Chiral AIII !chiral unitary" 0 0 1 Z - Z
!sublattice" BDI !chiral orthogonal" +1 +1 1 Z - -

CII !chiral symplectic" −1 −1 1 Z - Z2

BdG D 0 +1 0 Z2 Z -
C 0 −1 0 - Z -

DIII −1 +1 1 Z2 Z2 Z
CI +1 −1 1 - - Z

SCHNYDER et al. PHYSICAL REVIEW B 78, 195125 !2008"

195125-2

Schnyder et al. PRB (2008); Hasan & Kane RMP (2010) 
  





Generic spectral degeneracies in non–Hermitian systems 
are exceptional points (EP). These are branch points of the 
complex eigenvalues on 2D parameter space:                  . 
 
 
 
 

Non–Hermitian degeneracies 

E± ∝ ± px − is py = p exp isArg p( ) / 2⎡⎣ ⎤⎦
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s = ±1



The eigenvalues form half–vortices of charge        near the 
EP with      phase jumps to the opposite level. Thus, 
labeling of two energy levels is ambiguous: encircling the 
EP leads to the opposite level (branch cut is needed). 
 
 
 
 

Non–Hermitian degeneracies 

s / 2
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Berry, Czech. J. Phys. (2004); Heiss, J. Phys. A (2012) 



Remarkably, continuously encircling the EP twice leads to 
the original level with     phase shift in the wavefunction: 
 
 
 
 

This is the Berry phase. In contrast to Hermitian systems, 
where the Berry phase is geometric, here it is topological 
and can provide a topological number similar to the 
Chern number (e.g., counting the number of degeneracies 
weighted by their charges). 
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Heiss EPJD (1999); Dembowski et al. PRE (2004); Gao et al. Nature (2015) 
  





Typical non–Hermitian Hamiltonian with EPs is: 

 
 
 
 
 
Such Hamiltonians describe many two–level systems, e.g., 
coupled resonators with loss/gain. However, here we 
consider this model in momentum space:                     . 
 

Remarkably, Hermitian limit            yields the Jackiw–
Rebbi 1D Dirac Hamiltonian.  

Non–Hermitian model 
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Complex spectrum: 

 
 
 
 
 
 
 

Eigenmodes:                               Chiral mode in the EPs: 

Non–Hermitian model 
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We now consider Schrodinger equation with Hamiltonian 
 
 
Consider an interface between two media with different 
“masses”     and/or “non–Hermitian charges”   : 
 
 
 
 

We seek edge modes: 

Edge modes 
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There are chiral zero–energy edge modes: 
 
 
They exist when two simple real equations are satisfied: 
 

 
Despite their simplicity, these conditions result in a rather 
rich and nontrivial structure of edge modes. 
 

Edge modes 

Eedge = 0, β /α( )edge= ±i
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Simple case A (opposite “masses”): 
 

 
There is one chiral edge mode in the “gapped” region 
between the EPs of the bulk spectra: 
 
 
 
In the “Hermitian” point           
this becomes the Jackiw–Rebbi  
edge mode in 1D Dirac system.  
We call this mode “Hermitian–like”. 

Edge modes 

k ∈ − m , m( )

s1 = s2 = s1 , m1 = −m2 = m
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Simple case B (opposite “charges”): 
 

 
There are two edge modes (with opposite chiralities) in 
one of the “ungapped” regions of the bulk spectra: 
 
 
 

These modes are essentially  
“non–Hermitian” and defective, 
i.e., left eigenvectors do not exist:  

Edge modes 

k ∈sgn s( ) m ,∞( )
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  cf. Malzard et al. PRL (2015); Lee PRL (2016) 



When                (EPs of two media do not coincide), the 
situation is more complicated. Edge modes can also exist 
in “mixed” regions: “gapped”/“ungapped” bulk spectra. 
 

In any case, edge modes occupy regions between the two 
EPs in the two media:  

Edge modes 

s1 = s2 = 1
m1 > 0

m1 ≠ m2



A complete picture of the regions of existence of chiral 
edge modes is presented in the following phase diagrams: 

Edge modes 

s1 = s2 = 1 s1 = −s2 = 1

“gapped” 

“ungapped” 

“mixed” 

“ungapped” 

“mixed” 
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m1 > 0



Edge modes in the “gapped/ungapped/mixed” regions 
can be called “Hermitian/non–Hermitian/mixed”:  

Edge modes 
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“mixed” 
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We calculate non–Hermitian version of the Berry phase 

for complex 2D “magnetic” field (continuous): 

 

 
This yields Jackiw–Rebbi winding number 

describing “Hermitian–like” edge states: 
 
 

First topological number (Berry phase) 

Garrison & Wright PLA (1988); Mailybaev et al. PRA (2005); 
Esaki et al. PRB (2011) 
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Berry phase stems from the direction of       , i.e.,         .  
However, in the non–Hermitian case, its length             
is also complex and forms vortices near EPs. This is 
characterized by the second winding number: 

 
 
This    –asymmetric number describes  
“non–Hermitian” and “mixed” modes: 

Second topological number 
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The contrasts                      at the interface describe all the 
edge modes and their asymmetry in    .                     “non–
Hermitian” or “mixed” edge modes exists when               .               

Phase diagram revisited 

s1 = s2 = 1 s1 = −s2 = 1

ΔCw2< 0

ΔCw1,ΔCw2( )
k N = 2 ΔCw2





Asymmetric backscattering between anti/clockwise modes 
in a 1D chain of resonators is described by non–
Hermitian Hamiltonian with EPs and topological end 
modes: 
 
 
 
 
 
 
 
 
 
 
 
 

Passive ring resonator chains 

Malzard, Poli, & Schomerus, PRL (2015) 
  

H k( ) = Ω A + 2W cosk
B + 2W cosk Ω
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2Ωð0Þ þ iðA−BÞ AþBþ4Wcosk

AþBþ4W cosk 2Ωð0Þ− iðA−BÞ

"
: ð7Þ

The Hamiltonian is now symmetric, as required by reci-
procity (which is hidden in the basis of CCW and CW
modes since propagating waves are complex), and fur-
thermore exhibits a passive PT symmetry (1) with P ¼ σx
and γ ¼ −ImΩð0Þ. The chiral symmetry is transformed to
X ¼ σy, and commutes with PT . This realizes all the
symmetries mentioned in the introduction, including
PC ¼ PT X , with respect to the central frequency Ωð0Þ.
From here on, we work in terms of the shifted frequencies
Ω ¼ ω −Ωð0Þ, for which the dispersion is directly given
by Eq. (6).
Having established these symmetries we now return to the

basis ofCCWandCWmodes and discuss topological aspects
of the band structure. For this we consider the k dependence
of the Bloch vectorsΨðkÞ, whichwe interpret as pseudospins
with polarization vector ~P ¼ hðσx; σy; σzÞi. In the Hermitian
limit B ¼ A (both real), the two bands Ω%ðkÞ ¼ %ðAþ
2W cos kÞ arise from k-independent pseudospins
Ψ% ¼ 2−1=2ð1;%1ÞT , with ~P ¼ ð%1; 0; 0Þ pointing along
the x axis. The absence of any winding of the pseudospin
renders the system topologically trivial, so that we do not
expect any defect states in the presence of interfaces, even if
there is a gap. In the non-Hermitian case, we can write
Ψ%ðkÞ ∝ ½Aþ 2W cos k;Ω%ðkÞ'T . As shown in Fig. 1(d),
the polarization vector now acquires k dependence; it is
confined to the xz planewhen the dispersion is real and to the
yz plane when the dispersion is imaginary. These branches
are again joined at the exceptional points, where ~P points up
or down along the z axis, with ~P−ðkÞ ¼ RzðπÞ~PþðkÞ related
by a π rotation about the z axis. In particular, the way these
points are connected depends on whether A > B or A < B
[with the two cases related by a rotationRxðπÞ by π about the
x axis]. Does the system now admit defect states?
Defect states.—In order to answer this question, we

create a defect in the chain by inverting the orientation of
the resonators in half of the system [see Fig. 2(a)]. From the
traditional perspective of Hermitian systems, the defect
cannot be classified as topological, and does not give rise to
any defect states. In the non-Hermitian setting, we will see
that the defect acquires topological features in a spectral
phase transition at which localized defect states emerge [as
illustrated in Fig. 2(b)]. The phase transition takes the form
of a PT -induced exceptional point along one part of the
phase boundary, while it is associated with a PC-induced
degeneracy along the other parts of the phase boundary
[this is summarized in Figs. 2(c) and 2(d), to which we refer
throughout the remaining discussion].
It is easy enough to identify the conditions for the

formation of defect states. In the presence of the defect, the
wave equation takes the form

FIG. 2 (color online). (a) Coupled-resonator waveguide
with a defect, created by inverting the orientation of the
resonators in half of the system. In the closed limit, the
system is trivial, and the defect does not create any bound
states. (b) Defect states in a system of 300 resonators, with
A=W ¼ 1.9 (left panel) and A=W ¼ 2.5 (right panel),
while B=W ¼ 1. (c) Phase diagram indicating the existence
of defect states, as well as their extended-state precursors
(realizing perfect interband transitions, PIC). The boundaries
of the defect phase are given by degeneracy conditions.
At the PT boundary, the extended PIC states bifurcate into
pairs Ωn, Ω(

n of defect states that are related by the PT
symmetry. At the PC boundary one encounters a degeneracy
of charge-conjugated partner states Ωn, −Ω(

n, beyond which
the defect states are non-normalizable. (d) Bloch-sphere
position of the defect states (rods) relative to the bulk
dispersion (lines) [parameters A=W ¼ 1.7, 1.81 (PT), 1.9,
2.5, 3.32 (PC), 4 with B=W ¼ 1, as indicated by the white
circles in (c)].
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Natural non–Hermiticity appears in systems with gain/
loss. E.g., coupled ring resonators with loss and gain: 
 
 
 
 
 
 
 
 
 
 
 
 

Ring resonators with gain/loss 

Longhi, Gatti, & Della Valle, PRB (2015) 

κ n,n+1 =κ exp −γ( )
κ n,n−1 =κ exp γ( )



Using this idea, we construct a 2D lattice of ring 
resonators with non–Hermitian couplings:  
 
 
 
 
 
 
 
 
 
 
 

 
2D honeycomb lattice model 
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Winding numbers are obtained integrating over 1D 
Brillouin zone perpendicular to edge. Results depend on 
the edge orientation (cf. Zak phase and edge states in 
graphene). The two fractional topological numbers 
describe different types of non–Hermitian edge modes.  
 
 
 
 
 
 
 
 
 
 
 
 

Winding numbers: bearded edge 

Delplace, Ullmo, & Montambaux, PRB (2011), Li et al., CPB (2014) 

Cw1

Cw2



 



ü   Degeneracies (exceptional points) play a crucial role in 
topological properties of non–Hermitian systems. 

 

ü  In contrast to the Hermitian case, EPs and chiral edge 
modes are characterized by two topological numbers. 

 

ü These numbers originate from the singularities in the 
direction and length of the complex field        . 

ü They describe different types of chiral edge modes: 
“Hermitian–like”, “non–Hermitian”, and “mixed”.  

 

ü Non–Hermitian systems are characterized by richer 
morphology of degeneracies, topological numbers, and 
chiral edge modes, as compared to the Hermitian case. 

Beff





Alternatively, we can define a Hermitian Hamiltonian 
sharing the same zero modes:                . 
 
In our model, this yields: 
 
 
 

 
A domain wall in “mass” field           is equivalent to a 
nonzero “magnetic flux”. Zero modes hosted by arbitrary 
analytic mass fields can be counted using the Aharonov–
Casher index theorem.  

Index theorem 

Aharonov & Casher, PRA (1979) 

 Ĥ = Ĥ †Ĥ

 
Ĥ = p̂ −σ̂ ysA r( ) 2 + σ̂ yB r( )
A = 0,m( ), B = ∂x Ay − ∂y Ax

m r( )


