Topological phases and topological photonics

Daniel Leykam

Motivation

•Structured light: optical fields shaped in real space

- •Topological phases: Bloch wave eigenmodes shaped in momentum space
- •Common language: topological charges & invariants
- •What can each tell us about the other?

T. Foesel, V. Peano, F. Marquardt, arXiv:1703.08191

Outline

- 1. Bloch band vortices: gapless topological phases
- 2. Pseudospins and structured light

Noh et al, Nature Physics 4072 (2017)

T. Foesel, V. Peano, F. Marquardt, arXiv:1703.08191

1. Gapless topological phases

Topological insulators

- •Characterized by topological invariants: Z or Z₂
- •Bulk-edge correspondence: edge modes whenever bulk invariants change
- •Topological protection: invariants cannot change if band gap remains open

•Defined for non-interacting systems

Hasan & Kane, Rev. Mod. Phys. 82, 3045 (2010)

Fermionic vs bosonic topological insulators

•Fermions: Spin 1/2, $T^2 = -1$, Z_2 topological insulators (spin-momentum locking) •Bosons: Spin 1, $T^2 = +1$, no Z_2 topological *insulating* phases!

		TRS	PHS	SLS	d=1	<i>d</i> =2	<i>d</i> =3
Standard	A (unitary)	0	0	0	-	Z	-
(Wigner-Dyson)	AI (orthogonal)	+1	0	0	_	-	_
	AII (symplectic)	-1	0	0	-	\mathbb{Z}_2	\mathbb{Z}_2
Chiral	AIII (chiral unitary)	0	0	1	Z	-	Z
(sublattice)	BDI (chiral orthogonal)	+1	+1	1		-	-
	CII (chirai symplectic)	-1	-1	1	L	-	\mathbb{Z}_2
BdG	D	0	+1	0	\mathbb{Z}_2	Z	_
	С	0	-1	0	-	Z	-
	DIII	-1	+1	1	\mathbb{Z}_2	\mathbb{Z}_2	Z
	CI	+1	-1	1	_	_	Z

Kitaev, arXiv:0901.2686; Hasan & Kane, Rev. Mod. Phys. 82, 3045 (2010)

Photons are massless

- •Low energy electrons: vacuum is topologically trivial insulator, with $m_e >> E$
- •Photons: vacuum is gapless; not an "insulator" for light
- •Topological invariants are ill-defined or marginal
- •How is the bulk-edge correspondence modified for photons?
- •Similarly, for relativistic electrons?

Quantum spin Hall effect of light

- •Free space light: degeneracy in 3D, but integer spin
- •T-symmetric & trivial Z₂ topological invariant
- •Spin-momentum locking of evanescent waves
- •E.g. free space (gapless) metal (gapped) interfaces
- •Gapless systems can host new classes of topological edge states

K. Y. Bliokh, D. Smirnova, F. Nori, Science 348, 1448 (2015)

Degeneracies as topological defects

•Simplest example: two band Hermitian systems

- •Two level Bloch Hamiltonian: $\hat{H}(p) = d(p) \cdot \hat{\sigma} = \begin{pmatrix} d_z & d_x id_y \\ d_x + id_y & -d_z \end{pmatrix}$
- •Gap closing points (degeneracies) have co-dimension 3: $d_x(\mathbf{p}) = d_y(\mathbf{p}) = d_z(\mathbf{p}) = 0$
- •3D momentum space: Weyl points (hedgehogs)
- •2D + symmetry $d_z = 0$: **Dirac points** (vortices)
- •3D + symmetry $d_z = 0$: Nodal lines (vortex lines)

Photonic Weyl point degeneracies
Fermi arcs of edge modes link pairs of Weyl points
Gyroid photonic crystal: isotropic type 1 Weyl points
Helical photonic lattice: tilted type 2 Weyl points

Xu et al., Phys. Rev. Lett. (2015) Soluyanov et al., Nature (2015)

Lu et al., Nature Photon. (2013); Lu et al., Science (2015)

Leykam et al, Phys. Rev. Lett. (2016) Noh et al, Nature Physics (2017)

Hopf link degeneracies

- •Line nodes can form linked rings with toroidal Berry phase
- •Analogous to isolated optical vortex knots & links
- •Zero energy edge modes & shifted Landau levels
- •Optical lattice realizations challenging
- •Alternative: drive a system with structured light?

"Weyl-link semimetals," arXiv:1704.01948

Line node

Summary (part 1)

- •Gapless systems also host topological phases
- •E.g. massless photons, Weyl point photonic crystals
- •Point degeneracies analogous to 2D vortices & 3D topological defects
- •Line nodes can be linked or knotted

2. Pseudospins and structured light

Pseudospins

$$\hat{H}(\boldsymbol{p}) = \boldsymbol{d}(\boldsymbol{p}) \cdot \hat{\boldsymbol{\sigma}} \equiv \mathbf{B}_{\text{eff}} \cdot \hat{\boldsymbol{\sigma}}$$

- •Any internal / microscopic states of system with spin-like behaviour
- •Eg. sublattices, orbitals, layers, valleys, polarisations, helicities
- •Analogue of "real" spin, carries angular momentum? Mecklenburg & Regan, PRL 106, 116803 (2011)
- •Symmetry-protected pseudospin-momentum locked edge modes

Y.-H. Hyun et al , J. Phys.: Cond. Mat. 24, 045501 (2012)

Polarization textures of Bloch functions

•Can characterize pseudospin of eigenmodes with Stokes parameters

•Positions of C points, L lines is basis-dependent

•Chern number: basis-independent winding number of L lines or sum of C points

•Significance of different C point morphologies? $S_0 = |\psi_1|^2 + \frac{1}{2}$

T. Foesel, V. Peano, F. Marquardt, arXiv:1703.08191

 $S_{0} = |\psi_{1}|^{2} + |\psi_{2}|^{2}$ $S_{1} = |\psi_{1}|^{2} - |\psi_{2}|^{2} = S_{0}\cos(2\chi)\cos(2\theta)$ $S_{2} = 2\operatorname{Re}(\psi_{1}^{*}\psi_{2}) = S_{0}\cos(2\chi)\sin(2\theta)$ $S_{3} = 2\operatorname{Im}(\psi_{1}^{*}\psi_{2}) = S_{0}\sin(2\chi)$

Dennis, O'Holleran, & Padgett, Prog. Opt. (2009)

Not all pseudospins are equal

- •Linear topological phases & edge modes "blind" to form of pseudospin
- •Optical forces, angular momentum sensitive to microscopic details!
- •Strong spatial variations on scale of unit cell ~ λ , sensitive to disorder?
- •Important for local light-matter interactions, quantum effects

Young et al, Phys. Rev. Lett. 115, 153901 (2015)

Khanikaev et al, Nature Mater. 12, 233 (2013)

Onoda & Ochiai, Phys. Rev. Lett. 103, 033903 (2009)

Quenching topological systems

- •Rapidly change a control parameter
- •Can switch between trivial, nontrivial, gapless phases
- •Does wavefunction retain memory of original topological phase?
- •Eg. Chern insulator: rapidly switch off magnetic field
- •Memory of initial topological state: nonzero Hall current

Wilson, Song, & Refael, "Remnant geometric Hall response in a quantum quench," Phys. Rev. Lett. (2016)

Linking numbers of pseudospins

- •Pseudospin textures sensitive to quenching between phases
- •After quench, pseudospins evolve as $n(k_x,k_y,t)$
- •Lines of fixed pseudospin form closed curves
- •Linking number of any two curves sensitive to Chern number
- •E.g. linking of left-handed and right-handed C lines (k_x, k_y, t)

Wang et al., Phys. Rev. Lett. in press, arXiv:1611.03304 (2016); J. Yu, arXiv:1611.08917 (2016)

"Quenching" a photonic lattice

•Injecting light into a photonic lattice naturally acts as a quench!

- •z<0: free space propagation $\Delta n = 0$, z>0 lattice potential Δn
- •Non-equilibrium propagation dynamics & precession of pseudospin

Trompeter et al., Phys. Rev. Lett. (2006)

Noh et al, Nature Physics (2017)

Optical vortices from Dirac points

•Honeycomb lattice: vortex generation from Dirac point chirality

- •Momentum space vortex of eigenmodes generates real space vortex
- •Lieb lattice: double charge Dirac point => charge 2 vortex generation
- •Gapped photonic topological insulators: linked vortex rings observable?
- •Challenge: measuring 3D vortex lines

Song et al, Nature Comms. 6, 6272 (2015); Diebel et al, Phys. Rev. Lett. 116, 183902 (2016)

Summary (part 2)

- •Interesting analogies between pseudospins and spins
- •Chern number as a basis-independent sum over C points or L lines
- •Topological phase vs microscopic currents & momentum
- •Quenches between topological phases generate linked pseudospin vortices
- •Linking difficult to observe in condensed matter, easier in photonics?

T. Foesel, V. Peano, F. Marquardt, arXiv:1703.08191