Statistics in BHV Tree Space

Megan Owen Lehman College, CUNY Joint with Daniel Brown (U. Waterloo)

BIRS Workshop on Mathematical Approaches to Evolutionary Trees and Networks Feb. 13, 2017

Overarching Goal

- many examples of tree-shaped data (phylogenies, anatomical trees, etc.)
- parameters:
 - tree shape = tree topology
 - edge lengths
- not Euclidean data!

Goal: develop methods for statistical analysis (i.e. mean, PCA) in a space of metric trees analogous to those for Euclidean space

P. Lo et al. EXACT'09

6

Tree Space Framework

- constructed by Billera, Holmes, and Vogtmann (2001)
- tree space T_n = set of all trees with *n* leaves and branch lengths
- includes degenerate trees (non-binary)

Tree Space

(2, 4, 2, 3, 2, 0, 0, 0, 0, 2, 0, 0, ...)

- represent each tree as a vector
- coordinates = splits

Tree Space

not all sets of splits form a tree
 ⇒ not all vectors are possible
 ⇒ not a Euclidean space

Tree Space

- not all sets of splits form a tree
 - ⇒ not all vectors are possible
 - ⇒ not a Euclidean space

Tree Space Properties

Theorem (Billera, Holmes,Vogtmann, 2001): Tree space has global non-positive curvature. ⇒ unique geodesics (shortest paths)

- \Rightarrow well-defined mid-point tree
- BHV or geodesic distance = length of shortest path between two trees T₁ and T₂
- polynomial time algorithm to compute geodesic distance (O. and Provan, 2011)

Mean and Variance

weighted set X in tree space:

Fréchet mean(X) = centre of mass

= argmin
$$\sum_{\mu} p(\mathbf{x}) d(\mathbf{x}, \mu)^2$$

(tree minimizing sum of square BHV distances)

• variance(X) =
$$\sum_{x \in X} p(x) d(x, \mu)^2$$

 computable by algorithm based on Law of Large Numbers (Sturm 2003; Miller, O, Provan 2015; Bačák 2014)

Measures of Variance

- # of different topologies in sample
- # of different splits in sample
- sum of squared distances between trees

Caveat

Caveat

Caveat

Other Statistics

- Central Limit Theorem on BHV tree space:
 - special cases: Hotz, O., et al. 2012; Barden, Le, O., 2013, 2014; Huckemann et al. 2015
- Principal Components Analysis (PCA): (Nye 2011, 2014; Feragen, O. et al. 2013; Nye et al. 2016)
- confidence regions: Willis 2016
- multiple techniques: Chakerian and Holmes 2012, Zairis et al. 2016
- and more...

Thank You

• funding: SIMONS FOUNDATION

webpage: http://comet.lehman.cuny.edu/owen

- $m_1 = T_1$
- ith iteration :
 - randomly choose tree T_i from tree set with replacement

•
$$m_i = \frac{1}{i}$$
 (geodesic from m_{i-1} to T_i)

Theorem (Sturm, 2003): the following algorithm converges to the mean tree:

• $m_1 = T_1$

 $m_1 = T_1 \bullet$

- ith iteration :
 - randomly choose tree T_i from tree set with replacement

•
$$m_i = \frac{1}{i}$$
 (geodesic from m_{i-1} to T_i)

Theorem (Sturm, 2003): the following algorithm converges to the mean tree:

• $m_1 = T_1$

 $m_1 = T_1 \bullet$

- ith iteration :
 - randomly choose tree T_i from tree set with replacement

•
$$m_i = \frac{1}{i}$$
 (geodesic from m_{i-1} to T_i)

- $m_1 = T_1$
- ith iteration :
 - randomly choose tree T_i from tree set with replacement

•
$$m_i = \frac{1}{i}$$
 (geodesic from m_{i-1} to T_i)

Theorem (Sturm, 2003): the following algorithm converges to the mean tree:

- $m_1 = T_1$
- ith iteration :

randomly choose tree T_i from tree set with replacement

•
$$m_i = \frac{1}{i}$$
 (geodesic from m_{i-1} to T_i)

- $m_1 = T_1$
- ith iteration :

Theorem (Sturm, 2003): the following algorithm converges to the mean tree:

- $m_1 = T_1$
- ith iteration :

randomly choose tree T_i from tree set with replacement

Theorem (Sturm, 2003): the following algorithm converges to the mean tree:

- $m_1 = T_1$
- ith iteration :

 \bullet randomly choose tree T_i from tree set with replacement

Theorem (Sturm, 2003): the following algorithm converges to the mean tree:

- $m_1 = T_1$
- ith iteration :

 \bullet randomly choose tree T_i from tree set with replacement

- $m_1 = T_1$
- ith iteration :
 - \bullet randomly choose tree T_i from tree set with replacement

- $m_1 = T_1$
- ith iteration :
 - \bullet randomly choose tree T_i from tree set with replacement

- $m_1 = T_1$
- ith iteration :
 - \bullet randomly choose tree T_i from tree set with replacement

- $m_1 = T_1$
- ith iteration :
 - \bullet randomly choose tree T_i from tree set with replacement

- $m_1 = T_1$
- ith iteration :
 - \bullet randomly choose tree T_i from tree set with replacement

