Statistics in BHV Tree Space

Megan Owen Lehman College, CUNY Joint with Daniel Brown (U. Waterloo)

BIRS Workshop on Mathematical Approaches to Evolutionary Trees and Networks Feb. 13, 2017

Overarching Goal

- many examples of tree-shaped data (phylogenies, anatomical trees, etc.)
- parameters:
- tree shape = tree topology
- edge lengths
- not Euclidean data!

Goal: develop methods for statistical analysis (i.e. mean, PCA) in a space of metric trees analogous to those for Euclidean space

Tree Space Framework

- constructed by Billera, Holmes, and Vogtmann (2001)
- tree space $\mathbb{T}_{\mathrm{n}}=$ set of all trees with n leaves and branch lengths
- includes degenerate trees (non-binary)

Tree Space

- represent each tree as a vector
- coordinates $=$ splits

Tree Space

- not all sets of splits form a tree

\Rightarrow not all vectors are possible

\Rightarrow not a Euclidean space

Tree Space

- not all sets of splits form a tree

\Rightarrow not all vectors are possible

\Rightarrow not a Euclidean space

Structure of ${ }^{〔} \mathbb{T}_{4}$

Structure of ${ }^{〔} \mathbb{T}_{4}$

Structure of ${ }^{〔} \mathbb{T}_{4}$

Structure of \mathbb{T}_{4}

Structure of \mathbb{T}_{4}

Geodesics

Tree Space Properties

Theorem (Billera, Holmes, Vogtmann, 2001):
Tree space has global non-positive curvature.
\Rightarrow unique geodesics (shortest paths)
\Rightarrow well-defined mid-point tree

- BHV or geodesic distance = length of shortest path between two trees T_{1} and T_{2}
- polynomial time algorithm to compute geodesic distance (O. and Provan, 2011)

Mean and Variance

- weighted set X in tree space:
- Fréchet mean $(X)=$ centre of mass

$$
=\underset{\mu}{\operatorname{argmin}} \sum_{x \in X} \mathrm{p}(x) \mathrm{d}(\mathrm{x}, \mu)^{2}
$$

(tree minimizing sum of square BHV distances)

- variance $(X)=\sum_{x \in X} p(x) d(x, \mu)^{2}$
- computable by algorithm based on Law of Large Numbers (Sturm 2003; Miller, O, Provan 2015; Bačák 2014)

Experimental Results

Reference tree

Opossum	
Diprotodontian	Re

Murphy et al., Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348-2351.

Experimental Resulis

Reference tree

Murphy et al., Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348-2351.

Experimental Results

Simulated DNA
sequences
500 bp $\times 10$
$1000 \mathrm{bp} \times 10$
$4000 \mathrm{bp} \times 10$

Experimental Results

Simulated DNA sequences	RAxML bootstrap	bootstrap
$500 \mathrm{bp} \times 10$		
		tree
$1000 \mathrm{bp} \times 10$		distributions
	MrBayes	posterior
$4000 \mathrm{bp} \times 10$		distribution

Experimental Results

Experimental Results

Experimental Results

Visualization vis MDS

Bootstrap Samples

Posterior Samples

Bootstrap Samples

Posterior Samples

Measures of Variance

- \# of different topologies in sample
- \# of different splits in sample
- sum of squared distances between trees

$$
\sum_{r=e r} \alpha(T, T)^{2}
$$

Caveat

- Mean is sticky

Caveat

- Mean is sticky

Caveat

- Mean is sticky

Caveał

Caveał

Caveał

Other Statistics

- Central Limit Theorem on BHV tree space:
- special cases: Hotz, O., et al. 2012; Barden, Le, O.,

2013, 2014; Huckemann et al. 2015

- Principal Components Analysis (PCA): (Nye 2011, 2014; Feragen, O. et al. 2013; Nye et al. 2016)
- confidence regions: Willis 2016
- multiple techniques: Chakerian and Holmes 2012, Zairis et al. 2016
- and more...

Thank You

- funding: SIMONS FOUNDATION
- webpage: http://comet.lehman.cuny.edu/owen

Computing Mean

Theorem (Sturm, 2003): the following algorithm converges to the mean tree:

- $\mathrm{m}_{1}=\mathrm{T}_{1}$
- $i^{\text {th }}$ iteration :
- randomly choose tree T_{i} from tree set with replacement
- $\mathrm{m}_{\mathrm{i}}=\frac{1}{i}$ (geodesic from $\mathrm{m}_{\mathrm{i}-1}$ to T_{i})

Computing Mean

Theorem (Sturm, 2003): the following algorithm converges to the mean tree:

- $\mathrm{m}_{1}=\mathrm{T}_{1}$
- $i^{\text {th }}$ iteration :
- randomly choose tree T_{i} from tree set with replacement
- $\mathrm{m}_{\mathrm{i}}=\frac{1}{i}$ (geodesic from $\mathrm{m}_{\mathrm{i}-1}$ to T_{i})

$$
\mathrm{m}_{1}=\mathrm{T}_{1}
$$

Computing Mean

Theorem (Sturm, 2003): the following algorithm converges to the mean tree:

- $\mathrm{m}_{1}=\mathrm{T}_{1}$
- $i^{\text {th }}$ iteration :
- randomly choose tree T_{i} from tree set with replacement
- $\mathrm{m}_{\mathrm{i}}=\frac{1}{i}$ (geodesic from $\mathrm{m}_{\mathrm{i}-1}$ to T_{i})

$$
\mathrm{m}_{1}=\mathrm{T}_{1}
$$

Computing Mean

Theorem (Sturm, 2003): the following algorithm converges to the mean tree:

- $\mathrm{m}_{1}=\mathrm{T}_{1}$
- $i^{\text {th }}$ iteration :
- randomly choose tree T_{i} from tree set with replacement
- $\mathrm{m}_{\mathrm{i}}=\frac{1}{i}$ (geodesic from $\mathrm{m}_{\mathrm{i}-1}$ to T_{i})

Computing Mean

Theorem (Sturm, 2003): the following algorithm converges to the mean tree:

- $\mathrm{m}_{1}=\mathrm{T}_{1}$
- $i^{\text {th }}$ iteration :
- randomly choose tree T_{i} from tree set with replacement
- $\mathrm{m}_{\mathrm{i}}=\frac{1}{i}$ (geodesic from $\mathrm{m}_{\mathrm{i}-1}$ to T_{i})

Computing Mean

Theorem (Sturm, 2003): the following algorithm converges to the mean tree:

- $\mathrm{m}_{1}=\mathrm{T}_{1}$
- $i^{\text {th }}$ iteration :
- randomly choose tree T_{i} from tree set with replacement
- $\mathrm{m}_{\mathrm{i}}=\frac{1}{i}$ (geodesic from $\mathrm{m}_{\mathrm{i}-1}$ to T_{i})

$\mathrm{m}_{1}=\mathrm{T}_{1}$

T_{2}

Computing Mean

Theorem (Sturm, 2003): the following algorithm converges to the mean tree:

- $\mathrm{m}_{1}=\mathrm{T}_{1}$
- $i^{\text {th }}$ iteration :
- randomly choose tree T_{i} from tree set with replacement
- $\mathrm{m}_{\mathrm{i}}=\frac{1}{i}$ (geodesic from $\mathrm{m}_{\mathrm{i}-1}$ to T_{i})

Computing Mean

Theorem (Sturm, 2003): the following algorithm converges to the mean tree:

- $\mathrm{m}_{1}=\mathrm{T}_{1}$
- $i^{\text {th }}$ iteration :
- randomly choose tree T_{i} from tree set with replacement
- $\mathrm{m}_{\mathrm{i}}=\frac{1}{i}$ (geodesic from $\mathrm{m}_{\mathrm{i}-1}$ to T_{i})

Computing Mean

Theorem (Sturm, 2003): the following algorithm converges to the mean tree:

- $\mathrm{m}_{1}=\mathrm{T}_{1}$
- $i^{\text {th }}$ iteration :
- randomly choose tree T_{i} from tree set with replacement
- $\mathrm{m}_{\mathrm{i}}=\frac{1}{i}$ (geodesic from $\mathrm{m}_{\mathrm{i}-1}$ to T_{i})

Computing Mean

Theorem (Sturm, 2003): the following algorithm converges to the mean tree:

- $\mathrm{m}_{1}=\mathrm{T}_{1}$
- $i^{\text {th }}$ iteration :
- randomly choose tree T_{i} from tree set with replacement
- $\mathrm{m}_{\mathrm{i}}=\frac{1}{i}$ (geodesic from $\mathrm{m}_{\mathrm{i}-1}$ to T_{i})

Computing Mean

Theorem (Sturm, 2003): the following algorithm converges to the mean tree:

- $\mathrm{m}_{1}=\mathrm{T}_{1}$
- $i^{\text {th }}$ iteration :
- randomly choose tree T_{i} from tree set with replacement
- $\mathrm{m}_{\mathrm{i}}=\frac{1}{i}$ (geodesic from $\mathrm{m}_{\mathrm{i}-1}$ to T_{i})

Computing Mean

Theorem (Sturm, 2003): the following algorithm converges to the mean tree:

- $\mathrm{m}_{1}=\mathrm{T}_{1}$
- $i^{\text {th }}$ iteration :
- randomly choose tree T_{i} from tree set with replacement
- $\mathrm{m}_{\mathrm{i}}=\frac{1}{i}$ (geodesic from $\mathrm{m}_{\mathrm{i}-1}$ to T_{i})

Computing Mean

Theorem (Sturm, 2003): the following algorithm converges to the mean tree:

- $\mathrm{m}_{1}=\mathrm{T}_{1}$
- $i^{\text {th }}$ iteration :
- randomly choose tree T_{i} from tree set with replacement
- $\mathrm{m}_{\mathrm{i}}=\frac{1}{i}$ (geodesic from $\mathrm{m}_{\mathrm{i}-1}$ to T_{i})

Computing Mean

Theorem (Sturm, 2003): the following algorithm converges to the mean tree:

- $\mathrm{m}_{1}=\mathrm{T}_{1}$
- $i^{\text {th }}$ iteration :
- randomly choose tree T_{i} from tree set with replacement
- $\mathrm{m}_{\mathrm{i}}=\frac{1}{i}$ (geodesic from $\mathrm{m}_{\mathrm{i}-1}$ to T_{i})

