Reconstruction of ancestral gene orders

Pedro Feijao Banff, February 17, 2017

Universität Bielefeld

Technische Fakultät Genominformatik

Introduction

1

Genomes

SFU

Human X-Chromosome

(Pevzner and Tesler, 2003)

Genomes

Genomes

Rearrangement Scenario

4

• **Distance**: Minimum # of rearrangements from A to B?

• **Distance**: Minimum # of rearrangements from A to B?

SFU

Universität Bielefeld

• Scenario: Which rearrangements? (also called Sorting)

• **Distance**: Minimum # of rearrangements from A to B?

SFU

Universität Bielefeld

- Scenario: Which rearrangements? (also called Sorting)
- Phylogeny: How did the genomes evolve?

• **Distance**: Minimum # of rearrangements from A to B?

SFU

Universität Bielefeld

- Scenario: Which rearrangements? (also called Sorting)
- Phylogeny: How did the genomes evolve?
- Ancestral Reconstruction: How do the ancestors look like?

Ancestral Reconstruction

Ancestral Reconstruction

SFU

Input: Tree and genomes A, B, C, D

Ouput: Ancestral genomes (M_1, M_2, M_3)

• Distance-based Methods

• Homology-based Methods

Distance-based Methods

Distance-based Methods

Distance-based Methods

SFU

Find ancestral genomes that minimize events on the tree

 \rightarrow Small Parsimony Problem

Homology-based Methods

Homology-based Methods

Homology-based Methods

- Distance-based methods:
 - Assume a rearrangement model
 - Minimize branch lengths
- Homology-based methods:
 - Find conserved structures
 - Maximize some weight/probability function

Universität Bielefeld

Intermediate Genomes

Intermediate Genomes

Ancestral Reconstruction where internal nodes are Intermediate Genomes of its children.

Definitions

$$A = \{\circ 1^t, 1^h 2^t, 2^h 3^h, 3^t 4^t, 4^h \circ\}$$

The Double-Cut-and-Join (DCJ) operation

SFU

Universität Bielefeld

The Double-Cut-and-Join (DCJ) operation

SFU

Universität Bielefeld

The Double-Cut-and-Join (DCJ) operation

Universität Bielefeld

$$A = \{\circ 1^{t}, 1^{h} 2^{t}, 2^{h} 3^{t}, 3^{h} 4^{t}, 4^{h} \circ, \circ 5^{t}, 5^{h} 6^{t}, 6^{h} 7^{t}, 7^{h} \circ\}$$
$$B = \{1^{h} 2^{h}, 2^{t} 3^{h}, 3^{t} 4^{t}, 4^{h} 1^{t}, \circ 6^{t}, 6^{h} 5^{t}, 5^{h} 7^{h}, 7^{t} \circ\}$$

Universität Bielefeld

A-edges are drawn in green, and B-edges in blue.

$d_{\mathsf{DCJ}}(A,B) = N - C$

where N is the number of genes and C is the number of cycles in BP(A, B).

(Bergeron et al, 2006)

Genomes are **matchings** in the BP graph:

Genomes are **matchings** in the BP graph:

Genomes are **matchings** in the BP graph:

18

Edges are non-crossing chords in the cycles of BP(A, B)

SFU

Universität Bielefeld

 \Rightarrow

Intermediate Genome of A and B

Edges are non-crossing chords in the cycles of BP(A, B)

SFU

Universität Bielefeld

 \Rightarrow

Intermediate Genome of A and B

• Very easy to detect (linear time)

• Very easy to detect (linear time)

• Reduces the search space. In the example:

• Very easy to detect (linear time)

- Reduces the search space. In the example:
 - 34,459,425 possible genomes

• Very easy to detect (linear time)

- Reduces the search space. In the example:
 - 34,459,425 possible genomes
 - Only 40 intermediate genomes between A and B.

Methods

Ancestral Reconstruction with IG

• Small parsimony with the restriction that internal nodes are IG's of the children.

Ancestral Reconstruction with IG

- Small parsimony with the restriction that internal nodes are IG's of the children.
- Still NP-hard

• Given adjacency weights, can we find an IG with maximum weight?

• Maximum Weight Independent Set: Polynomial Time

• DeClone (Chauve et al., 2015)

• New proposed algorithm based on InferCARs (Ma et al., 2006).

Example

Example

Example

+3,+4):0.9; (+1,+3):0.5; (-1,+3):0.4, ... Α В С D

SFU

Universität Bielefeld

Genomes with unique genes

SFU

Universität Bielefeld

DCJ InDel Model (Braga et al., 2010; Compeau, 2012)

27

SFU

Universität Bielefeld

New components: AA-, BB-, AB- , A-, and B-paths.

SFU

Universität Bielefeld

New components: AA-, BB-, AB- , A-, and B-paths.

Find an optimal completion

Universität Bielefeld

New components: AA-, BB-, AB- , A-, and B-paths.

Find an optimal completion

• AA- and BB- components are closed

• AB- are paired

• Sometimes A-, B- and AB- paths are joined in a triplet.

• A- and B- paths are paired, with opposing parity.

• How to find a completion with maximum weight?

• Calculate all possible pairings and solve a *Maximum Weight Matching*

SFU

Universität Bielefeld
Maximum Weight Matching

SFU

• Sometimes A-, AB-, B- triplets are possible.

Triple matching is usually NP-hard, but it is still open in this case.

Results

• RINGO - ancestral Reconstruction with INtermediate GenOmes (Feijao and Araujo, 2016)

• MGRA2 (Avdeyev et al., 2016)

• MLGO (Hu et al., 2014)

Dataset	I = 1, unitary indels					
Diameter (D)	0.5n	1n	1.5n	2n	2.5n	
RINGO	3s	3s	5s	7s	7s	
MLGO	1 m 6 s	1 m 10 s	$1 \mathrm{m7s}$	1 m9 s	1 m 1 6 s	
MGRA	7s	$1 \mathrm{m} 46 \mathrm{s}$	$12\mathrm{m}12\mathrm{s}$	$56\mathrm{m}55\mathrm{s}$	2h2m41s	

• Duplicated genes

• Statistical models

• Elói Araújo (UFMS, Brazil)

• Jens Stoye (Bielefeld University, Germany)

Technische Fakultät Genominformatik

Thanks!