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Degeneracies and topology
in Hermitian systems




Hermitian degeneracies

Generic spectral degeneracies in Hermitian systems are
conical intersections (Dirac or Weyl points). They have co-
dimension of 3, i.e., generically appear in 3D parameter

space:




Hermitian degeneracies

Near the degeneracy in 3D momentum space,

Hamiltonian can be written in a Weyl-like form:

[ H — Slprx +S2py6y +S3pzaz = Beff.c]

where s, =+1.

[t generates Berry-curvature monopole in the degeneracy:
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where s=sgn(s,s,s,).
Berry, 1984



Berry phase and Chern numbers

The Berry curvature produces Berry phase, which is

geometric (not topological): p.

G

But the Chern number is topological:

+ 1 + 2.
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Topological edge modes

Jackiw-Rebbi example of topological edge modes in a 1D
Dirac-like Hamiltonian:

[I-Alzfax6x+m6z] m(x):{

This system has a gapped bulk spectrum E* = i\/ p:+m’

and a zero-energy chiral edge mode at the interface:
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Jackiw & Rebbi 1976); Shen et al. 2011); Schnyder : (2008)




Topological edge modes

Similar edge modes also exist in 2D and 3D versions of

the Dirac equation, and these are protected by the

topological winding number: 1
C,=—sgn(m)
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QSHE and topological insulators

In general, Hermitian quantum Hamiltonians can be
divided into 10 classes with various topological edge states

and topological numbers:

Standard A (unitary) 0 0 0 - 7,
(Wigner-Dyson) AT (orthogonal) +1 0 0 - -
ATl (symplectic) -1 0 0 - 1y 2y
Chiral AIII (chiral unitary) 0 0 1 7 - 7
(sublattice) BDI (chiral orthogonal) +1 +1 1 A -
CII (chiral symplectic) -1 -1 1 7Z - 7y
BdG D 0 +1 0 7 7
C 0 -1 0 - 7
DIII 1 +1 1 7, 7, 7
CI +1 -1 1 - 7

Schnyder et al. PRB (2008); Hasan & Kane RMP (2010)



Non-Hermitian degeneracies:
Exceptional points




Non-Hermitian degeneracies

Generic spectral degeneracies in non-Hermitian systems
are exceptional points (EP). These are branch points of the

complex eigenvalues on 2D parameter space: p = ( B py).

[Ei oci\/px—ispy =\/|;|exp[isArg(p)/2] J S




Non-Hermitian degeneracies

EE )

he eigenvalues form half-vortices of charge s/2 near the

P with # phase jumps to the opposite level. Thus,

labeling of two energy levels is ambiguous: encircling the
EP leads to the opposite level (branch cut is needed).
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Berry, Czech. J. Phys. (2004); Heiss, J. Phys. A (2012)



Berry phase

Remarkably, continuously encircling the EP twice leads to

the original level with & phase shift in the wavefunction:
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This is the Berry phase. In contrast to Hermitian systems,
where the Berry phase is geometric, here it is topological
and can provide a topological number similar to the
Chern number (e.g., counting the number of degeneracies

weighted by their charges).

Heiss EPID (1999); Dembowski et al. PRE (2004); Gao et al. Nature (2015)



Non-Hermitian model with
exceptional points




Non-Hermitian model

Typical non-Hermitian Hamiltonian with EPs is:

4 p.—1isp m \ A
H= ’ ’ , Pep :(O’i m|)
m —px-l-lSpy
| =(p.~isp,)6.+m6, =B 6 | 6=(6.6.9))

Such Hamiltonians describe many two-level systems, e.g.,
coupled resonators with loss/gain. However, here we

consider this model in momentum space: p — p=-iV.

Remarkably, Hermitian limit p, =0 yields the Jackiw-
Rebbi 1D Dirac Hamiltonian.



Non-Hermitian model

Complex spectrum:
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Chiral mode in the EPs:
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Topological edge modes




Edge modes

We now consider Schrodinger equation with Hamiltonian

[

A

Hz(ﬁx—isﬁy)ﬁz+m6'x]

Consider an interface between two media with different

“masses” m and/or “non-Hermitian charges” s :

ml’Sl

We seek edge modes:
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( exp(iky+y1x), Rey, <0, x>0

: exp(iky+'y2x), Rey,>0, x<O0



Edge modes

There are chiral zero-energy edge modes:

[ edge — (ﬁ/OC) :—i]

They exist when two simple real equations are satisfied:

[ -y, =skxtm,, —}/zzszkimz]

Despite their simplicity, these conditions result in a rather

rich and nontrivial structure of edge modes.




Edge modes

Simple case A (opposite “masses”):

[slzszzsl, m1=—m2:m]

There is one chiral edge mode in the “gapped” region
between the EPs of the bulk spectra:
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In the “Hermitian” point k=0
this becomes the Jackiw-Rebbi
edge mode in 1D Dirac system.
We call this mode "Hermitian-like”.

9




Edge modes

Simple case B (opposite “charges”):

[sl=—sz=sl, mlzmzzm]

There are two edge modes (with opposite chiralities) in

one of the “ungapped” regions of the bulk spectra:

[kesgn(S)(|m aw)]

These modes are essentially
“non-Hermitian” and defective,

i.e., left eigenvectors do not exist:

T VN
l//edgeI{ = O
cf. Malzard et al. (2015); Lee (2016)



Edge modes

When |m,| #|m,| (EPs of two media do not coincide), the

situation is more complicated. Edge modes can also exist

in “mixed” regions: “gapped”/“ungapped” bulk spectra.

In any case, edge modes occupy regions between the two
EPs in the two media:
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Edge modes

A complete picture of the regions of existence of chiral

edge modes is presented in the following phase diagrams:
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Edge modes

Edge modes in the “gapped/ungapped/mixed” regions
can be called “Hermitian/non-Hermitian/mixed”:
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Topological winding numbers




First topological number (Berry phase)

We calculate non-Hermitian version of the Berry phase

for complex 2D “magnetic” field (continuous):

i
[ B., = E"(cos@,sing,0), C,, ; do

2T ¥ p=—°

This yields Jackiw-Rebbi winding number

describing “Hermitian-like” edge states:
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Garrison & Wright PLA (1988); Mailybaev et al. PRA (2005);
Esaki et al. PRB (2011)




Second topological number

Berry phase stems from the direction of B, i.e., ¢(p).
However, in the non-Hermitian case, its length E*(p)

is also complex and forms vortices near EPs. This is

characterized by the second winding number:

1 (o :
[ g ;w dArg(E*) ]

This p-asymmetric number describes

“non-Hermitian” and “mixed” modes:
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Phase diagram revisited

The contrasts (AC,,,AC,,) at the interface describe all the
edge modes and their asymmetry in k. N =2|AC, | “non-

Hermitian” or “mixed” edge modes exists when AC,,<0.
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Non-Hermitian lattice systems
of coupled resonators




Passive ring resonator chains

Asymmetric backscattering between anti/clockwise modes
in a 1D chain of resonators is described by non-

Hermitian Hamiltonian with EPs and topological end
modes:

N
H(k) @) A+2W cosk

B+2W cosk @)
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Malzard, Poli, & Schomerus, 2015




Ring resonators with gain/loss

Natural non-Hermiticity appears in systems with gain/

loss. E.g., coupled ring resonators with loss and gain:

Knsl. n
Cn+l

|mag|nary gauge field /1
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Longhi, Gatti, & Della Valle, PRB (2015)



2D honeycomb lattice model

Using this idea, we construct a 2D lattice of ring
resonators with non-Hermitian couplings:

EPs with their "charges"

0 Ke! +e'*M 4 et \
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Winding numbers: bearded edge

Winding numbers are obtained integrating over 1D
Brillouin zone perpendicular to edge. Results depend on
the edge orientation (cf. Zak phase and edge states in
oraphene). The two fractional topological numbers

describe different types of non-Hermitian edge modes.

Be arded : : - ............................... -

Delplace, Ullmo, & Montambaux, PRB (2011), Li et al., CPB (2014)



Conclusions




v Degeneracies (exceptional points) play a crucial role in
topological properties of non-Hermitian systems.

v' In contrast to the Hermitian case, EPs and chiral edge

modes are characterized by two topological numbers.

v These numbers originate from the singularities in the

direction and length of the complex field B_, .

v’ They describe different types of chiral edge modes:

“Hermitian-like”, “non-Hermitian”, and “mixed”.

v Non-Hermitian systems are characterized by richer
morphology of degeneracies, topological numbers, and

chiral edge modes, as compared to the Hermitian case.
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Index theorem

Alternatively, we can define a Hermitian Hamiltonian
sharing the same zero modes: H = H'H.

In our model, this yields:

a0 A ), )
H=|p- O'ysA(r)‘ +6,B(r)
. A=(0,m), B=0,A, - E)yAx)
A domain wall in “mass” field m(r) is equivalent to a

nonzero ‘magnetic flux”. Zero modes hosted by arbitrary

analytic mass fields can be counted using the Aharonov-
Casher index theorem.

Aharonov & Casher, (1979)



