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Overarching Goal
•many examples of tree-shaped data 

(phylogenies, anatomical trees, etc.)

•parameters:
• tree shape = tree topology
•edge lengths

•not Euclidean data!
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Goal:  develop methods for statistical analysis 
(i.e. mean, PCA) in a space of metric trees 
analogous to those for Euclidean space

P. Lo et al. EXACT’09



•constructed by Billera, Holmes, and 
Vogtmann (2001)

•tree space      = set of all trees with n leaves 
and branch lengths

•includes degenerate trees (non-binary)

Tn

Tree Space Framework

A B C D

E1.5

1

0

2

1 0.811.2



•represent each tree as a vector

•coordinates = splits
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•not all sets of splits form a tree

Tree Space

⇒ not all vectors are possible

⇒ not a Euclidean space

(2, 4, 2, 3, 2, 2, 0, 0, 0, 0, 0, ....)
A|B

CD0

B|
ACD0

AB|
CD0

AB0
|C

D

AC|B
D0

...
ABC

|D
0

D|A
BC

0
...

ABD
|C

0



•not all sets of splits form a tree

Tree Space

⇒ not all vectors are possible

⇒ not a Euclidean space

(2, 4, 2, 3, 2, 2, 0, 0, 0, 0, 0, ....)
A|B

CD0

B|
ACD0

AB|
CD0

AB0
|C

D

AC|B
D0

...
ABC

|D
0

D|A
BC

0
...

ABD
|C

0



ABC|D0

AB|CD0

AB0 | CD

0

A B
C

D

A B C D

0



ABC|D0

AB|CD0

AB0 | CD

0

A B
C

D

Tn4
Tn4

BA
DC

0

A B C D

0



ABC|D0

AB|CD0

AB0 | CD

0

A B
C

D

Tn4
Tn4

BA
DC

0

A B C D

0

0

BA
C D



ABC|D0

AB|CD0

AB0 | CD

0

A B
C

D
AD0 | BC 0

A
B C

D

Tn4
Tn4

BA
DC

0

A B C D

0

0

BA
C D



A0|BCD

0

A
B C

D

ABC|D0

AB|CD0

AB0 | CD

0

A B
C

D
AD0 | BC 0

A
B C

D

Tn4
Tn4

BA
DC

0

A B C D

0

0

BA
C D



A0|BCD

0

A
B C

D

ABC|D0

AB|CD0

AB0 | CD

0

A B
C

D
AD0 | BC 0

A
B C

D

Tn4
Tn4

BA
DC

0

A B C D

0

0

BA
C D

0

A
B

C D



A0|BCD

0

A
B C

D
T1

T2

ABC|D0

AB|CD0

AB0 | CD

0

A B
C

D
AD0 | BC 0

A
B C

D

Tn4
Tn4

BA
DC

0

A B C D

0

0

A
B

C D



A0|BCD

0

A
B C

D
T1

T2

ABC|D0

AB|CD0

AB0 | CD

= geodesic

0

A B
C

D
AD0 | BC 0

A
B C

D

Tn4
Tn4

BA
DC

0

A B C D

0

0

A
B

C D



A0|BCD

0

A
B C

D
T1

T2

ABC|D0

AB|CD0

AB0 | CD

T’2T’1

= geodesic

0

A B
C

D
AD0 | BC 0

A
B C

D

Tn4
Tn4

BA
DC

0

A B C D

0

0

A
B

C D



A0|BCD

0

A
B C

D
T1

T2

ABC|D0

AB|CD0

AB0 | CD

T’2T’1

= geodesic

0

A B
C

D
AD0 | BC 0

A
B C

D

Tn4
Tn4

BA
DC

0

A B C D

0

0

A
B

C D



A0|BCD

0

A
B C

D

A B C D

0

0

A B
C

D

ABC|D0

AB|CD0

AB0 | CD

Tn4Structure ofxx Tn4

AD0 | BC 0

A
B C

D

0

A
B

C D



A0|BCD

0

A
B C

D

A B C D

0

0

A B
C

D

ABC|D0

AB|CD0

AB0 | CD

Tn4Structure ofxx Tn4

AD0 | BC 0

A
B C

D

0

A
B

C D



A0|BCD

0

A
B C

D

A B C D

0

0

A B
C

D

ABC|D0

AB|CD0

AB0 | CD

Tn4Structure ofxx Tn4

AD0 | BC 0

A
B C

D

0

A
B

C D



Structure of xx Tn4



Structure of xx Tn4

A B C D

0AB0|CD

AB|CD0

AD0|BC

A0|BCD

0

A B
C

D

ABC|D0



Geodesics

1
1

1

1 2

2

2

3

4

4

4

3

3

3

3

4

4

5

5

5

2

5 5

26

6
6

6

1

6

4

3

5

6

1

2

1

2

4

3

5

6



Tree Space Properties   

⇒ unique geodesics (shortest paths)

⇒ well-defined mid-point tree

•BHV or geodesic distance = length of 
shortest path between two trees T1 and T2      

•polynomial time algorithm to compute 
geodesic distance (O. and Provan, 2011)

Theorem (Billera, Holmes,Vogtmann, 2001):  
Tree space has global non-positive curvature.



• weighted set X in tree space:

• Fréchet mean(X) = centre of mass

(tree minimizing sum of square BHV distances)

• variance(X) = 

• computable by algorithm based on Law of Large 
Numbers (Sturm 2003; Miller, O, Provan 2015;  
Bačák 2014)
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Bayesian Samples versus Bootstrap Samples
One of our analyses consisted of a comparison of a

sample of trees from a Bayesian MCMC analysis (Larget
and Simon, 1999) with a sample of trees obtained through
nonparametric bootstrapping (Felsenstein, 1985). These
two sampling methods have been widely used to obtain
credible sets of trees and for estimating confidence lim-
its on phylogenies. Comparisons of these methods have
largely concentrated on comparing the posterior proba-
bilities for particular internal branches calculated from
the Bayesian analyses with the bootstrap proportions for
these same branches (e.g., Wilcox et al., 2002; Suzuki et al.,
2002; Alfaro et al., 2003; Cummings et al., 2003; Erixon

FIGURE 2. Phylogram of mammals by Murphy et al. (2001). This tree was used in the simulations to obtain sets of trees from Bayesian and
bootstrap analyses for comparison to the true tree in tree-space. The details of the branch lengths for this tree are presented in Appendix 1.

et al., 2003). We explored an alternative approach that
involved the comparison of the sets of sampled trees to
the true (model) tree in tree-space.

The data used to generate the trees for compar-
ing the results of Bayesian and bootstrapping analy-
ses were obtained by simulating sequences of genes on
the topology and branch lengths of a 44-taxon mam-
malian tree (Murphy et al., 2000; Fig. 2). This tree
was the result of an analysis of 22 different genes and
was chosen as a model for our simulations because of
the large number of genes and the well-supported re-
sulting phylogenetic estimate (this tree has been dis-
cussed in several recent theoretical studies of phylogeny;

Experimental Results

Murphy et al., Resolution of the early 
placental mammal radiation using 
Bayesian phylogenetics. Science 
294:2348– 2351.

Reference tree
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Visualization vis MDS

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

−0.05 0.00 0.05

−0
.0

3
−0

.0
2

−0
.0

1
0.

00
0.

01
0.

02
0.

03

PC 1

PC
 2

1 rep. for 4000 base pairs



Visualization vis MDS
bootstrap 
sample
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Visualization vis MDS
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Visualization vis MDS
bootstrap 
sample

posterior 
sample

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

−0.05 0.00 0.05

−0
.0

3
−0

.0
2

−0
.0

1
0.

00
0.

01
0.

02
0.

03

PC 1

PC
 2

reference tree1 rep. for 4000 base pairs



Visualization vis MDS
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Measures of Variance

B = {bj}N2
j=1{bj}N2
j=1

• # of different topologies in sample

• # of different splits in sample

• sum of squared distances between trees
X

T,T 02T
d(T, T 0)2



●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

0

250

500

750

1000

500 1000 1500 2000 2500 3000 3500 4000
Sequence Length

N
um

be
r o

f d
iff

er
en

t t
op

ol
og

ie
s

Bootstrap Samples
Posterior Samples

# 
of

 d
iff

er
en

t t
op

ol
og

ie
s

   = bootstrap
   = posterior



●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

0

250

500

750

1000

500 1000 1500 2000 2500 3000 3500 4000
Sequence Length

N
um

be
r o

f d
iff

er
en

t t
op

ol
og

ie
s

Bootstrap Samples
Posterior Samples

# 
of

 d
iff

er
en

t t
op

ol
og

ie
s

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

200

400

600

800

500 1000 1500 2000 2500 3000 3500 4000
Sequence Length

N
um

be
r o

f d
iff

er
en

t s
pl

its

Bootstrap Samples
Posterior Samples

# 
of

 d
iff

er
en

t s
pl

its

   = bootstrap
   = posterior



●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

0

250

500

750

1000

500 1000 1500 2000 2500 3000 3500 4000
Sequence Length

N
um

be
r o

f d
iff

er
en

t t
op

ol
og

ie
s

Bootstrap Samples
Posterior Samples

# 
of

 d
iff

er
en

t t
op

ol
og

ie
s

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

200

400

600

800

500 1000 1500 2000 2500 3000 3500 4000
Sequence Length

N
um

be
r o

f d
iff

er
en

t s
pl

its

Bootstrap Samples
Posterior Samples

# 
of

 d
iff

er
en

t s
pl

its

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

5000

10000

15000

500 1000 1500 2000 2500 3000 3500 4000
Sequence Length

Su
m

 o
f s

qu
ar

ed
 B

H
V 

di
st

an
ce

 b
et

we
en

 a
ll 

pa
irs

Bootstrap Samples
Posterior Samples

Su
m

 o
f s

qu
ar

ed
 d

is
ta

nc
es

   = bootstrap
   = posterior



●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

0

250

500

750

1000

500 1000 1500 2000 2500 3000 3500 4000
Sequence Length

N
um

be
r o

f d
iff

er
en

t t
op

ol
og

ie
s

Bootstrap Samples
Posterior Samples

# 
of

 d
iff

er
en

t t
op

ol
og

ie
s

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

200

400

600

800

500 1000 1500 2000 2500 3000 3500 4000
Sequence Length

N
um

be
r o

f d
iff

er
en

t s
pl

its

Bootstrap Samples
Posterior Samples

# 
of

 d
iff

er
en

t s
pl

its

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

5000

10000

15000

500 1000 1500 2000 2500 3000 3500 4000
Sequence Length

Su
m

 o
f s

qu
ar

ed
 B

H
V 

di
st

an
ce

 b
et

we
en

 a
ll 

pa
irs

Bootstrap Samples
Posterior Samples

Su
m

 o
f s

qu
ar

ed
 d

is
ta

nc
es

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

0.005

0.010

0.015

500 1000 1500 2000 2500 3000 3500 4000
Sequence Length

Fr
ec

he
t v

ar
ia

nc
e

Bootstrap Samples
Posterior Samples

Fr
ec

he
t v

ar
ia

nc
e

   = bootstrap
   = posterior



Caveat

x

xx

A B C

0

A C B

0

B C A

0

x

xx

•  Mean is sticky



Caveat

x

xx

A B C

0

A C B

0

B C A

0

x

xx

•  Mean is sticky



Caveat

x

xx

x + ε A B C

0

A C B

0

B C A

0

x

xx

•  Mean is sticky



Caveat

A B C D

A B DC A D CB

A C DB



Caveat

A B C D

A B DC A D CB

A C DB



Caveat

A B C D

A B DC A D CB

A C DBmean



Other Statistics
• Central Limit Theorem on BHV tree space:

• special cases: Hotz, O., et al. 2012; Barden, Le, O., 
2013, 2014; Huckemann et al. 2015

• Principal Components Analysis (PCA): (Nye 2011, 
2014; Feragen, O. et al. 2013; Nye et al. 2016)

• confidence regions: Willis 2016

•multiple techniques: Chakerian and Holmes 2012, 
Zairis et al. 2016 

•and more...
T3T3T3T3T3T3T3T3T3



Thank You

•webpage: http://comet.lehman.cuny.edu/owen

•funding: 



Theorem (Sturm, 2003):  the following algorithm 
converges to the mean tree:

• m1 = T1

• ith iteration :

• randomly choose tree Ti from tree set with replacement

• mi =    (geodesic from mi-1 to Ti)
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