The Elementary Particle Angular Momentum Controversy: lessons from Laser Optics

Elliot Leader

Imperial College London

1

- Fundamental structure of a relativistic dynamical theory; massless particles
- The elementary particle angular momentum controversy in Quantum Field Theory
- General classical Maxwell fields
- Lessons from Laser Optics; paraxial fields

GENERAL APPROACH TO SPIN IN RELATIVISTIC QUANTUM MECHANICS

Fundamental: the **Poincare Group**: 10 generators:

Time translation \Leftrightarrow Energy P^0

Space translation \Leftrightarrow Momentum P

Rotations \Leftrightarrow AM $J_i = -\frac{1}{2} \epsilon_{ijk} M^{jk}$

Lorentz boosts $\Leftrightarrow K_i = M^{0i}$

7

Two **invariant** operators to define type of particle i.e whose eigenvaues specify its intrinsic properties:

$$P_{\mu}P^{\mu} = m^2$$

Pauli-Lubanski $W_{\mu} \equiv \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} M^{\nu\rho} P^{\sigma}$

$$W_{\mu}W^{\mu} = m^2 s(s+1) \quad s = 0, 1/2, 1 \cdots$$

For massless particles $W_{\mu}W^{\mu}$ does not fix s.

The spin vector in a relativistic theory: $s_i \equiv \frac{1}{m} W^i$

Acting on particle AT REST

$$[s_j,s_k] \ket{m; \ p=0} = i \epsilon_{jkl} \, s_l \ket{m; \ p=0}$$

•

The spin vector in a relativistic theory: $s_i \equiv \frac{1}{m} W^i$

Acting on particle AT REST

$$[s_j,s_k] \ket{m; \ p=0} = i\epsilon_{jkl} s_l \ket{m; \ p=0}$$

For a proton, for example, $|m; p, s_z = 1/2\rangle$ MEANS it has spin along the Z-axis in its rest frame.

The spin vector in a relativistic theory: $s_i \equiv \frac{1}{m}W^i$

Acting on particle AT REST

$$[s_j,s_k] \ket{m; \ p=0} = i\epsilon_{jkl} s_l \ket{m; \ p=0}$$

For a proton, for example, $|m; p, s_z = 1/2\rangle$ MEANS it has spin along the Z-axis in its rest frame.

Clearly none of this works for a massless particle e.g. for a photon.

Massless particles

Can label via eigenvalue of helicity.

$$rac{oldsymbol{J}\cdotoldsymbol{P}}{|oldsymbol{P}|}\ket{oldsymbol{p},\lambda}=\lambda\ket{oldsymbol{p},\lambda}$$

It can't be another Poincare invariant, but it is invariant in the subspace of massless states i.e. **only** when operating on massless states!

For photons $\lambda = \pm 1$.

Note that there is no state with $\lambda = 0$, which is equivalent to the classical statement that in a plane wave E and B are perpendicular to the momentum of the wave.

Summary: massless particles

From fundamental point of view of the Poincare Group there does NOT exist a spin vector with the standard expected commutation rules i.e. with

$$[s_j, s_k] = i\epsilon_{jkl} \, s_l$$

Summary: massless particles

From fundamental point of view of the Poincare Group there does NOT exist a spin vector with the standard expected commutation rules i.e. with

$$[s_j, s_k] = i\epsilon_{jkl} s_l$$

The only genuine rotation operator is the **helicity**, which generates rotations about the momentum.

II: QUANTUM FIELD THEORY: THE CONTROVERSY

NB All fields in this Section are OPERATORS

In **Quantum Field Theory** one can start with the expressions from **Classical E and M Textbooks**:

Momentum density proportional to Poynting vector,

 $p_{\mathrm{poyn}} = E imes B$

Angular momentum density due to Belinfante

$$j_{\mathsf{bel}} = r imes (E imes B).$$

Has structure of an orbital AM, *i.e.* $r \times p$, but is the total photon angular momentum density.

In **Quantum Field Theory** more conventionally one starts with a Lagrangian, then from Noether's theorem obtains the **Canonical** densities which have a spin plus orbital part

$$j_{can} = [l_{can} + s_{can}]$$

where the canonical densities are

$$m{s}_{\mathsf{can}} = m{E} imes m{A}$$
 and $m{l}_{\mathsf{can}} = E^i (m{x} imes m{
abla}) A^i$

but, clearly, each term is gauge non-invariant.

In **Quantum Field Theory** more conventionally one starts with a Lagrangian, then from Noether's theorem obtains the **Canonical** densities which have a spin plus orbital part

$$j_{can} = [l_{can} + s_{can}]$$

where the canonical densities are

$$s_{can} = E \times A$$
 and $l_{can} = E^i (x \times \nabla) A^i$

but, clearly, each term is gauge non-invariant.

Note that $p_{can} = E^i \nabla A^i$ so that $l_{can} = x \times p_{can}$, as it should be for an orbital A.M.

The beginning of the controversy

Chen, Lu, Sun, Wang and Goldman: 2008

"We address and solve the long-standing gauge-invariance problem of the nucleon spin structure. Explicitly gaugeinvariant spin and orbital angular momentum operators of photons and gluons are obtained. This was previously thought to be an impossible task"

THE CHEN et al PROCEDURE

Introduce fields A_{pure} and A_{phys} , with

$$A = A_{pure} + A_{phys}$$

where

$$\boldsymbol{\nabla} imes \boldsymbol{A}_{\mathsf{pure}} = \boldsymbol{0}, \quad \mathsf{and} \quad \boldsymbol{\nabla} \cdot \boldsymbol{A}_{\mathsf{phys}} = \boldsymbol{0}$$

Exactly the same fields as in the Helmholz decomposition into longitudinal and transverse components!

$$A_{ ext{pure}}\equiv A_{\parallel} \qquad \qquad A_{ ext{phys}}\equiv A_{\perp}.$$

THE CHEN et al PROCEDURE

Introduce fields A_{pure} and A_{phys} , with

$$A = A_{pure} + A_{phys}$$

where

$$\boldsymbol{
abla} imes \boldsymbol{A}_{\mathsf{pure}} = \boldsymbol{0}, \quad \mathsf{and} \quad \boldsymbol{
abla} \cdot \boldsymbol{A}_{\mathsf{phys}} = \boldsymbol{0}$$

Exactly the same fields as in the Helmholz decomposition into longitudinal and transverse components!

$$oldsymbol{A}_{ extsf{pure}}\equivoldsymbol{A}_{\parallel} \qquad oldsymbol{A}_{ extsf{phys}}\equivoldsymbol{A}_{\perp}$$

Chen et al then obtain

$$J_{\text{chen}} = \underbrace{\int \mathrm{d}^3 x \, \boldsymbol{E} \times \boldsymbol{A}_{\perp}}_{S_{\text{chen}}} + \underbrace{\int \mathrm{d}^3 x \, E^i (\boldsymbol{x} \times \boldsymbol{\nabla}) A^i_{\perp}}_{L_{\text{chen}}}$$

and since A_{\perp} and E are unaffected by gauge transformations, they claim to achieve the impossible.

But the **Chen et al** operators are exactly the same as those discussed in the textbook of **Cohen-Tannoudji**, **Dupont-Roc and Grynberg** and studied in detail by **van Enk and Nienhuis: 1994**, who state:

"Therefore we may write

This implies that S does NOT generate rotations of the polarization of the field"

Moreover van Enk-Nienhuis show that acting on a photon state with momentum k the eigenvalues of S_z are $\pm \frac{\hbar k_z}{k}$ i.e. are NOT quantized.

They state: "Thus S CANNOT be interpreted as spin angular momentum. this result does not seem to have been noticed before."

Consequently, van Enk-Nienhuis write "**spin**" and "**orbital angular momentum**" in inverted commas.

Chen et al:2008 CITE van Enk-Nienhuis:1994

BUT DO NOT SEEM TO HAVE NOTICED EITHER OF THESE WARNINGS.....!!! Chen et al:2008 CITE van Enk-Nienhuis:1994

BUT DO NOT SEEM TO HAVE NOTICED EITHER OF THESE WARNINGS.....!!!

AMAZINGLY, NONE OF THE PARTICLE PHYSICISTS SEEM TO HAVE NOTICED THESE WARNINGS EITHER!!!

A KEY CHALLENGE FOR PARTICLE PHYSICS: UNDERSTAND THE A.M. OF THE GLUON

BETTER FIRST UNDERSTAND THE PHOTON!

WHICH VERSION OF A.M. IS MORE CORRECT OR MORE "PHYSICAL"?

CLASSICAL (BELINFANTE) VS CANONICAL VS CHEN et al

$$J_{\text{bel}} = \int d^3x \, \boldsymbol{j}_{\text{bel}}(x) \qquad J_{\text{can}} = \int d^3x \, \boldsymbol{j}_{\text{can}}(x)$$

 $J_{\text{bel}} = J_{\text{can}} + \text{surface term} = J_{\text{chen}} + \text{surface term}.$

Classically surface terms = 0 if fields vanish at infinity

BUT

QUANTUM FIELDS ARE OPERATORS

What does it mean to say **OPERATORS VANISH AT INFINITY?**

CONCLUDE: AS OPERATORS

 $J_{\text{bel}} \neq J_{\text{can}} \neq J_{\text{chen}}.$

FIRST ARGUMENT AGAINST J_{bel} : PROBLEMS with HELICITY $\mathcal{H} \equiv J \cdot P/|P|$

1) The Classical E and M Textbook expression due to Belinfante:

Well known, for classical fields, \mathcal{H}_{bel} gives zero for circularly polarized plane wave.

Similarly, with operators, \mathcal{H}_{bel} acting on any quantum state gives zero, because

$$j_{\text{bel}} \cdot p = [r \times (E \times B)] \cdot (E \times B) = 0.$$

FIRST ARGUMENT AGAINST J_{bel} : PROBLEMS with HELICITY $\mathcal{H} \equiv J \cdot P/|P|$

2) Compare with the **Canonical and Chen expres**sions:

Acting on any superposition of photon states $|\Psi
angle$

 $\mathcal{H}_{can}|\Psi
angle\equiv J_{can}\cdot P_{can}/|P_{can}|\ket{\Psi}=S_{can}\cdot P_{can}/|P_{can}|\ket{\Psi}$

Can show that acting on a photon state with helicity $\lambda=\pm 1$

$$\mathcal{H}_{chen}\ket{k}$$
; $\lambda
angle=\mathcal{H}_{can}\ket{k}$; $\lambda
angle=\hbar\lambda\ket{k}$; $\lambda
angle$

Quantum Field Theory Summary

- J_{bel} fails to give correct helicity
- S_{can} is a genuine A.M., but is not gauge invariant
- S_{chen} is gauge invariant but not a genuine A.M.
- \bullet Eigenvalues of $S_{\rm chen;\ z}$ and $L_{\rm chen;\ z}$ are not quantized
- Only the **helicities** $\mathcal{H}_{can} = \mathcal{H}_{chen}$ are both genuine A.M.s and gauge invariant.

NB Perhaps surprisingly, \mathcal{H}_{can} IS gauge invariant!

III: GENERAL CLASSICAL FIELDS

NB All fields in this Section are CLASSICAL FIELDS

GENERAL CLASSICAL MAXWELL FIELD: SECOND ARGUMENT AGAINST J_{bel}

Just as for the operator case, J_{bel} , for Classical MAXWELL Fields, fails to express helicity correctly.

1) For later reference a good way to see this is as follows: For the cycle average

$$\langle J_{\text{bel}} \rangle = \frac{1}{2} \left[\int d^3 r \left[(\mathbf{r} \cdot \mathbf{B}) \mathbf{E}^* - (\mathbf{r} \cdot \mathbf{E}^*) \mathbf{B} \right] + \text{c.c.} \right]$$

Take general superposition

$$B(r) = \int d^{3}k \,\mathcal{B}(k)e^{i\boldsymbol{k}\cdot\boldsymbol{r}}$$
$$(\boldsymbol{r}\cdot\boldsymbol{E}^{*}) = \int d^{3}k \,F(k)e^{-i\boldsymbol{k}\cdot\boldsymbol{r}}$$

45

Then

$$\int d^3r \, (\boldsymbol{r} \cdot \boldsymbol{E}^*) \boldsymbol{B} = (2\pi)^3 \int d^3k \, F(\boldsymbol{k}) \, \boldsymbol{\mathcal{B}}(\boldsymbol{k}).$$

Then

$$\int d^3 r \, (\boldsymbol{r} \cdot \boldsymbol{E}^*) \boldsymbol{B} = (2\pi)^3 \int d^3 k \, F(\boldsymbol{k}) \, \boldsymbol{\mathcal{B}}(\boldsymbol{k}).$$

Contribution to the helicity is then

$$(2\pi)^3 \int d^3k F(k) \left[\mathcal{B}(k) \cdot k \right]$$

= 0 because $\nabla \cdot B = 0.$

Similarly, other term gives zero contribution, because $\nabla \cdot E = 0$.

Summary: for an arbitrary superposition of Classical MAXWELL Fields J_{bel} fails to give correct helicity i.e.

 $\mathcal{H}_{bel} = 0$

GENERAL CLASSICAL MAXWELL FIELD: SECOND ARGUMENT AGAINST J_{bel} :

(2) Compare with the Canonical and Chen expressions

Just as for the operator case, for any fields ${m E},\,{m B}$,

$$\begin{array}{lll} \mathcal{H}_{\text{can}} &\equiv& J_{\text{can}} \cdot P_{\text{can}} / |P_{\text{can}}| = S_{\text{can}} \cdot P_{\text{can}} / |P_{\text{can}} \\ &=& S_{\text{chen}} \cdot P_{\text{chen}} / |P_{\text{chen}} \end{array}$$

Take a general superposition of EITHER left- or rightcircularly polarized plane waves

$$\boldsymbol{E}(\boldsymbol{r}) = \int d^{3}k \, E_{0}(\boldsymbol{k}) \, [\boldsymbol{\epsilon}_{1}(\boldsymbol{k}) \pm i\boldsymbol{\epsilon}_{2}(\boldsymbol{k})] e^{i\boldsymbol{k}\cdot\boldsymbol{r}}.$$

where

$$\epsilon_1(k)\,,\;\epsilon_2(k)\,,\;\hat{k}$$

form a three-dimensional orthogonal system of unit basis vectors.

For the cycle average, for the monochromatic case, one finds

$$\langle S_{\text{chen}} \rangle = \pm \frac{(2\pi)^3 \epsilon_0}{\omega} \int d^3k |E_0(k)|^2 \hat{k}$$

Thus

$$\langle \mathcal{H}_{\text{chen}} \rangle = \pm \frac{(2\pi)^3 \epsilon_0}{\omega} \int d^3k |E_0(\mathbf{k})|^2$$

N.B. My particle-physics-like definition of helicity coincides exactly with the expressions of Afanasiev-Stepanovsky and Trueba-Ra \tilde{n} ada.

Equating the total energy in the field to the number of photons $\times~\hbar\,\omega$

$$\langle \mathcal{H}_{can} \rangle \Big|_{photon} = \langle \mathcal{H}_{chen} \rangle \Big|_{photon} = \pm \hbar$$

A BEAUTIFULLY INTUITIVE RESULT

Summary: Classical Superposition of Maxwell Fields

- $\bullet~J_{\rm bel}$ fails to give correct helicity
- $\langle {\cal H}_{can} \rangle = \langle {\cal H}_{chen} \rangle$ give physically intuitive result

IV: LESSONS FROM LASER OPTICS

KEY QUESTION: TO WHAT EXTENT IS S_{chen} a GENUINE INTRINSIC A.M.?

(1) MACROSCOPIC PHYSICS

Torque τ about the C.M.of a small neutral object, in electric dipole approximation, with complex polarizability $\alpha = \alpha_R + i \alpha_I$, acted on by field

$$\mathcal{E} = Re(E)$$
 $E(r,t) = E_0(r) e^{-i\omega t}$

For the cycle average, one finds

$$\langle \boldsymbol{\tau} \rangle = \alpha_I [Re \boldsymbol{E}_0 \times Im \boldsymbol{E}_0]$$

= $\frac{\alpha_I \omega}{\epsilon_0} \langle \boldsymbol{s}_{chen} \rangle$

Thus $\langle s_{\mathsf{chen}} \rangle$ is measurable.

Let $S_{\rm dipole}$ be the internal A.M. of the induced dipole, about its C.M.

Then we expect

$$\langle \frac{d}{dt} S_{\text{dipole}}
angle = \langle \boldsymbol{\tau}
angle$$

- Assume that the change of A.M. of the dipole is due to the average spin A.M. $S_{\rm photon}$ of each photon absorbed from the beam.
- Take the number of photons totally absorbed by the dipole per second to be given by $1/\hbar\omega$ times the rate of increase of the dipole's internal energy.
- Take photon density to be $N_{\gamma} = \frac{1}{\hbar\omega}$ (Field Energy Density)

Then

$$\langle rac{d}{dt} m{S}_{ ext{dipole}}
angle = \langle m{ au}
angle$$

holds provided we take the spin A.M. carried by each photon to be

$$m{S}_{
m photon} = rac{1}{N_{\gamma}} \langle m{s}_{
m chen}
angle$$

Then

$$\langle rac{d}{dt} S_{ ext{dipole}}
angle = \langle m{ au}
angle$$

holds provided we take the spin A.M. carried by each photon to be

$$m{S}_{
m photon}=rac{1}{N_{\gamma}}\left\langle m{s}_{
m chen}
ight
angle$$

Thus, surprisingly, macroscopically, $\langle s_{\rm chen}\rangle$ seems to function as a measure of physical angular momentum carried by the photons.

KEY QUESTION: TO WHAT EXTENT IS S_{chen} a GENUINE INTRINSIC A.M.?

(2) **ATOMIC PHYSICS**

We already know that the commutation relations are wrong.

A further argument:

For generalized Maxwell Bessel beams the A.M. eigenvalues are **NOT QUANTIZED**:

$$J_{\text{chen, z}} = j\hbar$$
 $S_{\text{chen, z}} = \pm \hbar \frac{k_z}{k}$ $L_{\text{chen, z}} = j\hbar \mp \hbar \frac{k_z}{k}$

60

Suppose an atom, in an eigenstate $|m_z\rangle$, absorbs one of these photons.

If $S_{\text{chen, }z}$ were a genuine intrinsic A.M. then the atom's intrinsic m_z would change by this amount.

•

Suppose an atom, in an eigenstate $|m_z\rangle$, absorbs one of these photons.

If $S_{\text{chen, z}}$ were a genuine intrinsic A.M. then the atom's intrinsic m_z would change by this amount. But what you find is that the final atomic state is a superposition

 $|\text{final}\rangle = a |m_z + 1\rangle + b |m_z\rangle + c |m_z - 1\rangle.$

What happens in paraxial approximation?

PARAXIAL FIELDS

GENERAL SOLUTION OF PARAXIAL WAVE EQUATION

$$\boldsymbol{E}(\boldsymbol{r}) = \left(u(\boldsymbol{r}), v(\boldsymbol{r}), \frac{-i}{k} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)\right) e^{i(kz - \omega t)}$$

where

$$u(\mathbf{r}) = \int d^2 k_{\perp} \, \tilde{u}(\mathbf{k}_{\perp}) \, e^{i\mathbf{k}_{\perp} \cdot \mathbf{r}} \, e^{-ik_{\perp}^2 z/2k}$$
$$v(\mathbf{r}) = \int d^2 k_{\perp} \, \tilde{v}(\mathbf{k}_{\perp}) \, e^{i\mathbf{k}_{\perp} \cdot \mathbf{r}} \, e^{-ik_{\perp}^2 z/2k}$$

63

PARAXIAL FIELDS

GENERAL SOLUTION OF PARAXIAL WAVE EQUATION

$$\boldsymbol{E}(\boldsymbol{r}) = \left(u(\boldsymbol{r}), v(\boldsymbol{r}), \frac{-i}{k} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)\right) e^{i(kz - \omega t)}$$

where

$$u(\mathbf{r}) = \int d^2 k_{\perp} \, \tilde{u}(\mathbf{k}_{\perp}) \, e^{i\mathbf{k}_{\perp} \cdot \mathbf{r}} \, e^{-ik_{\perp}^2 z/2k}$$
$$v(\mathbf{r}) = \int d^2 k_{\perp} \, \tilde{v}(\mathbf{k}_{\perp}) \, e^{i\mathbf{k}_{\perp} \cdot \mathbf{r}} \, e^{-ik_{\perp}^2 z/2k}$$

KEY POINT: LASER PARAXIAL FIELDS: $k_{\perp}^2/k^2 \ll 1.$

64

Then $k_z/k \approx 1$ and $J_{\text{chen, } z} \approx j\hbar$ $S_{\text{chen, } z} \approx \pm \hbar$ $L_{\text{chen, } z} \approx j\hbar \mp \hbar$ For atomic absorption of one photon one finds $|\text{final}\rangle \approx |m_z + 1\rangle$ **OR** $|\text{final}\rangle \approx |m_z - 1\rangle$ Then $k_z/k \approx 1$ and

 $J_{\text{chen, z}} \approx j\hbar$ $S_{\text{chen, z}} \approx \pm \hbar$ $L_{\text{chen, z}} \approx j\hbar \mp \hbar$ For atomic absorption of one photon one finds $|\text{final}\rangle \approx |m_z + 1\rangle$ **OR** $|\text{final}\rangle \approx |m_z - 1\rangle$

Thus in paraxial approximation, for atomic absorption, $S_{\text{chen}, z}$, $L_{\text{chen}, z}$ behave approximately as genuine A.M.

$j_{\text{bel, z}}$ vs $j_{\text{chen, z}}$: LASER TESTS

In the foundation paper on laser angular momentum Allen, Beijersbergen, Spreeuw and Woerdman studied the Belinfante A.M. for a Laguerre-Gaussian mode in paraxial approximation, with $v(r) = i\sigma u(r)$ $\sigma = \pm 1$. But same result holds for any field of the form, in cylindrical coordinates (ρ, ϕ, z) ,

$$u(\rho,\phi,z) = f(\rho,z)e^{il\phi}.$$

They obtain

$$\langle j_{\text{bel, z}} \rangle \approx \frac{\epsilon_0}{\omega} \left[l|u|^2 - \frac{\sigma}{2} \rho \frac{\partial |u|^2}{\partial \rho} \right]$$

which, surprisingly, looks like an orbital A.M. plus a spin A.M. term.

For the Chen et al version one obtains a different result:

$$\langle l_{\rm chen, z} \rangle \approx \frac{\epsilon_0}{\omega} l |u|^2 \qquad \langle s_{\rm chen, z} \rangle \approx \frac{\epsilon_0}{\omega} \sigma |u|^2$$

The first semi-quantitative test of the above was made by Garcés-Chávez, Mc Gloin, Padgett, Dulz, Schmitzer and Dholakia (GMPDSD) who succeeded in studying the motion of a tiny particle trapped at various radial distances ρ from the axis of a so-called Bessel beam. The transfer of orbital A.M. causes the particle to circle about the beam axis with a rotation rate Ω_{orbit} whereas the transfer of spin A.M. causes the particle to spin about its centre of mass with rotation rate Ω_{spin} .

For a Bessel beam, $|u|^2 \propto 1/\rho$, so for both Belinfante and Chen et al versions

 $\Omega_{
m orbit} \propto 1/
ho^3$ and $\Omega_{
m spin} \propto 1/
ho,$

which is precisely the behaviour found experimentally.

For a Bessel beam, $|u|^2 \propto 1/\rho$, so for both Belinfante and Chen et al versions

 $\Omega_{
m orbit} \propto 1/
ho^3$ and $\Omega_{
m spin} \propto 1/
ho,$

which is precisely the behaviour found experimentally.

But the absolute rotation rates predicted are different!

For a Bessel beam, $|u|^2 \propto 1/\rho$, so for both Belinfante and Chen et al versions

 $\Omega_{
m orbit} \propto 1/
ho^3$ and $\Omega_{
m spin} \propto 1/
ho,$

which is precisely the behaviour found experimentally.

But the absolute rotation rates predicted are different!

Unfortunately the absolute rotation rates depend upon detailed parameters which, according to the authors, were beyond experimental control.

OTHER LASER TESTS?

Shift of the diffraction fringes, found by Ghai, Senthilkumaran and Sirohi, in single slit diffraction of optical beams with a phase singularity:

Experimentally seems to depend on l and not on σ .

Unpublished paper Chen and Chen 2012: Claim this implies the J_{chen} one is correct.

Recent review Bliokh and Nori: Canonical A.M. in the Coulomb gauge, i.e the Chen et al A.M. agrees with a wide range of experiments.

j_{bel} vs j_{chen} : SUMMARY

- On theoretical grounds, for the macroscopic case, requiring $\langle \frac{d}{dt} S_{\text{dipole}} \rangle = \langle \tau \rangle$, suggests that it is j_{chen} plays the role of a physical A.M.
- Seems that various Laser Optics experiments favour $j_{
 m Chen}$.
- Laser Optics experiment, of the GMPDSD-type, offer the fantastic possibility of a direct check, if the absolute rotation rates could be determined.

THE ANGULAR MOMENTUM CONTROVERSY: SUMMARY

• The revolutionary claim, by Chen et al, that $J_{\rm photon}$ CAN be split, contrary to all QED textbooks, into $L_{\rm photon} + S_{\rm photon}$, in a gauge invariant way, is WRONG.

THE ANGULAR MOMENTUM CONTROVERSY: SUMMARY

- The revolutionary claim, by Chen et al, that $J_{\rm photon}$ CAN be split, contrary to all QED textbooks, into $L_{\rm photon} + S_{\rm photon}$, in a gauge invariant way, is WRONG.
- Particle physicists were apparently totally unaware that van Enk and Nienhuis had, long ago, shown that $L_{\rm chen}$ and $S_{\rm chen}$ are NOT genuine angular momentum operators.

• Laser physicists tend to use the Classical Electrodynamics Textbook J_{bel} , perhaps being unaware that it gives $\mathcal{H}_{bel} = 0$ for a circularly polarized plane wave or a superposition of either left or right circularly plane waves.

- Laser physicists tend to use the Classical Electrodynamics Textbook J_{bel} , perhaps being unaware that it gives $\mathcal{H}_{bel} = 0$ for a circularly polarized plane wave or a superposition of either left or right circularly plane waves.
- That $\mathcal{H}_{bel}^{paraxial} \neq 0$ is purely a consequence of the paraxial approximation i.e. the fact that $\nabla \cdot E^{paraxial} \neq 0$ and $\nabla \cdot B^{paraxial} \neq 0$.

• For quantum mechanical interaction with an atom, it is clear why $S_{\text{chen, z}}^{\text{paraxial}}$ functions approximately as a genuine A.M.

- For quantum mechanical interaction with an atom, it is clear why $S_{\text{chen, z}}^{\text{paraxial}}$ functions approximately as a genuine A.M.
- For classical macroscopic interaction, in electric dipole approximation, $\langle S_{\rm chen} \rangle$ seems to represent the physical intrinsic A.M. carried by the photon. Why, is a mystery to me!

- For quantum mechanical interaction with an atom, it is clear why $S_{\text{chen, z}}^{\text{paraxial}}$ functions approximately as a genuine A.M.
- For classical macroscopic interaction, in electric dipole approximation, $\langle S_{chen} \rangle$ seems to represent the physical intrinsic A.M. carried by the photon. Why, is a mystery to me!
- N.B. Laser optics can decide which of j_{bel} or j_{chen} correctly describes the physical A.M. carried by light.