An algebraic approach to light-matter interactions

Ivan Fernandez-Corbaton

Institute of Nanotechnology, Karlsruhe Institute of Technology

Algebraic approach to light-matter interactions:

• Incoming field $|\Phi_{\mathrm{in}}
angle \in \mathbb{M}^{\textit{in}}$

• Vector space of incoming solutions of Maxwell's equations

• Outgoing field $|\Phi_{\mathrm{out}}
angle \in \mathbb{M}^{\textit{out}}$

Vector space of outgoing solutions of Maxwell's equations

 $\bullet\,$ Effect of the object represented by scattering operator S

Linear and bounded map between incoming and outgoing fields

- Easy to use symmetries and light-matter conservation laws
 - Symmetry results are general
 - "(Breaking of) Symmetry X is needed for effect Y"
 - Provide design guidelines
- Algebraic tools ease the solution of complicated problems
 - Given an object, find the best beam to exert force on it
 - Find eigenvalues of matrices

• Algebraic \implies very well suited for computer implementation

Allows straightforward use of symmetry arguments.

Symmetry

Beautifully general concept, central in theoretical physics ...

How can symmetry help in the study of light-matter interactions?

Why does zero back scattering happen?

Why do optical vortices appear?

What is the origin of this difference?

- Symmetry is the invariance upon transformations
- Translations, rotations, electromagnetic duality, time translation, parity, time inversion, ...
- Transformations represented by unitary operators in M^{in(out)}
- Symmetry of S under transformation X means $XSX^{-1} = S$

$$XSX^{-1} = S \iff SX - XS = [S, X] = 0$$

If
$$X |\Phi_{\rm in}\rangle = x |\Phi_{\rm in}\rangle \implies X |\Phi_{\rm out}\rangle = x |\Phi_{\rm out}\rangle$$

For continuous symmetries

$$X_{\theta} = \exp(-i\theta\Gamma) \text{ with } \Gamma^{\dagger} = \Gamma$$

 $[S, X_{\theta}] = 0 \iff [S, \Gamma] = 0$
If $\Gamma |\Phi_{in}\rangle = \gamma |\Phi_{in}\rangle \implies \Gamma |\Phi_{out}\rangle = \gamma |\Phi_{out}\rangle$

In light-matter interactions:

- Symmetry: Non-coupling eigenstates with different eigenvalue
- Broken symmetry: Coupling eigenstates with different eigenvalue

Generator Γ	Transformation $\exp(-i\theta\Gamma)$	Expression
Linear momentum P	Spatial translations	$-i\nabla$
Hamiltonian <i>H</i>	Time translations	ið _t
Angular momentum ${f J}$	Rotations	$-i\mathbf{r} imes \nabla - i\epsilon_{knm}$
Helicity Λ	Electromagnetic duality	$\frac{\nabla \times}{k}$ 10 / 30

Example 1: Angular momentum and Rotational symmetry

- If the input is an eigenstate $J_z |\Phi_{
 m in}
 angle = m |\Phi_{
 m in}
 angle$,
- \circ so is the output: $J_z | \Phi_{
 m out}
 angle = m | \Phi_{
 m out}
 angle$
- with the same eigenvalue

Example 2: Helicity and Duality symmetry

• Operator:

$$\Lambda = \frac{\mathbf{J} \cdot \mathbf{P}}{|\mathbf{P}|} \equiv \frac{\nabla \times}{k}$$

- Eigenstates: $\Lambda (\mathbf{E} \pm iZ\mathbf{H}) = \pm (\mathbf{E} \pm iZ\mathbf{H}) = \pm \mathbf{G}_{\pm}$
- Interpretation in the plane wave decomposition

Electromagnetic duality transformation: $D(\theta) = \exp(-i\theta\Lambda)$

$$\begin{aligned} \mathbf{G}_{\pm} &\to \exp\left(\mp i\theta\right) \mathbf{G}_{\pm} \\ \mathbf{E} &\to \mathbf{E}\cos\theta - Z\mathbf{H}\sin\theta \\ Z\mathbf{H} &\to \mathbf{E}\sin\theta + Z\mathbf{H}\cos\theta \end{aligned}$$

Why does zero back scattering happen?

Duality symmetry and discrete rotational symmetry $n \ge 3$

- Prisms on the left are not dual symmetric
- Prisms on the right are dual symmetric
- Common behavior due to discrete rotational symmetry

Why do optical vortices appear?

- Focusing: Breaking of transverse translational symmetry
- Scattering: Breaking of duality symmetry

Solution of chiral molecules

What is the origin of this difference?

- Lack of duality symmetry of the sample
- Chirality is necessary but not sufficient for optical activity

Properties like energy, momentum, angular momentum, etc .. are conserved in the **joint system of fields+matter**.

During the light-matter interaction

- Field looses(gains) momentum \implies Matter gains(looses) it
- This results in optical force

Properties like energy, momentum, angular momentum, etc ... are conserved in the **joint system of fields+matter**.

During the light-matter interaction

- Field looses(gains) angular momentum \implies Matter gains(looses) it
- This results in optical torque

 Γ is a given property (momentum, helicity, energy ...)

- There is some light-matter interaction
- (2) Γ changes for the field
- (3) There is a corresponding change of Γ in the matter
- Objective: Quantify such change

- (1) Measure property Γ in incoming field
- 2 Measure property Γ in outgoing field
- 3 Difference is the amount of Γ gained(lost) by the matter

- **1** Measure property Γ in incoming field
- **2** Measure property Γ in outgoing field
- 3 The difference must be the amount of Γ gained by the matter

 Γ represented by a Hermitian operator **Measure** of Γ in $|\Psi\rangle$: scalar product between $|\Psi\rangle$ and $\Gamma|\Psi\rangle$: $\langle\Psi|\Gamma|\Psi\rangle$

 $\langle \Delta \Gamma \rangle = \langle \Phi_{\rm in} | \Gamma | \Phi_{\rm in} \rangle - \langle \Phi_{\rm out} | \Gamma | \Phi_{\rm out} \rangle = \langle \Phi_{\rm in} | \Gamma - S^{\dagger} \Gamma S | \Phi_{\rm in} \rangle$

Introduce basis (e.g. multipoles, plane waves, ...). Convenient choice: $\Gamma |\eta \gamma \rangle^{in(out)} = \gamma |\eta \gamma \rangle^{in(out)}$

$$|\Phi_{\rm in}\rangle = \sum_{\eta,\gamma} \alpha^\eta_\gamma |\eta ~\gamma\rangle^{\rm in}, ~ |\Phi_{\rm out}\rangle = \sum_{\eta,\gamma} \beta^\eta_\gamma |\eta ~\gamma\rangle^{\rm out}$$

Incoming and outgoing fields represented by colum vectors

$$\underline{\boldsymbol{\alpha}} \equiv \begin{bmatrix} \vdots \\ \boldsymbol{\alpha}^{\eta}_{\boldsymbol{\gamma}} \\ \vdots \end{bmatrix}, \ \underline{\boldsymbol{\beta}} \equiv \begin{bmatrix} \vdots \\ \boldsymbol{\beta}^{\eta}_{\boldsymbol{\gamma}} \\ \vdots \end{bmatrix}$$

Operators S and Γ are represented by matrices

 $\underline{\underline{S}}\left(\eta\gamma,\bar{\eta}\bar{\gamma}\right)={}^{\rm out}\langle\bar{\gamma}\,\bar{\eta}|S|\eta\,\gamma\rangle^{\rm in},\ \underline{\underline{\Gamma}}\left(\eta\gamma,\bar{\eta}\bar{\gamma}\right)={}^{\rm in(out)}\langle\bar{\gamma}\,\bar{\eta}|\Gamma|\eta\,\gamma\rangle^{\rm in(out)}=\gamma\delta_{\gamma\bar{\gamma}}$

In practice:

- Need to compute <u>S</u>
- Compute T-matrix: $\underline{\underline{S}} = \underline{\underline{I}} + 2\underline{\underline{T}}$
- There are publicly available T-matrix computer codes

Abstract operations become vector/matrix algebra in a computer

$$\langle \Delta \Gamma \rangle = \langle \Phi_{\rm in} | \Gamma - S^{\dagger} \Gamma S | \Phi_{\rm in} \rangle \implies \langle \Delta \Gamma \rangle = \underline{\alpha}^{\dagger} \left(\underline{\Gamma} - \underline{\underline{S}}^{\dagger} \underline{\underline{\Gamma}} \underline{\underline{S}} \right) \underline{\alpha},$$

and complicated things become simple. Measure the incoming energy

$$E_{\rm in} = \underline{\alpha}^{\dagger} \underline{H} \underline{\alpha}$$

The expression

$$\frac{\underline{\alpha^{\dagger}}\left(\underline{\Gamma}-\underline{\underline{S}}^{\dagger}\underline{\underline{\Gamma}}\underline{\underline{S}}\right)\underline{\alpha}}{\underline{\alpha^{\dagger}}\underline{\underline{H}}\underline{\alpha}}$$

is the transfer of $\left< \Delta \Gamma \right>$ per Joule of energy of the incoming field

$$\frac{\underline{\alpha^{\dagger}\left(\underline{\Gamma}-\underline{\underline{S}}^{\dagger}\underline{\underline{\Gamma}}\underline{\underline{S}}\right)\underline{\alpha}}{\underline{\alpha^{\dagger}\underline{\underline{H}}\underline{\alpha}}}$$

Q: Most efficient beam to transfer Γ to a given object ?

$$\max_{\underline{\alpha}} \frac{\underline{\alpha}^{\dagger} \left(\underline{\Gamma} - \underline{\underline{S}}^{\dagger} \underline{\underline{\Gamma}} \underline{\underline{S}}\right) \underline{\alpha}}{\underline{\alpha}^{\dagger} \underline{\underline{H}} \underline{\alpha}}$$

Known solution using generalized eigenproblem $(\underline{Av} = \lambda \underline{Bv})$:

- Optimal beam $\underline{\alpha}_{max}$: Eigenvector corresponding to maximum generalized eigenvalue of $(\underline{\Gamma} - \underline{S}^{\dagger} \underline{\Gamma} \underline{S})$ and $\underline{\underline{H}}$
- Optimal transfer efficiency: Maximum generalized eigenvalue
- Multipolar decomposition / angular spectrum of $\underline{\alpha}_{max}$
- Absolute bound for Γ transfer

Example with a challenging object:

- CdSe sphere radius $\approx 55~\mu m$
- 20 helical objects in an icosahedral arrangement

Incoming beams:

- LCP plane wave at 222.8 μm
 - Object not electromagnetically small
- $\bullet\,$ Optimal monochromatic beam at 222.8 μm

Also useful for theoretical considerations

$$\langle \Delta \Gamma \rangle = \langle \Phi_{\rm in} | \Gamma - S^\dagger \Gamma S | \Phi_{\rm in} \rangle$$

$$\begin{split} \langle \Delta \Gamma \rangle &= \langle \Phi_{\rm in} | \frac{A \Gamma + \Gamma A}{2} | \Phi_{\rm in} \rangle + \langle \Phi_{\rm in} | \frac{S^{\dagger}[S, \Gamma] + [S, \Gamma]^{\dagger} S}{2} | \Phi_{\rm in} \rangle \\ &= \langle \Delta \Gamma \rangle_{\rm absorption} + \langle \Delta \Gamma \rangle_{\rm asymmetry}. \end{split}$$

Symmetry $\iff [S, \Gamma] = 0$: Non-coupling of Γ eigenstates $\langle \Delta \Gamma \rangle_{\text{absorption}}$: $A = I - S^{\dagger}S$ is the non-unitary part of S

$$\langle \Phi_{\rm in} | \Phi_{\rm in} \rangle - \langle \Phi_{\rm out} | \Phi_{\rm out} \rangle = \langle \Phi_{\rm in} | \Phi_{\rm in} \rangle - \langle \Phi_{\rm in} | S^{\dagger} S | \Phi_{\rm in} \rangle = \langle \Phi_{\rm in} | I - S^{\dagger} S | \Phi_{\rm in} \rangle$$

Absorption can be responsible for $\langle \Delta \Gamma \rangle \neq 0$ even if $[S, \Gamma] = 0$

Algebraic approach to light-matter interactions

- Easy to use symmetries and light-matter conservation laws
- Algebraic tools ease the solution of complicated problems
- Algebraic \implies very well suited for computer implementation
- Single Hilbert space \mathbb{M} : Classical fields or single photon
- \bullet Should be extensible to multiphoton states of light: $\mathbb{M}\otimes\mathbb{M}\otimes\ldots$

Algebraic approach

- I.F-C. Helicity and duality symmetry in light matter interactions: Theory and applications. Doctoral Thesis, Macquarie University, 2014.
- [2] I.F-C, and Carsten Rockstuhl. A unified theory to describe and engineer conservation laws in light-matter

interactions. Phys. Rev. A, Accepted (2017).

Optical Activity

- I.F-C, X. Vidal, N. Tischler, and G. Molina-Terriza. Necessary symmetry conditions for the rotation of light. J. Chem. Phys, 138(21), 2013.
- [2] X. Vidal, I.F-C, A. Barbara, and G. Molina-Terriza. Polarization properties of light scattered off solutions of chiral molecules in non-forward direction. App. Phys. Lett. 107, 211107 (2015).
- I.F-C, M. Fruhnert, and C. Rockstuhl. Dual and Chiral Objects for Optical Activity in General Scattering Directions. ACS Photonics, 2(3), 2015.

Zero backscattering

[1] I.F-C. Forward and backward helicity scattering coefficients for systems with discrete rotational symmetry.

Optics Express, 21, Dec. 2013.

Symmetries in Optical Vortices

- I.F-C, X. Zambrana-Puyalto, and G. Molina-Terriza. Helicity and angular momentum: A symmetry-based framework for the study of light-matter interactions. *Phys. Rev. A*, 86, Oct. 2012.
- [2] I.F-C et al. Electromagnetic duality symmetry and helicity conservation for the macroscopic maxwell's

equations. Phys. Rev. Lett., 111, Aug. 2013.

I am looking for a tenured(-track) position Thank you for your time !