Reconstruction of ancestral gene orders

Pedro Feijao

Banff, February 17, 2017

SIMON FRASER UNIVERSITY
engaging the world

Introduction

Mouse X-Chromosome

Human X-Chromosome

(Pevzner and Tesler, 2003)

Genome Rearrangement Problems

- Distance: Minimum \# of rearrangements from A to B ?

Genome Rearrangement Problems

- Distance: Minimum \# of rearrangements from A to B ?
- Scenario: Which rearrangements? (also called Sorting)

Genome Rearrangement Problems

- Distance: Minimum \# of rearrangements from A to B ?
- Scenario: Which rearrangements? (also called Sorting)
- Phylogeny: How did the genomes evolve?

Genome Rearrangement Problems

- Distance: Minimum \# of rearrangements from A to B ?
- Scenario: Which rearrangements? (also called Sorting)
- Phylogeny: How did the genomes evolve?
- Ancestral Reconstruction: How do the ancestors look like?

Ancestral Reconstruction

Input: Tree and genomes A, B, C, D
Ouput: Ancestral genomes (M_{1}, M_{2}, M_{3})

Ancestral Reconstruction

- Distance-based Methods
- Homology-based Methods

$$
(-2+1+3+4) \quad(+2-1+3+4) \quad(+1+3-2+4) \quad(+1-3-2+4)
$$

Distance-based Methods

$$
(-2+1+3+4) \quad(+2-1+3+4) \quad(+1+3-2+4) \quad(+1-3-2+4)
$$

Distance-based Methods

Find ancestral genomes that minimize events on the tree \rightarrow Small Parsimony Problem

$$
(-2+1+3+4) \quad(+2-1+3+4) \quad(+1+3-2+4) \quad(+1-3-2+4)
$$

$$
(-2+1+3+4) \quad(+2-1+3+4) \quad(+1+3-2+4) \quad(+1-3-2+4)
$$

$$
(-2+1+3+4) \quad(+2-1+3+4) \quad(+1+3-2+4) \quad(+1-3-2+4)
$$

Ancestral Reconstruction methods

- Distance-based methods:
- Assume a rearrangement model
- Minimize branch lengths
- Homology-based methods:
- Find conserved structures
- Maximize some weight/probability function

Ancestral Reconstruction where internal nodes are

Intermediate Genomes of its children.

Definitions

2
$2 \quad-3$
4

Genome model

1	2	-3	4
1^{t}	$1^{h} 2^{t}$	$2^{h} 3^{h}$	$3^{t} 4^{t}$

The Double-Cut-and-Join (DCJ) operation

The Double-Cut-and-Join (DCJ) operation

The Double-Cut-and-Join (DCJ) operation

$$
\begin{gathered}
A=\left\{\circ 1^{t}, 1^{h} 2^{t}, 2^{h} 3^{t}, 3^{h} 4^{t}, 4^{h} \circ, \circ 5^{t}, 5^{h} 6^{t}, 6^{h} 7^{t}, 7^{h} \circ\right\} \\
B=\left\{1^{h} 2^{h}, 2^{t} 3^{h}, 3^{t} 4^{t}, 4^{h} 1^{t}, \circ 6^{t}, 6^{h} 5^{t}, 5^{h} 7^{h}, 7^{t} \circ\right\}
\end{gathered}
$$

$$
\begin{gathered}
A=\left\{\circ 1^{t}, 1^{h} 2^{t}, 2^{h} 3^{t}, 3^{h} 4^{t}, 4^{h} \circ, \circ 5^{t}, 5^{h} 6^{t}, 6^{h} 7^{t}, 7^{h} \circ\right\} \\
B=\left\{1^{h} 2^{h}, 2^{t} 3^{h}, 3^{t} 4^{t}, 4^{h} 1^{t}, \circ 6^{t}, 6^{h} 5^{t}, 5^{h} 7^{h}, 7^{t} \circ\right\}
\end{gathered}
$$

A-edges are drawn in green, and B-edges in blue.

$d_{\mathrm{DCJ}}(A, B)=N-C$

where N is the number of genes and C is the number of cycles in $B P(A, B)$.
(Bergeron et al, 2006)

Genomes are matchings in the BP graph:

Genomes are matchings in the BP graph:

Genomes are matchings in the BP graph:

Edges are non-crossing chords in the cycles of $B P(A, B)$

$$
\Rightarrow
$$

Intermediate Genome of A and B

Edges are non-crossing chords in the cycles of $B P(A, B)$

$$
\Rightarrow
$$

Intermediate Genome of A and B

- Very easy to detect (linear time)
- Very easy to detect (linear time)
- Reduces the search space. In the example:
- Very easy to detect (linear time)
- Reduces the search space. In the example:
- $34,459,425$ possible genomes
- Very easy to detect (linear time)
- Reduces the search space. In the example:
- $34,459,425$ possible genomes
- Only 40 intermediate genomes between A and B .

Methods

Ancestral Reconstruction with IG

- Small parsimony with the restriction that internal nodes are IG's of the children.

Ancestral Reconstruction with IG

- Small parsimony with the restriction that internal nodes are IG's of the children.
- Still NP-hard
- Given adjacency weights, can we find an IG with maximum weight?
- Maximum Weight Independent Set: Polynomial Time
- DeClone (Chauve et al., 2015)
- New proposed algorithm based on InferCARs (Ma et al., 2006).

Genomes with unique genes

Genomes with unique genes

DCJ InDel Model (Braga et al., 2010; Compeau, 2012)

Breakpoint graph with Unique genes

Breakpoint graph with Unique genes

New components: AA-, BB-, AB- , A-, and B-paths.

Breakpoint graph with Unique genes

New components: AA-, BB-, AB- , A-, and B-paths.

Find an optimal completion

Breakpoint graph with Unique genes

New components: AA-, BB-, AB- , A-, and B-paths.

Find an optimal completion

Optimal completion

- $A A$ - and $B B$ - components are closed

- $A B$ - are paired

- A - and B - paths are paired, with opposing parity.
- Sometimes A-, B - and $A B$ - paths are joined in a triplet.
- How to find a completion with maximum weight?
- Calculate all possible pairings and solve a Maximum Weight Matching

- Sometimes $A-, A B-, B$ - triplets are possible.
- Triple matching is usually NP-hard, but it is still open in this case.

Results

- RINGO - ancestral Reconstruction with INtermediate GenOmes (Feijao and Araujo, 2016)
- MGRA2 (Avdeyev et al., 2016)
- MLGO (Hu et al., 2014)

Dataset	$I=1$, unitary indels				
Diameter (D)	$0.5 n$	$1 n$	$1.5 n$	$2 n$	$2.5 n$
RINGO	3 s	3 s	5 s	7 s	7 s
MLGO	1 m 6 s	1 m 10 s	1 m 7 s	1 m 9 s	1 m 16 s
MGRA	7 s	1 m 46 s	12 m 12 s	56 m 55 s	2 h 2 m 41 s

Current Challenges

- Duplicated genes
- Statistical models

Acknowledgments

- Elói Araújo (UFMS, Brazil)

- Jens Stoye (Bielefeld University, Germany)

	Technische Fakultät		
Universität Bielefeld			Genominformatik
:---			

Thanks!

